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In this paper,wedealwithp-Laplace equationswith singular nonlinearities and critical Sobolev exponent. Byusing theNehari manifold,
Mountain Pass theorem, and Maximum principle theorem, we prove the existence of at least four distinct nontrivial solutions.

1. Introduction

LetΩ a bounded smooth domain inℝNðN ≥ 3Þ, and consider
the following p-Laplace equations with singular nonlinearities

Δpu = uj jq−1u + λ
uj j−1−β
xj jα u inΩ

u = 0 on ∂Ω,

8><
>: ð1Þ

where() 1 < p <N, 0 ∈Ω,λ > 0, and q + 1 = p∗ with p∗ ≔ pN/
ðN − pÞ is the critical Sobolev exponent, 0 ≤ α <Nðq + βÞ/q,
0 < β < 1 and Δpu≔ div ðj∇ujp−2∇uÞ is the p-Laplace operator
which is degenerate if p > 2 and singular if p < 2.

In recent years, researchers have been interested in
studying problems of the type:

Δpu = uj jq−1u + λf x, uð Þ, inΩ
u = 0 on ∂Ω,

(
ð2Þ

where Ω is a bounded smooth domain in ℝNðN ≥ 3Þ, 0 ∈Ω,
λ > 0, and q + 1 = p∗ with p∗ ≔ pN/ðN − pÞ is the critical
Sobolev exponent and f is a suitable function containing sin-
gularities on x (see [1–4] and references therein). For p = 2
and after the work of Brézis and Nirenberg [5], Problem
(2) has studied by many authors (see, e.g.,[6–18]). Problem
(2) becomes the well-known Brézis and Nirenberg problem

and is studied extensively in [19]. Ding and Tang in [20]
studied the existence of positive solutions with N ≥ 3 and f
ðx, uÞ satisfying (AR) condition in the case λ = 1. Very
recently, M. E. O. El Mokhtar et al. [21] considered Problem
(1) with p = 2:

The term represented by the function f ðx, uÞ≔ jxj−αu
juj−β with 0 < β < 1 is the key to this famous work because
we will allow us to combine the perturbation with the var-
iational methods to overcome shortcomings in the form of
singularity. He is well known in the scientific literature
that the problems dealt with in applied mathematics have
their origins in different fields we will cite as example:
heterogeneous chemical catalysis, kinetic chemical cataly-
sis, heat induction or electrical induction, non-Newtonian
fluid theory, and viscous fluid theory (see, e.g., [22–26]).

We encounter Problem (1) in many nonlinear phenom-
ena, for instance, in the theory of quasi-regular and quasi-
conformal mapping, in the generalized reaction-diffusion
theory, in the turbulent flow of a gas in a porous medium,
and in the non-Newtonian fluid theory (see [27–30]).

Before giving our main results, we state here some
definitions, notations, and known results.

We denote by H =W
1,p
0 ðΩ \ f0gÞ with respect to the

norms

uk k =
ð
Ω

∇uj jp� �
dx

� �1/p
: ð3Þ
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We consider the following approximation equation:

Δpu = uj jq−1u + λ

xj jα u + θð Þβ
inΩ

u = 0 on ∂Ω,

8><
>: ð4Þ

for any θ > 0. The energy functional of (4) Eθ is defined by

Eθ uð Þ≔ 1
p

uk kp − 1
q + 1

ð
Ω

u+ð Þq+1dx

−
λ

1 − β

ð
Ω

u+ + θð Þ1−β − θ1−β

xj jα dx:

ð5Þ

for all u ∈H , where u± = max fu±, 0g:
We know that Eθ is a C

1 − function on H =H 1
0ðΩÞ:

A point u ∈H is a weak solution of Equation (1) if it
satisfies

Eθ
′ uð Þ, φ

D E
≔
ð
Ω

∇uj jp−2∇u∇φdx −
ð
Ω

u+ð Þq−1uφdx

− λ
ð
Ω

φ

u+ + θð Þβ xj jα
dx = 0, for allφ ∈H :

ð6Þ

Here .,. denotes the product in the duality H ′, HðH ′
dual of HÞ.

Let

S≔ inf
u∈H\ 0f g

uk kpÐ
Ω
uj jq+1dx� �p/ q+1ð Þ : ð7Þ

From [3], S is achieved.
Let λ∗ and λ∗∗ be positive numbers such that

λ∗ ≔
q + 1 − p
q + βð ÞΨ

p − 1 + β

q + β
S q+1ð Þ/p

� � p−1+βð Þ/ q+1−pð Þ
ð8Þ

and

λ∗∗ ≔
q − 1
q + βð ÞΨ

1 − β

p

� �1/p p − 1 + β

q + β

� � p−1ð Þ/ q−1ð Þ
S p q+1ð Þ− q−1ð Þ 1+βð Þð Þ/ q−1ð Þ

ð9Þ

where,

Ψ = 2πN/2 q + βð Þ
NΓ N/2ð Þ q + βð Þ − α q + 1ð Þ

� � q+βð Þ/ q+1ð Þ
R N/ q+1ð Þð Þ q+βð Þ−α
0 > 0,

ð10Þ

with

0 ≤ α < N
q + 1 q + βð Þ: ð11Þ

The main results are concluded as the following theorems.

Theorem 1. Assume that N ≥ 3, 0 ≤ α < ðN/ðq + 1ÞÞðq + βÞ,
0 < β < 1, and λ verifying 0 < λ < λ∗ ; then, the system (1)
has at least one positive solution.

Theorem 2. In addition to the assumptions of the Theorem 1,
there exists Λ∗ ∈ ð0,λ∗∗Þ such that if λ satisfying 0 < λ <Λ∗,
then (1) has at least two positive solutions.

Theorem 3. Under the assumptions of Theorem 2 then, there
exists a positive real λ∗∗ such that if λ satisfies 0 < λ < λ∗∗,
then (1) has at least four nontrivial solutions.

This paper is organized as follows. In Section 2, we give
some preliminaries. Sections 3 and 4 are devoted to the
proofs of Theorems 1 and 2. In the last section, we prove
Theorem 3.

2. Preliminaries

Definition 4 (see [31]). Let c ∈ℝM be a Banach space and
E ∈ C1ðM,ℝÞ.

(i) ðunÞn is a Palais-Smale sequence at level c (in short
ðPSÞc) in M for E

E unð Þ = c + on 1ð Þ and E′ unð Þ = on 1ð Þ, ð12Þ

where onð1Þ tends to 0 as n goes at infinity

(ii) We say that E satisfies the ðPSÞc condition if any
ðPSÞc sequence in M for E has a convergent
subsequence

2.1. Nehari Manifold [32, 33]. It is well known that E is of
class C1 in H and the solutions of (1) are the critical points
of E which is not bounded below onH . Consider the follow-
ing Nehari manifold:

W = u ∈H \ 0f g: E′ uð Þ, u = 0
n o

, ð13Þ

Note that W contains every nontrivial solution of the
problem (1). Thus, u ∈W if and only if u ∈H \ f0g and

uk kp −
ð
Ω

u+ð Þq+1dx − λ
ð
Ω

u+ + θð Þ1−β − θ1−β

xj jα dx = 0: ð14Þ

In our work, we research the critical points as the mini-
mizers of the energy functional associated to the problem (1)
on the constraint defined by the Nehari manifold.
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In order to obtain the first positive solution, we give the
following important lemmas.

Lemma 5. Eθ is coercive and bounded from below on W .

Proof. Let R0 > 0 such that Ω ⊂ Bð0, R0Þ = fx ∈ℝN : jxj <
R0g. If u ∈W , then by (14) and the Hölder inequality,
we obtain

ð
Ω

u+ð Þ1−β
xj jα dx ≤ C1 uk k1−β ð15Þ

withC1 =ΨS− 1−βð Þ/p
1 , ð16Þ

where,

S1 ≔ inf
u∈H\ 0f g

uk kpÐ
Ω

uj j1−β/ xj jα
� 	

dx
� 	p/ 1−βð Þ : ð17Þ

Therefore, we obtain that

Eθ uð Þ = q + 1 − pð Þ/p 1 + qð Þð Þ uk kp+−λ q + βð Þ/ q + 1ð Þð

� 1 − βð ÞÞ
ð
Ω

u+ð Þ1−β
xj jα dx

≥ q + 1 − pð Þ/p q + 1ð Þð Þ uk kp+−λ q + βð Þ/ q + 1ð Þð
� 1 − βð ÞÞΨ uk k1−βS− 1−βð Þ/p

1 ,
ð18Þ

for 0 ≤ α < ðN/ðq + 1ÞÞðq + βÞ:
Thus, Eθ is coercive and bounded from below on W .

Define

ϕ uð Þ = Eθ
′ uð Þ, u

D E
: ð19Þ

Then, for u ∈W

ϕ′ uð Þ, u
D E

= p uk kp − q + 1ð Þ
ðq+1
Ω

u+ð Þq+1dx+−λ 1 − βð Þ
ð
Ω

u+ + θð Þ1−β − θ1−β

xj jα dx

= p − 1 + βð Þ uk kp − q + βð Þ
ð
Ω

u+ð Þq+1dx

= λ q + βð Þ
ð
Ω

u+ + θð Þ1−β − θ1−β

xj jα dx − q + 1 − pð Þ uk kp:

ð20Þ

Splitting W in three parts, we set

W + = u ∈W : ϕ′ uð Þ, u > 0
n o

W 0 = u ∈W : ϕ′ uð Þ, u = 0
n o

W − = u ∈W : ϕ′ uð Þ, u < 0
n o : ð21Þ

We have the following results.

Lemma 6. Suppose that u0 is a local minimizer for Eθ onW .If
u0 ∉W

0, then u0 is a critical point of Eθ.

Proof. If u0 is a local minimizer for Eθ on W , then u0 is a
solution of the optimization problem:

min
u∈H\ 0f g/ϕ uð Þ=0f g

Eθ uð Þ: ð22Þ

Hence, there exists a Lagrange multipliers μ ∈ℝ
such that

Eθ
′ u0ð Þ = μϕ′ u0ð ÞinH ′ ð23Þ

Thus,

Eθ
′ u0ð Þ, u0 = μϕ′ u0ð Þ, u0

D E
: ð24Þ

But ϕ′ðu0Þ, u0 ≠ 0, since u0 ∉W
0. Hence, μ = 0. This

completes the proof.

Lemma 7. There exists a positive number λ∗ such that for all
λ verifying

0 < λ < λ∗, ð25Þ

we have W 0 =∅.

Proof. Let us reason by contradiction.
Suppose that W 0 ≠∅ for all λ such that 0 < λ < λ∗.

Then, by (20) and for u ∈W 0, we have

p − 1 + βð Þ uk kp − q + βð Þ
ð
Ω

u+ð Þq+1dx = 0,

λ q + βð Þ
ð
Ω

u+ + θð Þ1−β − θ1−β

xj jα dx − q + 1 − pð Þ uk kp = 0:

ð26Þ

Moreover, by the Hölder inequality and the Sobolev
embedding theorem, we obtain

uk k ≥ S q+1ð Þð Þ/ p q+1−pð Þð Þ q + βð Þ
p − 1 + βð Þ

� �1/ q+1−pð Þ
, ð27Þ

uk k ≤ λ
q + β

q + 1 − p

� �
Ψ

� � 1/ p−1+βð Þð Þð Þ
S β−1ð Þ/ p p−1+βð Þð Þ
1 : ð28Þ

From (26) and (27), we obtain λ ≥ λ∗, which contradicts
our hypothesis.
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As W 0 =∅ then W =W + ∪W −. Define

c≔ inf
u∈W

Eθ uð Þ, c+ ≔ inf
u∈W +

Eθ uð Þ and c‐ ≔ inf
u∈W ‐Eθ uð Þ: ð29Þ

For the sequel, we need the following Lemma.

Lemma 8.
(i) For all λ such that 0 < λ < λ∗, one has c ≤ c+ < 0
(ii) For all λ such that 0 < λ < λ∗∗ there exists C0 > 0 such

hat c− > −λp/ðp−1+βÞC0

Proof.

(i) Let u ∈W +. By (20), we have

p − 1 + β

q + β
uk kp >

ð
Ω

u+ð Þq+1dx ð30Þ

and so

Eθ uð Þ = −
p + β − 1
p 1 − βð Þ uk kp + q + β

q + 1ð Þ 1 − βð Þ
ð
Ω

u+ð Þq+1dx

< p + β − 1ð Þ p − q − 1ð Þ
p 1 − βð Þ q + 1ð Þ uk kp < 0,

ð31Þ

since p + 1 > 2 and 0 < β < 1. Then, we conclude that
c ≤ c+ < 0.

(ii) Let u ∈W −. By(20), we get

p − 1 + β

q + β
uk kp <

ð
Ω

u+ð Þq+1dx: ð32Þ

By Sobolev embedding theorem, we obtain

ð
Ω

u+ð Þq+1dx ≤ S− q+1ð Þ/p uk kq+1: ð33Þ

This implies

uk k > S q+1ð Þ/ p q+1−pð Þð Þ p − 1 + β

q + β

� �1/ q+1−pð Þ
, for all u ∈W −:

ð34Þ

By the proof of Lemma 5, we have

Eθ uð Þ ≥ uk kp q − 1
p q + 1ð Þ+−λ uk k1−β q + β

q + 1ð Þ 1 − βð ÞΨ Sð Þ 1−βð Þ/p

≥
q − p
pq

p − 1 + β

q + βð Þ
� �p/ q−1ð Þ

S q+1ð Þ/ q−1ð Þ

− λp
q + βð Þp

q + 1ð Þ q − 1ð Þ 1 − βð ÞΨ
pS 1−βð Þ/p:

ð35Þ

Thus, for all λ such that 0 < λ < λ∗∗ we have EθðuÞ ≥ −
λp/ðp−1+βÞC0 with

C0 =
1

β − 1 −
1

q + 1

� �
p − 1 + β

p
Ψ

� �
q + β

q − p + 1

� � 1−βð Þ/ p−1+βð Þ
:

ð36Þ

As in [34] we have the following result.

Proposition 9.
(i) For all λ such that 0 < λ < λ∗, there exists a ðPSÞc+

sequence in W +

(ii) For all λ such that 0 < λ < λ∗∗, there exists a ðPSÞc−
sequence in W − and for each u ∈H \ f0g.

Define

tM ≔ tmax uð Þ = p − 1 + βð Þ uk kp
q + pð ÞÐΩ u+ð Þq+1dx

" #1/ q+1−pð Þ
> 0: ð37Þ

Lemma 10. Suppose that 0 < λ < λ∗. For each u ∈H \ f0g,
there exists unique t+ and t− such that 0 < t+ < tM < t−,
ðt+uÞ ∈W +, and ðt−uÞ ∈W −,

Eθ t+uð Þ = inf  E tuð Þ for 0 ≤ t ≤ tM ,
Eθ t−uð Þ = sup  E tuð Þ for t ≥ 0:

ð38Þ

Proof.With minor modifications, we refer the reader to [34].

3. Proof of Theorem 1

Now, taking as a starting point the work of Tarantello
[35], we establish the existence of a local minimum for
Eθ on W +.

Proposition 11. For all λ such that 0 < λ < λ∗, the functional
Eθ has a minimizer u+0 ∈W

+, and it satisfies

(i) Eθðu+0 Þ = c+

(ii) ðu+0 Þ is a nontrivial solution of (1)

Proof. If 0 < λ < λ∗, then by Proposition 9, (i) there exists a
ðunÞðPSÞc+ sequence in ;, thus, it bounded by Lemma 5.

4 Journal of Function Spaces



Then, there exists u+0 ∈H , and we can extract a subsequence
which will denoted by ðunÞ such that

un ⟶ u+0weakly inH
un ⟶ u+0 strongly in L1−β Ω, xj j−αð Þ:
un ⟶ u+0 a:e inΩ

ð39Þ

By (15) and (39), we have

lim
n⟶∞

ð
Ω

un + θj j1−β
xj jα dx =

ð
Ω

u+0 + θj j1−β
xj jα dx + o 1ð Þ: ð40Þ

Thus, by (39), u+0 is a weak nontrivial solution of (1).
Now, we show that ðunÞ converges to u+0 strongly inH . Sup-
pose otherwise. By the lower semi-continuity of the norm, if
unð1/2Þu+0 we have ku+0k < lim inf

n⟶∞
kunk, and we obtain

c ≤ Eθ u+0ð Þ − 1
q + 1 Eθ

′

= q + 1 − p
p q + 1ð Þ / u+0k kp+−λ q + β

q + 1ð Þ 1 − βð Þ
ð
Ω

u+0 + θj j1−β
xα

dx

< lim inf
n⟶∞

Eθ unð Þ = c:

ð41Þ

We get a contradiction. Therefore, ðunÞ converge to u+0
strongly in H . Moreover, we have u+0 ∈W

+. If not, then by
Lemma 10, there are two numbers t+0 and t−0 , uniquely
defined so that ðt+0u+0 Þ ∈W + and ðt−u+0 Þ ∈W −. In particular,
we have t+0 < t−0 = 1. Since

d
dt

Eθ tu+0ð Þ≫t=t+0
= 0,

d2

dt2
Eθ tu+0ð Þ≫t=t+0

> 0,
ð42Þ

there exists t−0 < t− ≤ t+0 such that Eθðt−0u+0 Þ < Eθðt+u+0 Þ. Then,
we get

Eθ t−0u
+
0ð Þ < Eθ t−u+0ð Þ < Eθ t+0u

+
0ð Þ = Eθ u+0ð Þ, ð43Þ

which contradicts the fact that Eθðu+0 Þ = c+. Since Eθðu+0 Þ
= Eθðju+0 jÞ and ju+0 j ∈W +, then by Lemma 6, we may assume
that u+0 is a nontrivial nonnegative solution of (1). By the Har-
nack inequality, we conclude that u+0 > 0 (see, e.g., [29]).

4. Proof of Theorem 2

Next, we establish the existence of a local minimum for Eθ
on W −. For this, we require the following Lemmas.

Lemma 12. Let ðunÞ be ðPSÞc sequence for Eθ for some c ∈ℝ
with un ⟶ u in H .

Then, Eθ
′ðuÞ = 0 and EθðuÞ ≥ −λp/ð1+βÞCðq, β,Ψ, SÞ, with

Cðq, β,Ψ, SÞ > 0.

Proof. Let ðunÞ ⊂ Su be a minimizing sequence for Eθ with
Su is the unit sphere. By Ekeland’ s variational principle
[12], we may assume Eθ

′ðunÞ⟶ 0. So ðunÞ is a ðPSÞc
sequence and therefore un ⟶ u after passing to a subse-
quence. Hence EθðuÞ = c and hEθ

′ðuÞi = 0, which implies
that hEθ

′ðuÞ, ui = 0, and

ð
Ω

u+ð Þq+1dx = uk kp − λ
ð
Ω

u+ + θð Þ1−β
xj jα dx: ð44Þ

Therefore,

Eθ uð Þ = q − 1
p p + 1ð Þ uk kp+−λ q + β

q + 1ð Þ p + 1 − βð Þ
ð
Ω

u+ + θð Þ1−β
xj jα dx:

ð45Þ

From (15) and considering kuk small enough, we get

which implies that

E uð Þ ≥ q − 1
p q + 1ð Þ uk kp − λ

q + β

q + 1ð Þ p + 1 − βð Þ S
− 1−βð Þ/pΨ uk k1−β, ð47Þ

with

Ψ = 2πN/2 q + βð Þ
NΓ N/2ð Þ q + βð Þ − α q + 1ð Þ

� � q+βð Þ/ q+1ð Þ
RN/ q+1ð Þ q−1+βð Þ−α
0 : ð48Þ

Set f ðtÞ =Dtp − λEt1−β for all t > 0, with

D = q − 1
p q + 1ð Þ ,

E = q + β

q + 1ð Þ 1 − βð Þ S
− 1−βð Þð Þ/pΨ:

ð49Þ

Using (46), we obtain that

ð
Ω

u+ + θð Þ1−β
xj jα dx ≤

2πN/2 q + βð Þ
NΓ N/2ð Þ q + βð Þ − α q + 1ð Þ

� �q+β/q+1
R N/ q+1ð Þð Þ q+βð Þ−α
0 uk k1−βS− 1−βð Þ/p, ð46Þ
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f tð Þ ≥ −λp/ p−1+βð ÞC p, q, β,Ψ, Sð Þ for all t > 0 small enough,
ð50Þ

where

C p, q, β,Ψ, Sð Þ =D
1 − βð ÞE
pD

� �p/ 1+βð Þ β

1 − βð Þ , ð51Þ

We have Cðp, q, β,Ψ, SÞ > 0 since 0 < β < 1. Then, we
conclude that

E uð Þ ≥ −λp/ p−1+βð ÞC p, q, β,Ψ, Sð Þ: ð52Þ

Lemma 13. Let λ ∈ ð0,λ∗∗Þ; then, the functional Eθ satisfies
the ðPSÞc condition in H with c < c∗, where

c∗ = q + 1 − pð Þ
p q + 1ð Þ S q+1ð Þ/ q+1−pð Þ − λp/ p−1+βð ÞC p, q, β,Ψ, Sð Þ:

ð53Þ

Proof. If 0 < λ < λ∗∗, then by Proposition 9, (ii) there exists a
ðunÞ, ðPSÞc sequence in W ; thus, it bounded by Lemma 5.
Then, there exists u ∈H , and we can extract a subsequence
which will denoted by ðunÞ such that

un ⇀ uweakly inH
un ⇀ uweakly in Lq+1 Ωð Þ
un ⟶ u a:e inΩ:

ð54Þ

Then, u is a weak solution of (1). Let vn = un − u; then, by
Brézis-Lieb [36], we obtain

vnk kp = unk kp − uk kp + on 1ð Þ, ð55Þ
ð
Ω

vnj jq+1dx =
ð
Ω

unj jq+1 − dx
ð
Ω

uj jq+1dx + on 1ð Þ: ð56Þ

Since

Eθ unð Þ = c + on 1ð Þ, Eθ
′ unð Þ = on 1ð Þ, ð57Þ

and by (55) and (56), we deduce that

1
p

vnk kp − 1
q + 1

ð
Ω

vnj jq+1dx = c − Eθ uð Þ + on 1ð Þ,

vnk kp −
ð
Ω

vnj jq+1dx = on 1ð Þ:
ð58Þ

Hence, we may assume that

vnk kp ⟶ l,
ð
Ω

vnj jq+1dx⟶ l: ð59Þ

Moreover, by Sobolev inequality, we have

vnk kp ≥ S
ð
Ω

vnj jq+1dx: ð60Þ

Combining (60) and (59), we obtain

l ≥ lp/ q+1ð ÞS: ð61Þ

Either,

l = 0orl ≥ S q+1ð Þ/ q−1ð Þ: ð62Þ

Then from (58), (59), Lemma 13 and Lemma 12, we obtain

c ≥
q − 1

p q + 1ð Þ l + Eθ unð Þ ≥ c∗: ð63Þ

which is a contradiction. Therefore, l = 0, andwe conclude that
ðunÞ converges to u strongly inH .

Thus,

Eθ unð Þ converges to Eθ uð Þ = c as n tends to+∞: ð64Þ

Lemma 14. There exists v ∈H and Λ∗ > 0 such that for all
λ ∈ ð0,Λ∗Þ, one has

sup
t≥0

Eθ tvð Þ < c∗: ð65Þ

In particular, c < c∗ for all λ ∈ ð0,Λ∗Þ.

Proof. Let φεðxÞ satisfies (4). Then, we have

λ

1 − β

ð
Ω

φε + θj j1−β
xj jα dx > 0: ð66Þ

We consider the two functions:

f tð Þ≔ Eθ tφεð Þandg tð Þ = tp

p
φεk kp − tq+1

q + 1

ð
Ω

φεj jq+1dx:

ð67Þ

Then, for all for all λ ∈ ð0,λ∗∗Þ,

f 0ð Þ = 0 < c∗: ð68Þ

By the continuity of f , there exists t0 > 0 such that

f tð Þ < c∗,∀t ∈ 0, t0ð Þ: ð69Þ

On the other hand we have

max
t≥0

g tð Þ = q − 1ð Þ q + βð Þ
p 1 + βð Þ q + 1ð Þ S

q+1ð Þ/ q−1ð Þ: ð70Þ
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Then, we obtain

sup
t≥0

Eθ tφεð Þ < q − 1ð Þ q + βð Þ
p 1 + βð Þ q + 1ð Þ S

q+1ð Þ/ q−1ð Þ − λp/ 1+βð ÞC p, q, β,Ψ, Sð Þ:

ð71Þ

Now, taking λ > 0 such that

−
λt1−β0
1 − β

ð
Ω

φεj j1−β
xj jα dx < −λp/ 1+βð ÞC p, q, β,Ψ, Sð Þ, ð72Þ

we obtain

0 < λ < t1+β0
1 − βð ÞC p, q, β,Ψ, Sð Þ½ � 1+βð Þ/ 1−βð Þ

�
ð
Ω

φε + θj j1−β
xj jα dx

" # 1+βð Þ/ 1−βð Þ
=Λ1:

ð73Þ

Set

Λ∗ =min   λ∗∗,Λ1f g: ð74Þ

We deduce that c− < c∗ for all λ ∈ ð0,Λ∗Þ; then, there
exists tn > 0 such that ðtnwnÞ ∈W − with wn satisfying (4)
and for all λ ∈ ð0,Λ∗Þ,

c− ≤ Eθ tnwnð Þ ≤ sup  
t≥0

E twnð Þ < c∗: ð75Þ

Lemma 15. For all λ such that 0 < λ <Λ∗ =min fλ∗∗,Λ1g,
the functional Eθ has a minimizer u−0 in W −, and it satisfies

Eθ u−0ð Þ = c− > 0, ð76Þ

u−0 is a nontrivial solution of (1) in H .

Proof. By Proposition 9 (ii), there exists a ðPSÞc− sequence ð
unÞ for E, in W − for all λ ∈ ð0,λ∗∗Þ. From Lemmas 13, 18,
and 8(ii), for λ ∈ ð0,Λ1Þ, Eθ satisfies ðPSÞc− condition and
c− > 0. Then, we get that ðunÞ is bounded in H . Therefore,
there exist a subsequence of ðunÞ still denoted by ðunÞ and
u−0 ∈W

− such that ðunÞ converges to u−0 strongly in H and
Eθðu−0 Þ = c− > 0 for all λ ∈ ð0,Λ∗Þ.

Finally, by using the same arguments as in the proof of
Proposition 11 for all λ ∈ ð0, λ∗Þ, we have that u−0 is a
solution of (1).

Now, we complete the proof of Theorem 2. By Proposi-
tion 11 and Lemma 15, we obtain that (1) has two positive
solutions u+0 ∈W

+ and u−0 ∈W
−. Since W + ∩W − =∅, then,

u+0 and u−0 are distinct.

5. Proof of Theorem 3

Now, we consider the following Nehari submanifold of W :

W ρ = u ∈H / 0f g: Eθ
′ uð Þ, u = 0 and uk k ≥ ρ > 0

n o
: ð77Þ

Thus, u ∈W ρ if and only if

uk kp −
ð
Ω

u+ð Þq+1dx − λ
ð
Ω

u+ + θð Þ1−β
xj jα dx = 0,

uk k ≥ ρ > 0:
ð78Þ

Firstly, we need the following Lemmas.

Lemma 16. Under the hypothesis of theorem 3, there exist
Λ2 > 0 such that W ρ is nonempty for any λ ∈ ð0,Λ2Þ.

Proof. Fix u0 ∈H \ f0g, and let

g tð Þ = Eθ
′ tu0ð Þ, tu0

D E

= tp u0k kp − tq+1
ð
Ω

u0j jq+1dx − t1−βλ
ð
Ω

u0 + θj j1−β
xj jα dx:

ð79Þ

Clearly gð0Þ = 0 and gðtÞ⟶ −∞ as t⟶ +∞. More-
over, we have

g 1ð Þ = u0k kp −
ð
Ω

u0j jq+1dx − λ
ð
Ω

u0 + θj j1−β
xj jα dx

≥ u0k k2−β u0k kβ − Sμ
� �− q+1ð Þ/p u0k k q+βð Þ − λΨ Sð Þ β−1ð Þ/p

h i
:

ð80Þ

for t ≥ 0, put φðtÞ = tβ − ðSÞ−ðq+1Þ/ptq+β; then, we obtain max
t≥0

φðtÞ = φðt1Þ > 0 since q > 2 with t1 = ðβ/ðq−+βÞÞðq+1Þ/ðq−1Þ
ðSÞðq+1Þ/ðpðq−1ÞÞ. Thus, we obtain

g 1ð Þ ≥ u0k k1−β φ t1ð Þ − λΨ Sð Þ β−1ð Þ/p
h i

> 0, ð81Þ

if λ < ðððSÞð1−βÞ/pÞ/ΨÞφðt1Þ≔Λ2.
Then, there exists t0 > 0 such that gðt0Þ = 0. Thus, ðt0u0Þ

∈W ρ and W ρ is nonempty for any λ ∈ ð0,Λ2Þ.

Lemma 17. There exist δ,λ∗ positive real numbers such that
ϕ′ðuÞ, u?< − ? < 0, for u ∈W ρ and any λ verifying

0 < λ < λ∗: ð82Þ

Proof. Let u ∈W ρ, then by (14), (20) and the Holder
inequality, it allows us to write
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ϕ′ uð Þ, u = λ q + βð ÞΨ Sð Þ β−1ð Þ/pu1−β − q − 1ð Þup

≤ u1−β λ q + βð ÞΨS β−1ð Þ/p − q − 1ð Þuβ
h i

≤ u1−β λ q + βð ÞΨS β−1ð Þ/p − q − 1ð Þρβ
h i

:

ð83Þ

Thus, if

0 < λ <Λ3 =
q − 1ð Þρβ
q + βð ÞΨ

� �
S β−1ð Þ/p, ð84Þ

and choosing λ∗ ≔min ðΛ2,Λ3Þ with Λ2 defined in Lemma
16, then we obtain that

ϕ′ uð Þ, u < 0, foranyu ∈W ρ: ð85Þ

Lemma 18. Suppose q > 2,β ∈ ð0, 1Þ and 0 < λ <min ðΛ2,
Λ3,Λ4Þ when

Λ4 =
q − 1ð Þ 1 − βð Þ
pq q + βð ÞΨ

1 − β

p

� � β+1ð Þ/β" #
Sð Þ 1−qð Þ/p: ð86Þ

Then, there exist ε and η positive constants such that

(i) We have

Eθ uð Þ ≥ η > 0 for uk k = ε: ð87Þ

(ii) There exists v ∈W ρ when kvk > ε, with ε = kuk, such
that EθðvÞ ≤ 0

Proof. We can suppose that the minima of Eθ are realized by
ðu+0 Þ and u−0 . The geometric conditions of the mountain pass
theorem are satisfied. Indeed, we have the following:

(i) By (20) and (85), we get

Eθ uð Þ = q − 1ð Þ/p q + 1ð Þ uk kp

− λ q + βð Þ/ q + 1ð Þ 1 − βð Þ
ð
Ω

u+ + θð Þ1−β
xj jα dx

≥ q − 1ð Þ/p q + 1ð Þ uk kp
− λ q + βð Þ/ q + 1ð Þ 1 − βð ÞΨ Sð Þ β−1ð Þ/p uk k1−β,

ð88Þ

By exploiting the function ϕðtÞ = atp − bt1−β which

achieve its maximum at the point t1 = ð1 − β/pÞp/ðβ−1+pÞ
ða/bÞðp−1Þ/ðq−1Þ such that max

t≥0
ϕðtÞ = ϕðt1Þ > 0 if

λ <Λ4 =
q − 1ð Þ 1 − βð Þ
p q + βð ÞΨ

1 − β

p

� �β/ p−1+βð Þ" #
Sð Þ 1−qð Þ/p, ð89Þ

and the fact that, q > 2, β ∈ ð0, 1Þ then, we obtain that

Eθ uð Þ ≥ η > 0whenε = uk ksmall: ð90Þ

(ii) Let t > 0, then we have for all φ ∈W ρ

Eθ tφð Þ≔ tp

p
φk kp − tq+1

q + 1

� �ð
Ω

φj jq+1dx − λ
t1−β

1 − β

� �ð
Ω

xj j−α φj j1−β
xj jα dx:

ð91Þ

Letting v = tφ for t large enough, we obtain EθðvÞ ≤ 0:
For t large enough, we can ensure kvk > ε.

Let Γ and c defined by

Γ≔ γ : 0, 1½ �⟶W ρ : γ 0ð Þ = u−0 andγ 1ð Þ = u+0

 �

,
c≔ inf

γ∈Π
max
t∈ 0,1½ �

Eθ γ tð Þð Þð Þ: ð92Þ

Proof of Theorem 19. If

0 < λ < λ∗∗ ≔min λ∗,Λ4ð Þ, ð93Þ

then, by the Lemma 5 and Proposition 9 (ii), Eθ verifying the
Palais-Smale condition in W ρ. Moreover, from the Lemmas
6, 17, and 18, there exists uc such that

Eθ ucð Þ = canduc ∈W ρ: ð94Þ

Thus, uc is the third solution of our system such that
uc ≠ u+0 and uc ≠ u−0 . Since (1) is odd with respect u, we
obtain that −uc is also a solution of (1).

Finally, for every θ ∈ ð0, 1Þ, problem (4) has solution uθ
∈H such that EθðuθÞ = 0. Thus, there exist fθng ⊂ ð0, 1Þ
with θn ⟶ 0 as n⟶∞: Then, we get u = lim

n⟶∞
uθn .

6. Conclusion

In our work, we have searched the critical points as the min-
imizers of the energy functional associated to the problem
on the constraint defined by the Nehari manifold W , which
are solutions of our problem. Under some sufficient condi-
tions on coefficients of equation of (1) such that N ≥ 3, 0 ≤
α < ððNðq + βÞÞ/ððq + 1ÞÞÞ and β ∈ ð0, 1Þ, we split W in two
disjoint subsets W + and W −; thus, we consider the minimi-
zation problems on W + and W −, respectively. In Sections 3
and 4 we have proved the existence of at least two nontrivial
solutions on W ρ for all 0 < λ < λ∗∗ ≔min ðλ∗,Λ4Þ if N ≥ 3
and β ∈ ð0, 1Þ.
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