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This article presents a new iterative method (NIM) for the investigation of the approximate solution of the Klein-Gordon and
sine-Gordon equations. This approach is formulated on the combination of the Mohand transform and the homotopy
perturbation method. Mohand transform (MT) is capable to handle the linear terms only, thus we introduce homotopy
perturbation method (HPM) to tackle the nonlinear terms. This NIM derives the results in the form of a series solution. The
proposed method emphasizes the stability of the derived solutions without any linearization, discretization, or hypothesis.
Graphical representation and absolute error demonstrate the efficiency and authenticity of this scheme. Some numerical
models are illustrated to show the compactness and reliability of this strategy.

1. Introduction

Many linear and nonlinear phenomena appear in several areas
of scientific fields like physics, chemistry and biology can be
modeled by different type of partial differential equation
[1–4]. A broad class of analytical methods and numerical
methods have been introduced such as (G′/G)-expansion
method [5], Exp-function method [6], Homotopy perturba-
tion method [7], Homotopy analysis method [8], Laplace
transform [9], Residual power series [10], Quasi wavelet
method [11], Fourier series [12], Chebyshev-Tau method
[13], Haar wavelets method [14], trial equation method [15]
and Two scale approach [16] to handle these linear and non-
linear PDEs but to reach exact solutions is not an easy way.
In past few decades, The Klein-Gordon and sine-Gordon
equations are a type of hyperbolic partial differential equation
which are often used to describe and simulate the physical
phenomena in a variety of fields of engineering and science,

i.e., physics, fluid dynamics, mathematical biology and quan-
tum mechanics. Let us consider the Klein-Gordon and sine-
Gordon [17],

Iηη ξ, ηð Þ −Iξξ ξ, ηð Þ + c1I ξ, ηð Þ + c2G I ξ, ηð Þð Þ = f1 ξ, ηð Þ,
ð1Þ

Iηη ξ, ηð Þ −Iξξ ξ, ηð Þ + c3 sin I ξ, ηð Þð Þ = f2 ξ, ηð Þ, ð2Þ
where I is a function of ξ and η; G is a nonlinear function, f1
and f2 are known analytic functions whereas c1, c2 and c3 are
constants.

In recent years, The Klein-Gordon and sine-Gordon equa-
tions have attracted more attention from the scientists due to
its applications in plasma, nonlinear wave equations, studying
the solutions and condensed matter physics and relativistic
physics as a model of dispersive phenomena. Yousif and Mah-
mood [18] used variational iteration method coupled with
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homotopy perturbation method to investigate the approximate
solution of Klein-Gordon an sine-Gordon equations. Nadeem
and Li [17] applied the He-Laplace method to obtain the ana-
lytical solution of Klein-Gordon an sine-Gordon equations.
Liu.et al. [19] employed Yang transformation for the approxi-
mate solution of Klein-Gordon an sine-Gordon equations.
Agom and Ogunfiditimi [20] utilized modified Adomian
decomposition method for nonlinear Klein-Gordon equations
with quadratic nonlinearity. Ikram et. al [21] obtained the
approximate solution of linear Klein-Gordon equations using
Haar wavelet approach. Lotfi and Alipanah [22] used Legendre
spectral element method for solving sine-Gordon equation. Lu
[23] applied modified homotopy perturbation method for the
solution of sine-Gordon equation. Many authors applied vari-
ous approaches to investigate the approximate solution of the
Klein-Gordon and sine-Gordon equations [24–26].

The homotopy perturbation method (HPM) was first
developed by a Chinese mathematician He [27, 28] to pres-
ent the analytical solution of linear and nonlinear partial dif-
ferential equation. Later, Nadeem and Li [29] combined
HPM with Laplace transform for solving nonlinear vibration
systems and nonlinear wave equations to show the accuracy
and validity of HPM. Khan and Qingbiao [30] used HPM
using He’s polynomials for the solution of nonlinear equa-
tions. Many authors have performed the accuracy of HPM
for different system of PDEs. [31–34].

The main purpose of this paper is to develop a new iter-
ative method (NIM) where Mohand transform is combined
with homotopy perturbation method for obtaining the
approximate solution of Klein-Gordon and sine-Gordon
equations. This scheme derive the results in aspect of series
without any linearization, variation and limiting expecta-
tions. In addition, this study is organized as follow: In Sec-
tion 2, we present some basic definitions of Mohand
transform. In Section 3, we formulate the idea of new itera-
tive method (NIM) for obtaining the solution of illustrated
problems. In Section 4, we executed NIM for finding the
approximate solution of the problems to show the accuracy
and validity of this approach. Finally, we present some
results and discussion in Section 5 and conclusion in Section
6.

2. Fundamentals Concepts of
Mohand Transform

In this section, we introduce some basic definitions and pre-
liminaries concepts of Mohand transform which reveals the
idea of its implementations to functions.

Definition 1. Let IðηÞ be a function precise for η ≥ 0 [17],
then

L I ηð Þ½ � = V θð Þ =
ð∞
0
I ηð Þe−θηdη, ð3Þ

is said to be Laplace transform, where η is function (i.e. a
function of time domain), defined on ½0,∞Þ to a function
of θ (i.e. of frequency domain).

Definition 2. If VðθÞ symbolizes the Laplace transform of
IðηÞ, then

I ηð Þ =L−1V θð Þ, ð4Þ

is termed as inverse Laplace transform of VðθÞ.

Definition 3. Mohand and Mahgoub [35] presented a new
scheme Mohand transform Mð:Þ in order to gain the results
of ordinary differential equations and is defined as

M I ηð Þf g = R θð Þ = θ2
ð∞
0
I ηð Þe−θηdt, k1 ≤ θ ≤ k2: ð5Þ

On the other hand, if RðθÞ is the Mohand transform of a
function IðηÞ, then IðηÞ is the inverse of RðθÞ such as

M−1 R θð Þf g =I ηð Þ,M−1 is inverseMohand operator: ð6Þ

Definition 4. If IðηÞ = ηm,

R θð Þ = m!

θm−1 : ð7Þ

Definition 5. If MfIðηÞg = RðθÞ ,then it has the following
differential properties [36]

(i) MfI′ðηÞg = θRðθÞ − θ2Ið0Þ
(ii) MfI′′ðηÞg = θ2RðθÞ − θ3Fð0Þ − θ2I′ð0Þ
(iii) MfImðηÞg = θmRðθÞ − θm+1Ið0Þ − θmI′ð0Þ −⋯−

θmIm−1ð0Þ

3. Formulation of New Iterative Method (NIM)

This segment presents the construction of new iterative
method (NIM) for obtaining the approximate solution of
Klein-Gordon and sine-Gordon equations. Let us consider
a nonlinear second order differential equation of the form,

Iηη ξ, ηð Þ +Iη ξ, ηð Þ +I ξ, ηð Þ + g Ið Þ = g ξ, ηð Þ, ð8Þ

with the following conditions

I ξ, 0ð Þ = a1,Iη ξ, 0ð Þ = a2, ð9Þ

where I is a function in time domain η, gðIÞ represents
nonlinear term, gðηÞ is a source term whereas a1 and a2
are constants. Rewrite Eq. (8) again

Iηη ξ, ηð Þ +Iη ξ, ηð Þ = −I ξ, ηð Þ − g Ið Þ + g ξ, ηð Þ: ð10Þ

Now, taking MT on both sides of Eq. (10), we obtain

M Iηη ξ, ηð Þ +Iη ξ, ηð Þ� �
=M −I ηð Þ − g Ið Þ + g ηð Þ½ �: ð11Þ
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Figure 1: Surfaces plots for the linear Klein-Gordon equation.

Table 2: The absolute error of Iðξ, ηÞ for different values of ξ at
η = 0:01.

ξ Exact solution Approximate solution Absolute error

0.5 1.47929 1.47951 0.00022

1 1.84126 1.8416 0.00034

1.5 1.99725 1.99764 0.00039

2 1.90907 1.90943 0.00036

2.5 1.59831 1.59857 0.00026

3 1.14105 1.14118 0.00013

3.5 0.649213 0.649255 0.000042

4 0.243232 0.243238 6 × 10−6

4.5 0.0225187 0.0225188 1 × 10−7

5 0.0411236 0.0411238 2 × 10−7
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Figure 2: Surfaces plots for the nonlinear Klein-Gordon equation.

Table 1: The absolute error of Iðξ, ηÞ for different values of ξ at
η = 0:01.

ξ Exact solution Approximate solution Absolute error

0.5 1.47948 1.47948 0.0000

1 1.84152 1.84152 0.0000

1.5 1.99754 1.99754 0.0000

2 1.90935 1.90935 0.0000

2.5 1.59852 1.59852 0.0000

3 1.14117 1.14117 0.0000

3.5 0.649267 0.649267 0.0000

4 0.243248 0.243248 0.0000

4.5 0.0225199 0.0225199 0.0000

5 0.0411257 0.0411257 0.0000
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Applying the differential properties of MT, we get

θ2R θ½ � − θ3I ξ, 0ð Þ − θ2Iη ξ, 0ð Þ + θR θ½ � − θ2I ξ, 0ð Þ =M −I ξ, ηð Þ − g Ið Þ + g ξ, ηð Þ½ �:

ð12Þ

Thus RðθÞ can be obtained from Eq. (12) such as

R θ½ � = θ2a1 + θ2a2 + θ3a1
θ + θ2
� � −

M I ξ, ηð Þ + g Ið Þ − g ξ, ηð Þ½ �
θ + θ2
� � :

ð13Þ

Operating inverse Mohand transform, on Eq. (13), we
get

I ξ, ηð Þ =G ξ, ηð Þ −M−1 M I½ �
θ + θ2
� � + M g Ið Þ½

θ + θ2
� �

" #
, ð14Þ

where

G ξ, ηð Þ =M−1 θ2a1 + θ2a2 + θ3a1
θ + θ2
� � +M

g ξ, ηð Þ
θ + θ2
� �
" #" #

: ð15Þ

Now, we apply HPM on Eq. (14). Let

I ξ, ηð Þ = 〠
∞

i=0
piIi mð Þ =I0 + p1I1 + p2I2+⋯, ð16Þ

and nonlinear terms gðIÞ can be calculated by using formula,

g Ið Þ = 〠
∞

i=0
piHi Ið Þ =H0 + p1H1 + p2H2+⋯, ð17Þ

where Hm′s is the He’s polynomial, which may be computed
using the following procedure.

Hm I0 +I1+⋯+Imð Þ = 1
m!

∂m

∂pm
g 〠

∞

i=0
piIi

 ! !
p=0

,m = 0, 1, 2,⋯

ð18Þ

Put Eqs. (16), (17) and (18) in Eq. (14) and comparing the
similar factors of p, we get the following consecutive elements

p0 : I0 ξ, ηð Þ = G ξ, ηð Þ,

p1 : I1 ξ, ηð Þ = −M−1 1
θ + θ2
� �M I +H0 Ið Þf g
" #

,

p2 : I1 ξ, ηð Þ = −M−1 1
θ + θ2
� �M I +H1 Ið Þf g
" #

,

p3 : I1 ξ, ηð Þ = −M−1 1
θ + θ2
� �M I +H2 Ið Þf g
" #

,

⋮
ð19Þ

on continuing the similar process, we can summarize this
series to get the approximate solution such as

I ξ, ηð Þ =I0 ξ, ηð Þ + p1I1 ξ, ηð Þ + p2I2 ξ, ηð Þ++p3I3 ξ, ηð Þ+⋯:

ð20Þ

Let p = 1 in above equation, thus the analytical solution of
Eq. (8) is as follows

I ξ, ηð Þ =I0 +I1 +I2+⋯ = 〠
∞

i=0
Ii: ð21Þ

Thus, Eq. (21) is considered as an approximate solution of
nonlinear differential equation (8).

4. Numerical Examples

In this part, we test two examples for the authenticity and
validity of MHPTM. We also demonstrate 2D plots for a
better understanding of this strategy where we see that the
solution graphs of the approximate solution and the exact
solution coincide with each other only after a few iterations.

Exact
Approximate

1 2 3 4 5 6
𝜉
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𝜂

(𝜉, 𝜂)

Figure 3: 2D Plot for IðηÞ with various parameter of η:

Table 3: The absolute error of Iðξ, ηÞ for different values of η.
η Exact solution Approximate solution Absolute error

0.1 1.57580 1.57582 0.00022

0.2 1.5908 1.59088 0.00034

0.3 1.61579 1.61595 0.00039

0.4 1.65078 1.65094 0.00036

0.5 1.69573 1.69569 0.00026

0.6 1.7506 1.74993 0.00067

0.7 1.81531 1.81327 0.00204

0.8 1.88971 1.88515 0.00456

0.9 1.9736 1.96485 0.00875

1.0 2.06668 2.05142 0.00875
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4.1. Example 1. Consider a linear Klein-Gordon equation

∂2I
∂η2

−
∂2I
∂ξ2

=I, ð22Þ

with the initial condition

I ξ, 0ð Þ = 1 + sin ξð Þ,Iη ξ, 0ð Þ = 0, ð23Þ

Applying MT on Eq. (22) together with the differential
property as defined in Eq. (7), we get

θ2R θð Þ − θ3I 0ð Þ − θ2I′ 0ð Þ =M I + ∂2I
∂η2

" #
: ð24Þ

Using Eq. (23) into Eq. (24) for solving RðθÞ, it yields

R θð Þ = θ 1 + sin ξð Þð Þ +M I + ∂2I
∂η2

" #
: ð25Þ

Using inverse Mohand transform on Eq. (25), we get

I ξ, ηð Þ = 1 + sin ξð Þ +M−1 1
θ2

M I + ∂2I
∂η2

( )" #
ð26Þ

Applying MHPTM to get the He’s polynomials

〠
∞

i=0
piIi mð Þ = 1 + sin ξð Þ +M−1 1

θ2
M 〠

∞

i=0
piIi + 〠

∞

i=0
pi
∂2I
∂η2

!( )" #
:

ð27Þ

Observing the similar powers of p, we get

p0 : I0 ξ, ηð Þ = 1 + sin ξð Þ,

p1 : I1 ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= η2

2 ,

p2 : I2 ξ, ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= 2 η

4

4! ,

p3 : I3 ξ, ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= 2 η

6

6! ,

p4 : I4 ξ, ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= 2 η

8

8! ,

⋮:

ð28Þ

On continuing this process, the results of obtained series
cab be summarized as,

I ξ, ηð Þ =I0 ξ, ηð Þ +I1 ξ, ηð Þ +I2 ξ, ηð Þ +I3 ξ, ηð Þ +I4 ξ, ηð Þ+⋯,

= 1 + sin ξð Þ + η2

2 + 2 η
4

4! + 2 η
6

6! + 2 η
8

8! +⋯:

ð29Þ

This series converges to the exact solution

I ξ, ηð Þ = sin ξð Þ + cosh ηð Þ: ð30Þ

4.2. Example 2. Consider a nonlinear Klein-Gordon equation

∂2I
∂η2

−
∂2I
∂ξ2

=I2, ð31Þ

with the initial condition

I ξ, 0ð Þ = 1 + sin ξð Þ,Iη ξ, 0ð Þ = 0: ð32Þ

Applying MT on Eq. (18) together with the differential

Exact
Approximate
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Figure 4: 2D Plot for IðηÞ with various parameter of η.
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Figure 5: 2D Plot for IðηÞ with various parameter of η.
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property as defined in Eq. (2), we get

θ2R θð Þ − θ3I 0ð Þ − θ2I′ 0ð Þ =M I2 + ∂2I
∂η2

" #
: ð33Þ

Using Eq. (21) into Eq. (22) for solving RðθÞ, it yields

R θð Þ = θ 1 + sin ξð Þð Þ +M I2 + ∂2I
∂η2

" #
: ð34Þ

Using inverse Mohand transform on Eq. (18), we get

I ξ, ηð Þ = 1 + sin ξð Þ +M−1 1
θ2

M I2 + ∂2I
∂η2

( )" #
: ð35Þ

Applying MHPTM to get the He’s polynomials

〠
∞

i=0
piIi mð Þ = 1 + sin ξð Þ +M−1 1

θ2
M 〠

∞

i=0
piI2

i + 〠
∞

i=0
pi
∂2I
∂η2

!( )" #
:

ð36Þ

Observing the similar powers of p, we get

On continuing this process, the approximate solution
cab be summarized as,

I ξ, ηð Þ =I0 ξ, ηð Þ +I1 ξ, ηð Þ +I2 ξ, ηð Þ +I3 ξ, ηð Þ +I4 ξ, ηð Þ+⋯,
ð38Þ

which is in full agreement with [17, 18].

4.3. Example 3. Consider a nonlinear sine-Gordon equation

∂2I
∂η2

−
∂2I
∂ξ2

= sin Ið Þ, ð39Þ

with the initial condition

I ξ, 0ð Þ = π

2 ,Iη ξ, 0ð Þ = 0: ð40Þ

Let sin ðIÞ =I − ðI3/6Þ + ðI5/120Þ, Thus above equa-
tion becomes as

∂2I
∂η2

−
∂2I
∂ξ2

=I −
I3

6 + I5

120 : ð41Þ

Applying MT on Eq. (41) together with the differential

p0 : I0 ξ, ηð Þ = 1 + sin ξð Þ,

p1 : I1 ηð Þ =M−1 1
θ2

M I2
0 +

∂2I0
∂η2

( )" #
= η2

2 ,

p2 : I2 ξ, ηð Þ =M−1 1
θ2

M 2I0I1 +
∂2I1
∂η2

( )" #
= 2 η

4

4! ,

p3 : I3 ξ, ηð Þ =M−1 1
θ2

M I2
1 + 2I0I2 +

∂2I2
∂η2

( )" #
= 2 η

6

6! ,

p4 : I4 ξ, ηð Þ =M−1 1
θ2

M 2I1I2 + 2I0I3 +
∂2I3
∂η2

( )" #
= 2 η

8

8! ,

⋮:

I0 ξ, ηð Þ = 1 + sin ξð Þ,

I1 ξ, ηð Þ = 1 + sin ξð Þ + sin2 ξð Þ� � η2
2 ,

I2 ξ, ηð Þ = − −8 − 9 sin ξð Þ + sin 3ξð Þð Þ η
4

48 ,

I3 ξ, ηð Þ = 119 − 68 cos 2ξð Þ + 5 cos 4ξð Þ + 134 sin ξð Þ + 2 sin 3ξð Þð Þ η6

2880 ,

I4 ξ, ηð Þ = 681 − 67 cos ξð Þ − 404 cos 2ξð Þ − 27 cos 3ξð Þ + 19 cos 4ξð Þ + 1007 sin ξð Þ − 272 sin 2ξð Þ − 147 sin 3ξð Þ + 160 sin 4ξð Þ + 10 sin 5ξð Þð Þ η8

80640 ,

⋮:

ð37Þ
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property as defined in Eq. (7), we get

θ2R θð Þ − θ3I 0ð Þ − θ2I′ 0ð Þ =M
∂2I
∂ξ2

+I −
I3

6 + I5

120

" #
:

ð42Þ

Using Eq. (40) into Eq. (42) for solving RðθÞ, it yields

R θð Þ = θ
π

2
� �

+M
∂2I
∂ξ2

+I −
I3

6 + I5

120

" #
: ð43Þ

Using inverse Mohand transform on Eq. (43), we get

I ξ, ηð Þ = π

2 +M−1 1
θ2

M
∂2I
∂ξ2

+I −
I3

6 + I5

120

( )" #
: ð44Þ

Applying MHPTM to get the He’s polynomials

〠
∞

i=0
piIi mð Þ = π

2 +M−1 1
θ2

M 〠
∞

i=0
pi
∂2Ii

∂ξ2
+ 〠

∞

i=0
piIi − 〠

∞

i=0
pi
I3

i

6 + 〠
∞

i=0
pi

I5
i

120

�( )" #
:

ð45Þ

Observing the similar powers of p, we get

On continuing this process, the approximate solution
cab be summarized as,

I ξ, ηð Þ =I0 ξ, ηð Þ +I1 ξ, ηð Þ +I2 ξ, ηð Þ +I3 ξ, ηð Þ +I4 ξ, ηð Þ+⋯,
ð48Þ

which is in full agreement with [17, 18].

5. Results and Discussion

In this segment, we demonstrate the validity and the accu-
racy of NIM though the graphical representations. Figure 1
shows the surface solution of linear Klein-Gordon equation
for −5 ≤ ξ ≤ 5 at η = 1 and Figure 2 shows the surface solu-
tion of nonlinear Klein-Gordon equation for −10 ≤ ξ ≤ 10
at η = 0:01. The absolute errors in Tables 1–3 show the com-
parison between other approaches and the approximate
solution obtained by NIM. We also compare the NIM results
in Figures 3, 4 and 5 to show the accuracy of the present
approach at ξ = π and ξ = 20 with different values of η. These
results show the high accuracy and validity of this approach.

All the computations and graphical representations are
made with wolfram Mathematica software. These plot distri-
bution and absolute error show that NIM is powerful,
straight forward and easy to implement for such kind of lin-
ear and nonlinear partial differential equations. We observe
that the approximate of sine-Gordon Eq. (39) is independent
of ξ variable due to its independent of initial condition in Eq.
(40). Thus, it appropriate solution obtained by NIM is also
independent of ξ variable.

6. Conclusion

In this study, we have successfully employed the new itera-
tive method (NIM) to obtain the approximate solution of
Klein-Gordon and sine-Gordon equations. The obtained
results are derived in the form of series and all are in full
agreement which shows that NIM is a very simple and
straightforward approach for linear and nonlinear problems.
The Mohand transform has been used directly without any
perturbation theory and recurrence relation which ruins
the physical nature of the problem. We also demonstrate
the absolute error and 2D plot distribution with various time

p0 : I0 ξ, ηð Þ = π

2 ,

p1 : I1 ηð Þ =M−1 1
θ2

M
∂2I0
∂η2

+I0 −
I3

0
6 + I5

0
120

( )" #
,

p2 : I2 ξ, ηð Þ =M−1 1
θ2

M
∂2I1
∂η2

+I1 −
1
2I

2
0I1 +

1
24I

4
0I1

( )" #
,

p3 : I3 ξ, ηð Þ =M−1 1
θ2

M
∂2I2
∂η2

+ 1
2I0I
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parameters. The solution graphs and absolute errors have
confirmed the validity and reliability of NIM toward the
solutions of other nonlinear partial differential equations in
science and engineering.
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