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This paper focuses on an efficient spline-based numerical technique for numerically addressing a second-order Volterra partial
integrodifferential equation. The time derivative is discretized using a finite difference scheme, while the space derivative is
approximated using the extended cubic B-spline basis. The scheme is also tested for stability study to ensure that the errors do
not accumulate. The convergence of the proposed scheme is also investigated. The scheme’s key benefit is that the approximate
solution is produced as a smooth piecewise continuous function allowing us to approximate the solution at any location in the
domain. Numerical study is performed, and the comparison of results is made to previously reported results in the literature to
show the efficiency of the suggested scheme.

1. Introduction

Integro-Differential Equations (IDEs) are equations that
involve both integrals and derivatives of an unknown func-
tion. These equations appear very commonly as mathemati-
cal models in various fields. Abel, Lotka, Fredholm, Malthus,
Verhulst, and Volterra utilized the integral equations and
IDEs [1] to study the problems of physics, economics, and
mathematical biology. A vast number of research papers
and books are devoted to the ongoing phase of the initiative
and growth of IDEs over the last few decades. Special imple-
mentation of IDEs to deal with statistical models of spatial-
temporal development of epidemics was discussed in [2].

Many methods have been used to approximate IDEs pre-
viously. The Jacobi-spectral method was used by Ali [3] to
approximate the integrodelay differential equations with a
weakly singular kernel. Ogunlaran and Oke [4] presented
the numerical solution of first order IDEs. Chrysafinos [5]
used the method of wavelet-Galerkin to solve IDEs numeri-
cally. Abbas et al. [6] approximated IDEs using the direct
method of multiwavelet. The first order linear Fredholm
IDEs has recently been solved using the rationalized form

of Haar functions by Bhrawy et al. [7]. For the numerical
solution of Fredholm IDEs, Behiry and Hashish [8] utilized
the wavelet technique. The finite element method was used
by Chen et al. [9] to approximate the parabolic IDEs. The
parabolic Volterra IDEs were approximated by Fakhar and
Dehghan [10] using the spectral technique.

In several problems of applied sciences, partial integro-
differential equations (PIDEs) are used to represent the com-
plex systems in physical, chemical, and biological sciences
and population dynamics [11–19]. Such systems have been
solved analytically as well as numerically. Several researchers
have contributed to present the numerical solutions of
PIDEs using different numerical schemes such as finite dif-
ferences, Sinc-collocation method, finite element method,
spectral collocation method, Legendre method, Galerkin
method, and quasiwavelet-based method. Tang [20] approx-
imated PIDEs by using a finite difference scheme. Dehghan
[21] gave an approximate solution to a PIDE arising in vis-
coelasticity. Zarebnia [22] approximated PIDEs by using
Sinc-collocation method. Quasiwavelet methods were used
by Long et al. [23] to solve PIDEs numerically. Yang et al.
[24] used the Crank-Nicolson/quasiwavelet-based numerical
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method to approximate a class of PIDEs. Izadi and Dehghan
[10] developed spectral methods for parabolic Volterra IDEs.
Legendre multiwavelet collocation method was proposed for
the numerical solution of PIDEs by Aziz and Khan [25].
Numerical solution of Volterra partial integrodifferential
equations based on Sinc-collocation method was presented
by Fahim et al. [26]. Izadi and Dehghan [27] developed an
effective pseudospectral Legendre-Galerkin technique to solve
a nonlinear PIDE emerging in population dynamics. A piece-
wise polynomial function of degree n − 1 is a spline function of
order n. B-spline-based numerical methods for curves and
surfaces were first proposed in the 1940s but were strength-
ened in the 1970s by various experts. B-splines come in a vari-
ety of shapes and sizes, including uniform, nonuniform,
rational, and nonrational. Cubic B-spline is a fourth-order B
-spline of degree three. The extended cubic B-spline also has
a free parameter that allows for local control of this form of
B-spline. Collocation techniques based on B-splines proven
to be quite effective at approximating the IDEs. Amir and Sha-
kibi [28] used B-spline interpolation to numerically solve
IDEs. Exponential splines were used to find the numerical
solutions of linear Fredholm IDEs by Tahernezhad and Jalilian
[29]. For approximating linear stochastic IDE of fractional
order, Mirzaee and Alipour [30] used a cubic B-spline-based
collocation method. For a class of hyperbolic PIDE, Fair-
weather [31] utilized spline-based collocation technique. Gho-
lamian and Saberi-Nadjafi [32] proposed a cubic B-spline
collocation technique for a class of PIDEs. Ali et al. [33] devel-
oped a quartic B-spline collocation approach for solving
PIDEs with a weakly singular kernel. Trigonometric cubic B
-spline-based collocation method was used to solve PIDEs by
Ali et al. [34].

In this paper, we consider the following second order
Volterra PIDE:

∂v x, tð Þ
∂t

=
ðt
0
t − zð Þ−γ ∂

2v x, zð Þ
∂x2

dz + g x, tð Þ, a ≤ x ≤ b, t ≥ 0, 0 < γ < 1,

ð1Þ

subjected to initial condition,

v x, 0ð Þ = φ xð Þ, ð2Þ

and the boundary conditions,

v a, tð Þ = 0,
v b, tð Þ = 0,

t ≥ 0,
(

ð3Þ

where a, b, φðxÞ, are given and 0 < γ < 1. Motivated by the
popularity of the spline approach, we have utilized the
extended cubic B-spline to numerically study the above sec-
ond order Volterra PIDE.

The rest of the paper is organized as follows. In Section 2,
extended cubic B-spline-based collocation method is derived
in detail. In Sections 3 and 4, the stability and convergence
of the proposed scheme are discussed, respectively. Section 4
compares numerical results with some other numerical tech-

niques available in literature. Section 5 summarizes the con-
clusions of this study.

2. Derivation of the Scheme

Let Δt = t/Q denotes the time, and h = b − a/N denotes the
space step sizes, with Q and N being positive integers. Set
the partitions, tq = qΔtð0 ≤ q ≤QÞ and xn = nhð0 ≤ n ≤NÞ
of both the temporal and spatial domain. The knots xj
evenly discretize the spatial domain a ≤ x ≤ b, and the inter-
val ½a, b� is divided into N subintervals, ½xj, xj+1� of equal
length h, j = 0, 1, 2,⋯,N − 1, where a = x0 < x1 <⋯ < xn−1
< xN = b. The numerical solution Vðx, tÞ to the exact solu-
tion vðx, tÞ of (1) is acquired by

V x, tð Þ = 〠
N+1

j=−1
Cj tð ÞB4

j x, ηð Þ: ð4Þ

Here, CjðtÞ, j = −1,⋯N + 1 is time-dependent
unknowns that must be evaluated and B4

j ðx, ηÞ are extended
cubic B-spline (ECuBS) basis functions provided by [35].

B4
j x, ηð Þ = 1

24h4

4h 1 − ηð Þ x − xj
� �3 + 3η x − xj

� �4, x ∈ xj, xj+1
� �

,

4 − ηð Þh4 + 12h3 x − xj+1
� �

+ 6h2 2 + ηð Þ x − xj+1
� �2

−12h x − xj+1
� �3 − 3η x − xj+1

� �4, x ∈ xj+1, xj+2
� �

,

4 − ηð Þh4 + 12h3 xj+3 − x
� �

+ 6h2 2 + ηð Þ xj+3 − x
� �2

−12h xj+3 − x
� �3 − 3η xj+1 − x

� �4, x ∈ xj+2, xj+3
� �

,

4h 1 − ηð Þ xj+4 − x
� �3 + 3η xj+4 − x

� �4, x ∈ xj+3, xj+4
� �

,
0, otherwise,

0
BBBBBBBBBBBBBBBBB@

ð5Þ

where η ∈ ½−8, 1�. Because of the local support characteristic
of ECuBS, only B4

j−1ðx, ηÞ, B4
j ðx, ηÞ and B4

j+1ðx, ηÞ are pre-
served at the grid point xj. Consequently, the approximation

Vq of vðs, tÞ at qth time level is given as

V x, tqð Þ = Vq = 〠
N+1

j=−1
Cq

j tð ÞB4
j x, ηð Þ: ð6Þ

The unknowns, Cq
j ðtÞ, j = −1,⋯,N + 1, are found by

using collocation conditions on B4
j ðx, ηÞ and the given initial

and boundary conditions. As a consequence, the approxima-
tions Vq and its essential derivatives are obtained as

Vq = α1C
q
j−1 + α2C

q
j + α1C

q
j+1,

Vxð Þq = −β1C
q
j−1 + β2C

q
j + β1C

q
j+1,

Vxxð Þq = λ1C
q
j−1 + λ2C

q
j + λ1C

q
j+1,

8>>><
>>>:

ð7Þ

where α1 = 4 − η/24,α2 = 8 + η/12,β1 = 1/2h,β2 = 0,
λ1 = 2 + η/2h2, and λ2 = −2 + η/h2:
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Discretizing the time derivative in (1) by using forward
difference scheme, we obtain

∂v x, tð Þ
∂t

≈
Vq+1 xð Þ −Vq xð Þ

Δt
: ð8Þ

The term on the RHS of (1) can be written as

ðt
0
t − zð Þ−γ vxx x, zð Þdz + g x, tð Þ =

ðtq+1
0

tq+1 − z
� �−γ vxx x, zð Þdz + g x, tq+1

� �
:

ð9Þ

The first expression on the RHS of (9) is time discretized
as

ðtq+1
0

tq+1 − z
� �−γ vxx x, zð Þdz =

ðtq+1
0

zð Þ−γ vxx z, tq+1 − z
� �

dz,

= 〠
q

r=0

ðtr+1
tr

zð Þ−γ vxx x, tq+1 − z
� �

dz,

= 〠
q

r=0
vxx z, tq−r+1
� �ðtr+1

tr

zð Þ−γ dz,

= Δt1−γ

1 − γ
〠
q

r=0
vxx x, tq−r+1
� �

r + 1ð Þ1−γ − rð Þ1−γ� �
,

= Δt1−γ

1 − γ
〠
q

r=0
lrvxx x, tq−r+1

� �
,

ð10Þ

where lr = ðr + 1Þ1−γ − ðrÞ1−γ. Equation (1) becomes

vq+1 xð Þ − vq xð Þ
Δt

= Δt1−γ

1 − γ
〠
q

r=0
lrv

q−r+1
xx xð Þ + g x, tq+1

� �
: ð11Þ

Let W = Δt2−γ/1 − γ, so that the last equation becomes

vq+1 xð Þ −Wl0v
q+1
xx xð Þ = vq xð Þ +W〠

q

r=1
lrv

q−r+1
xx xð Þ + Δtg x, tq+1

� �
:

ð12Þ

The discretization of the space derivative is performed by
(8) so that (12) reduces to

Vq+1 x, ηð Þ −WVq+1
xx x, ηð Þ = Vq x, ηð Þ +W〠

q

r=1
lrV

q−r+1
xx x, ηð Þ + Δtgq+1 xð Þ:

ð13Þ

For x = xj, where j = 0, 1, 2,⋯,N , we have

Vq+1 xj, η
� �

−WVq+1
xx xj, η
� �

= Vq xj, η
� �

+W〠
q

r=1
lrV

q−r+1
xx xj, η

� �
+ Δtgq+1 xj

� �
:

ð14Þ

Setting

Gj =Vq xj, η
� �

+W〠
q

r=1
lrV

q−r+1
xx xj, η

� �
+ Δtgq+1 xj

� �
, ð15Þ

we can write, for j = 0, 1,⋯,N ,

Vq+1 xj, η
� �

−Wl0V
q+1
xx xj, η
� �

= Gj ð16Þ

Table 1: Error comparison for Example 5 when Δt = 10−5,and N = 10.

Q
ECuBS TCuBS [34] CuBS [32] QBCM [33] QWM [23]

L2 L∞ L2 L∞ L∞ L∞ L∞

50 8:40 × 10−8 1:13 × 10−7 5:96 × 10−6 8:93 × 10−6 1:24 × 10−6 1:18 × 10−4 1:58 × 10−3

150 1:48 × 10−7 2:00 × 10−7 3:09 × 10−5 4:42 × 10−5 6:34 × 10−6 6:75 × 10−4 7:89 × 10−3

250 1:90 × 10−7 2:57 × 10−7 6:65 × 10−5 9:45 × 10−5 1.36 × 10−5 1:40 × 10−3 1:61 × 10−2

350 2:18 × 10−7 2:98 × 10−7 1:10 × 10−4 1:56 × 10−4 2:25 × 10−5 2:51 × 10−3 2:53 × 10−2

450 2:38 × 10−7 3:26 × 10−7 1:60 × 10−4 2:28 × 10−4 3:28 × 10−5 3:70 × 10−3 3:46 × 10−2

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

V

x

t = 2
t = 3
t = 0.5

Figure 1: The exact and approximate (triangles, starts, circles)
solutions for Example 5 at various times when h = 0:01.
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This implies that

〠
N+1

j=−1
Cq+1

j tð ÞB4
j xj, η
� �

−W 〠
N+1

j=−1
Cq+1

j tð Þ B4
j

� �
′′ xj, η
� �

=Gp,⇒ 〠
N+1

j=−1
B4
j xj, η
� �

−W B4
j

� �
′′ xj, η
� �h i

Cq+1
j tð Þ = Gj:

ð17Þ

Equation (17) forms a matrix system of order ðN + 1Þ
× ðN + 3Þ. Approximating the boundary conditions (3)
using (7), we obtain two equations from where we remove
the unknowns, C−1 and CN+1. Consequently, a matrix system
of order ðN + 1Þ × ðN + 1Þ is generated to acquire the unique
solution for this system. The matrix equation for this system
is given by

SC =G, ð18Þ

where the matrices S, C, and G are

S =

ω 0 0 0 ⋯ 0
ρ1 ρ2 ρ1 0 ⋯ 0
0 ρ1 ρ2 ρ1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ 0 ρ1 ρ2 ρ1

0 ⋯ 0 0 0 ω

           

2
666666666666664

3
777777777777775

, ð19Þ

C = Cq+1
0 Cq+1

0 ⋯ Cq+1
N Cq+1

N

         

" #T
, ð20Þ

G =
ϑ1 tð Þ G0 G1 ⋯ GN GN+1 ϑ2 tð Þ
             

" #T
,

ð21Þ
where ρ1 = α1 −Wλ1 and ρ2 = α2 −Wλ2, ω =Wλ1/α1:

1.0
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Space–time graph of exact solution at t = 0.1

(a)
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x
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Space–time graph of approximate solution at t = 0.1

(b)

Figure 2: The approximate and exact solutions for Example 5 when h = 1/60, t = 0:1, Δt = 0:01.

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

Absolute error

0.2 0.4 0.6 0.8 1.0
x

0.10

0.05 t

0.00
1.0

0.5
x

0.0

0.003
0.002
0.001
0.000

3D error function

Figure 3: 2D and 3D error profiles for Example 5 when h = 1/60, t = 0:1, Δt = 0:01 .
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Initial vector is as follows: the initial condition,

v xp, 0
� �

= φ xp
� �

, p = 0, 1, 2, 3,⋯,N ð22Þ

can be used to find the initial vector,

C0 =
C0
0 C0

1 ⋯ C0
N−1 C0

N

         

" #T
: ð23Þ

Equation (22) produces a matrix system of ðN + 1Þ ×
ðN + 1Þ order given as

AC0 = B, ð24Þ

where

A =

α1 α2 α1 0 ⋯ 0
0 α1 α2 α1 ⋯ 0
0 ⋱ α1 α2 α1 ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ α1 α2 α1 0
0 ⋯ 0 α1 α2 α1

2
666666666664

3
777777777775
,

C0 =
c0−1 c00 ⋯ c0N c0N+1

         

" #T
,

B =
φ x0ð Þ φ x1ð Þ ⋯ φ xN−1ð Þ φ xNð Þ
         

" #T
:

ð25Þ

Once the initial vector C0 is obtained, the recurrence
relation (17) gives the time evolution of vectors Cq, and
thus the approximate solution can be calculated.

3. Stability Analysis

In this section, the stability of the proposed method is pre-
sented. The proposed scheme is proved stable by using the
Von-Neumann stability method. For this purpose, put gq+1

ðxÞ = 0 in (13) so that

Vq+1 x, ηð Þ −WVq+1
xx x, ηð Þ =Vq x, ηð Þ +W〠

q

r=1
lrV

q−r+1
xx x, ηð Þ:

ð26Þ

Using (8) in (26), we obtain

ρ1C
q+1
j−1 + ρ2C

q+1
j + ρ1C

q+1
j+1 = α1C

q
j−1 + α2C

q
j + α1C

q
j+1

h i

+W〠
q

r=1
lr λ1C

q−r+1
j−1 + λ2C

q−r+1
j + λ1C

q−r+1
j+1

h i
:

ð27Þ

Substituting the Fourier mode, Cq
j = ξqeιjϕh in (17), where

ϕ is the mode number, h is the step size, ξ is the growth fac-
tor, ι =

ffiffiffiffiffiffi
−1

p
, and we obtain

Kξq+1eιjϕh = Lξqeιjϕh + W

h2
〠
q

r=1
Mξq−r+1eιjϕh, ð28Þ

Table 2: Error comparison for Example 6 when N = 100,and Δt = 10−5.

Q
ECuBS TCuBS [34] CuBS [32]

L2 L∞ L2 L∞ L2 L∞

50 8:37 × 10−10 1:18 × 10−9 3:97 × 10−9 5:61 × 10−9 6:11 × 10−9 8:64 × 10−9

100 5:28 × 10−9 7:47 × 10−9 1.41 × 10−8 1:99 × 10−8 2:01 × 10−8 2:84 × 10−8

150 1:20 × 10−8 1:71 × 10−8 2:82 × 10−8 3:99 × 10−8 3:93 × 10−8 5.56 × 10−8

200 2:08 × 10−8 2:95 × 10−8 4:56 × 10−8 6:45 × 10−8 6:26 × 10−8 8:86 × 10−8

250 3:12 × 10−8 4:42 × 10−8 6:59 × 10−8 9:31 × 10−8 8:97 × 10−8 1:27 × 10−8

300 4:31 × 10−8 6:10 × 10−8 8:86 × 10−8 1:25 × 10−7 1:20 × 10−7 1:70 × 10−7
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t = 0.75
t = 1
t = 0.5

Figure 4: The exact and approximate (triangles, starts, circles)
solutions for Example 6 at various times when h = 0:01.
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where

K = ρ1 e−ιϕh + eιϕh
� �

+ ρ2,

L = α1 e−ιϕh + eιϕh
� �

+ α2,

M = δ1 e−ιϕh + eιϕh
� �

+ δ2,

8>>>>><
>>>>>:

ð29Þ

and δ1 = h2λ1, δ2 = h2λ2. Now, substituting the values of ρ1,
ρ2, α1, α2, δ1, and δ2 in (29), we get

K = 4 − η

24 −W
2 + η

2h2
	 
	 


2 cos ϕhð Þ + 8 + η

12 −W
2 + η

h2

	 
	 

,

L = 4 − η

24

	 

2 cos ϕhð Þ + 8 + η

12

	 

,

M = 2 + η

2

	 

2 cos ϕhð Þ − 2 + ηð Þ:

8>>>>>>>><
>>>>>>>>:

ð30Þ

Rearranging the terms of (28) to obtain

ξq −
L
K

+ WM

Kh2

	 

ξq−1 −

WM

Kh2
〠
q

r=2
lrξ

q−r = 0: ð31Þ

Letting b1 = −L/K −WM/Kh2 and br = −ðWM/Kh2Þlr ,
and r = 2,⋯, q in (31) to obtain

ξq + b1ξ
q−1 + b2ξ

q−2+⋯+bq−1ξ + bq = 0: ð32Þ

It is quite clear from (30) that K and L are positive and
M ≤ 0. Thus, the coefficients, b1, b2,⋯bq are positive. Here,
it is necessary to mention the following theorem for further
procedure.

Theorem 1 (see [36]). For all roots ξj of an arbitrary polyno-
mial pðξÞ = a0ξ

n +⋯ + an with a0 ≠ 0, we have jξjj ≤max f
1,∑n

j=1jaj/a0jg:

It is necessary to prove that all the roots, ξj, of (32)
satisfy jξjj ≤ 1 for stability. Since from Theorem 1, a0 = 1
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Figure 5: The approximate and exact solutions for Example 6 when h = 1/60, t = 0:1, Δt = 0:01.
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Figure 6: 2D and 3D error profiles for Example 6 when h = 1/60, t = 0:1, Δt = 0:01.
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and aj > 0, j = 1,⋯, q, we have

〠
q

j=1

aj
a0

����
���� = − L + WM/h2

� �
∑q

r=1lr
� �

K

�����
�����, ð33Þ

where
∑q

r=1lr =∑q
r=1½ðr + 1Þ1−γ − ðrÞ1−γ� = ðq + 1Þ1−γ − 1:()

Let us assume that Dγ = ðq + 1Þ1−γ − 1, then (33)
becomes

〠
q

j=1
aj = −

L + WMDγ/h2
� �

K

�����
�����: ð34Þ

From the definition of M in (29), if we let M = 0, then
h = 0. Consequently, (31) becomes

ξq −
L
K
ξq−1 = 0⇒ ξ = 0 or ξ = 1: ð35Þ

Thus, the required condition for stability is fulfilled that

is jξjj ≤ 1. Next, if ≠ 0ðM < 0Þ, then from (34), we have

−L −
WMDγ

h2
< K , ð36Þ

so that the stability condition, i.e., ðjξjj ≤ 1Þ is satisfied. Now,
using the values of K , L, and M in above inequality,

− 4 − ηð Þ cos ηh − 8 + ηð Þ + 6 2 + ηð Þ
h2

W Dγ − 1
� �

1 − cos ηhð Þ < ,0:

cos ηh >
− 8 + η/6ð Þ + 2 + ηð ÞW Dγ − 1

� �
/h2

� �
4 − η/6ð Þ + 2 + ηð ÞW Dγ − 1

� �
/h2

� � :

ð37Þ

This inequality implies the unconditional stability of
introduced scheme.

4. Convergence Analysis

The suggested scheme’s convergence analysis for spatial and
temporal directions is provided separately in this section.

Table 3: Error comparison for Example 7 when N = 50, and Δt = 10−4.

Q
ECuBS TCuBS [34] CuBS [32]

L2 L∞ L2 L∞ L2 L∞

50 1:13 × 10−7 1:73 × 10−7 2:73 × 10−7 4:19 × 10−7 3:48 × 10−7 5:34 × 10−7

100 3:49 × 10−7 5:21 × 10−7 8:48 × 10−7 1:26 × 10−6 1.08 × 10−6 1:61 × 10−6

150 6:75 × 10−7 9:95 × 10−7 1:64 × 10−6 2:42 × 10−6 2:09 × 10−6 3:08 × 10−6

200 1:07 × 10−6 1:57 × 10−6 2:61 × 10−6 3:82 × 10−6 3:33 × 10−6 4:87 × 10−6

250 1:54 × 10−6 2:27 × 10−6 3:73 × 10−6 5:51 × 10−6 4.76 × 10−6 7:02 × 10−6

300 2:05 × 10−6 3:02 × 10−6 4:99 × 10−6 7:33 × 10−6 6:36 × 10−6 9:35 × 10−6

1.0

0.5

–0.5

–1.0

0.2 0.4 0.6 0.8 1.0
x

v

t = 2
t = 3
t = 0.5

Figure 7: The exact and approximate (triangles, starts, circles) solutions for Example 7 at various times when h = 0:01.
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The convergence is evaluated independently for spatial and
temporal directions for this purpose. The following theorem
must be proven for spatial convergence.

Theorem 2. If v̂ðxÞ is the exact solution of equations (1)–(3)
and b̂ðxÞ is the B-spline collocation approximation to v̂ðxÞ,
the technique is then second order convergent, and

∥v̂ xð Þ − b̂ xð Þ∥∞ ≤ σh2, ð38Þ

where σ = κ0Łh
2 + R is a finite constant.

Proof. Assume that v̂ðxÞ is the exact solution of equations
(1)–(3), then the approximation, b̂ðxÞ to v̂ðxÞ, is given by

b̂ xð Þ = 〠
N+1

j=−1
Ĉ j tð ÞB4

j x, ηð Þ, ð39Þ

where Ĉ = ðĈ−1, Ĉ0,⋯, ĈN+1Þ: Further, suppose that ~bðxÞ is
the evaluated extended cubic B-spline collocation approxi-
mation to b̂ðxÞ, namely,

~b xð Þ = 〠
N+1

j=−1
~Cj tð ÞB4

j x, ηð Þ, ð40Þ

where ~C = ð~C−1, ~C0,⋯, ~CN+1Þ: To approximate the error, ∥
v̂ðxÞ − b̂ðxÞ∥∞, we have to determine the errors, ∥v̂ðxÞ − ~b
ðxÞ∥∞ and ∥~bðxÞ − b̂ðxÞ∥∞ separately. To compute ~bðxÞ and
b̂ðxÞ, the values of vectors Ĉ and ~C must be computed from
two linear equations,

SĈ = Ĝ, ð41Þ

S~C = ~G: ð42Þ

1.0
0.5
0.0

–0.5
–1.0

0.0
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1.0
0.00
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0.10

Space–time graph of exact solution at t = 0.1
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(a)
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Space–time graph of approximate solution at t = 0.1
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t

v (x, t)

(b)

Figure 8: The approximate and exact solutions for Example 7 when h = 1/60, t = 0:1, Δt = 0:01.
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Figure 9: 2D and 3D error profiles for Example 7 when h = 1/60, t = 0:1, Δt = 0:01.
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Now, by subtracting (42) from (41), we obtain

S ~C − Ĉ
� �

= ~G − Ĝ: ð43Þ

The specification of matrix S in equation (19) makes S strictly
diagonally dominant making it nonsingular. Thus,

~C − Ĉ
� �

= S−1 ~G − Ĝ
� �

: ð44Þ

Taking infinity norm of above equation, we obtain

∥ ~C − Ĉ
� �

∥∞ ≤ ∥S−1∥∞∥ ~G − Ĝ
� �

∥∞: ð45Þ

Let the sum of ith row of matrix S = ½xij�ðN+1Þ×ðN+1Þ be

τið0 ≤ i ≤NÞ. Then, we have

τ0 = 〠
N

j=0
a0j = ω,

τi = 〠
N

j=0
aij = ρ2 + 2ρ1 i = 1,⋯,N − 1,

τN = 〠
N

j=0
aN j = ω:

ð46Þ

It is well known in the theory of matrices that

〠
N

j=0
x−1ij τj = 1, i = 0, 1,⋯,N: ð47Þ

Here, x−1ij represents the entries of S−1. Then,

∥S−1∥∞ = 〠
N

j=0
x−1ij
��� ��� ≤ 1

τ
, ð48Þ

where τ =min0≤i≤Nτi =min ðω, ρ2 + 2ρ1Þ =min ðWð2 + η/2
h2Þð24/4 − ηÞ, 1Þ: Using (48) in (45) to acquire

∥ ~C − Ĉ
� �

∥∞ ≤
1
τ
∥ ~G − Ĝ
� �

∥∞: ð49Þ

Using (15), the upper bound of ∥ð~G − ĜÞ∥∞ is computed
as

~Gi − Ĝi

�� �� ≤ ~vi − v̂ij j + Δt ~gq+1
i − ĝq+1i

��� ��� + W

h2
〠
q

r=1
lrj j

δ1 ~C
q−r+1
j−1 − Ĉ

q−r+1
j−1

��� ��� + δ2 ~C
q−r+1
j − Ĉ

q−r+1
j

��� ��� + δ1 ~C
q−r+1
j+1 − Ĉ

q−r+1
j+1

��� ���� �
:

ð50Þ

To simplify the RHS of (50), we present the following
theorem.

Theorem 3 (see [37, 38]). If PðxÞ ∈ c4½a, b�, jP4ðxÞj ≤ Ł, ∀s ∈
½a, b�, the interval ½a, b� is partitioned by Δ = fa = x0 < x1<
⋯<xN = bg into subintervals of length h. If bðxÞ is the unique
spline function interpolates PðxÞ at knots x0, x1,⋯, xN , then
there exists a constant κj such that,

∥P lð Þ − b lð Þ∥ ≤ κlŁh
4−l l = 0, 1, 2, 3: ð51Þ

Using the aforementioned theorem,

~vi − v̂ij j = ~bi xð Þ − b̂i xð Þ
��� ��� ≤ κ0Łh

4: ð52Þ

Table 4: Error comparison for Example 8 when γ = 1/4, N = 50, and Δt = 10−4.

Q
ECuBS TCuBS [24] CuBS [22]

L2 L∞ L2 L∞ L2 L∞

50 1:48 × 10−6 2:88 × 10−6 2:29 × 10−6 4:26 × 10−6 2:46 × 10−6 4:53 × 10−6

100 5:15 × 10−6 8:37 × 10−6 7:89 × 10−6 1:24 × 10−5 8:44 × 10−6 1:32 × 10−5

150 1:06 × 10−5 1:69 × 10−5 1:61 × 10−5 2:50 × 10−5 1:72 × 10−5 2:67 × 10−5

200 1:75 × 10−5 2:66 × 10−5 2:66 × 10−5 3:94 × 10−5 2:84 × 10−5 4:19 × 10−5

250 2:58 × 10−5 3.89 × 10−5 3:90 × 10−5 5:74 × 10−5 4:17 × 10−5 6:12 × 10−5

300 3:53 × 10−5 5:19 × 10−5 5:33 × 10−5 7:76 × 10−5 5:69 × 10−5 8:29 × 10−5

2.0

1.0

1.5

0.80.6

1.0

0.4

0.5

0.2
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t = 0.75
t = 1
t = 0.5

v

Figure 10: The exact and approximate (triangles, starts, circles)
solutions for Example 8 at various times when h = 0:01.
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Furthermore, flrgqr=1 is a decreasing sequence of positive
terms and lr ≤ 1 for 1 ≤ r ≤ n. Using (52) and letting ~gq+1i =
ĝq+1i , we can thus write (50) as

~Gi − Ĝi

�� �� ≤ κ0Łh
4 + W

h2
〠
q

r=1
dr: ð53Þ

where

δ1 ~C
q−r+1
i−1 − Ĉ

q−r+1
i−1

��� ��� + δ2 ~C
q−r+1
i − Ĉ

q−r+1
i

��� ��� + δ1 ~C
q−r+1
i+1 − Ĉ

q−r+1
i+1

��� ���� �
= dr:

ð54Þ

Let ∑q
r=1dr =Dq and κ0Łh

4 + ðW/h2ÞDq = Rq, then, (53)
becomes

~Gi − Ĝi

�� �� ≤ Rq: ð55Þ

Using (55) in (49) to get

∥ ~C − Ĉ
� �

∥∞ ≤
1
τ
Rq = Rh2, ð56Þ

where Rh2 = ð1/τÞRq =max ðð1/WÞð2h2/2 + ηÞð4 − η/24Þ, 1Þ:
To proceed further, we have to follow the next theorem.

Theorem 4 (see [39]). The B-splines fB−1, B0, B1,⋯, BN−1,
BN , BN+1g satisfy the following inequality

〠
N+1

i=−1
Bi xð Þ

�����
����� ≤ 1, 0 ≤ s ≤ 1: ð57Þ

Now, by subtracting (40) from (39), we have

~b xð Þ − b̂ xð Þ = 〠
N+1

j=−1
~Cj − Ĉ j

� �
B4
j xð Þ: ð58Þ
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Figure 11: The approximate and exact solutions for Example 8 when h = 1/60, t = 0:1, Δt = 0:01.
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Figure 12: 2D and 3D error profiles for Example 8 when h = 1/60, t = 0:1, Δt = 0:01.
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Taking the infinity norm on both sides, we obtain

∥~b xð Þ − b̂ xð Þ∥∞ = ∥ 〠
N+1

j=−1
~Cj − Ĉ j

� �
B4
j xð Þ∥∞,

≤ 〠
N+1

j=−1
B4
j xð Þ

�����
�����∥ ~Cj − Ĉ j

� �
B4
j xð Þ∥∞, ≤ Rh2,

ð59Þ

that is,

∥~b xð Þ − b̂ xð Þ∥∞ ≤ Rh2: ð60Þ

From Theorem (3) and equation (52), we have

∥v̂ xð Þ − ~b xð Þ∥∞ ≤ κ0Łh
4: ð61Þ

Thus, from (60) and (61), we have

∥v̂ xð Þ − b̂ xð Þ∥∞ ≤ ∥v̂ xð Þ − ~b xð Þ∥∞+∥~b xð Þ − b̂ xð Þ∥∞, ≤ κ0Łh
4 + Rh2 = σh2,

ð62Þ

where σ = κ0Łh
2 + R.

Now, for temporal convergence, applying Taylor expan-
sion on (16), we have

Rearranging terms in above equation, we obtain

Δt vqt − gq
� �

−W l0v
q
xx + 〠

q

r=1
lrv

q−r+1
xx

 !
+ Δvqxxt

+ Δt2

2! v
q
xxtt +

Δt2

2! vqxx + gqt
� �

=O Δtð Þ:
ð64Þ

Assuming vðx, tÞ to be the exact and vqðx, tÞ the approx-
imate solutions of the equations (1)-(3), we have from (62)
and (64) that

∥v x, tð Þ − vq x, tð Þ∥ ≤ ρ k + h2
� �

, ð65Þ

where ρ is a finite constant.

5. Numerical Results

The efficiency and the validity of the suggested methodology
are confirmed in this part using various test problems by uti-
lizing the L2 and L∞ error norms defined as

L2 = ∥V −Vq∥2 = h〠
N

j=0
V xj, tq
� �

−Vq
j

� �2����
����,

L∞ = ∥V −Vq∥∞ =max
j

V xj, tq
� �

− Vq
j

�� ��:
ð66Þ

All numerical calculations have been performed using
Mathematica 12.

Example 5 (see [23]). Consider equation (1) with

g x, tð Þ = 2t1/2ffiffiffi
π

p π
5
2 sin πxð Þ − 4t3/2ffiffiffi

π
p sin 2πxð Þ

	 

− 2π5

2t2 sin 2πxð Þ,

ð67Þ

subject to the BCs,

v 0, tð Þ = v 1, tð Þ = 0, 0 ≤ t < 1, ð68Þ

and the IC,

v x, 0ð Þ = sin πxð Þ, x ∈ 0, 1½ �: ð69Þ

The analytical solution for this problem is vðx, tÞ =
sin ðπxÞ − ð4t5/2/ ffiffiffi

π
p Þ sin ð2πxÞ with γ = 1/2. The suggested

approach is implemented on the aforementioned problem
to get numerical results. The estimated errors are com-
pared to those provided in [23, 32–34] at various time
stages in Table 1. Figure 1 presents an efficient compari-
son of approximate and exact solutions at various time
levels. 3D comparison between approximate and exact
solution is depicted in Figure 2. Figure 3 exhibits the 2D
and 3D error profiles. The comparison reveals that the
proposed algorithm has far better accuracy. The numerical
solution when h = 0:05, t = 1, and Δt = 0:01 is given as

vq xð Þ + Δtvqt xð Þ + Δt2

2 vqtt xð Þ+⋯
	 


− T vqxx xð Þ + Δtvqxxt xð Þ + Δtvqxxt xð Þ + Δt2

2! v
q
xxtt xð Þ+⋯

	 


= vq xð Þ +W〠
q

r=1
lrv

q−r+1
xx xð Þ + Δ gq xð Þ + Δgqt xð Þ� �

:

ð63Þ
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Example 6 (see [32]). Consider the equation (1) with vðx, tÞ
= ðt + 1Þ2 sin πs subject to initial and boundary conditions
vðs, 0Þ = sin πs, vð0, tÞ = vð1, tÞ = 0, respectively. gðx, tÞ is to
be chosen with γ = 0:5.

The suggested technique is applied on the above prob-
lem to acquire approximate solutions and absolute errors.
Table 2 reports the contrast between the computed errors

of present scheme and those of [32, 34] for different time
levels. For various time stages, a sharp contrast between
exact and approximate solutions is presented in Figure 4.
Figure 5 depicts a 3D comparison between exact and
approximate solutions. 2D and 3D absolute errors are plot-
ted in Figure 6. The numerical solution when h = 0:05, t =
1, and Δt = 0:01 is given as

V x, 1ð Þ =

7:69735 × 10−18 + 12:4842x + 3:76073 × 10−13x2 − 20:4956x3 +  

0:0307403x4, x ∈ 0, 1
20

� 

,

−0:0000611671 + 12:4879x − 0:0729451x2 − 20:0154x3 +  

0:091464x4, x ∈
1
20 ,

1
10

� 

,

−0:00102794 + 12:5168x − 0:361224x2 − 19:0661x3 +  

0:149936x4, x ∈
1
10 ,

3
20

� 

,

⋮  

⋮  

−6:76161 + 44:8042x − 56:66x2 + 18:4664x3 + 0:149936x4, x ∈
17
20 ,

9
10

� 

,

−7:50901 + 47:3382x − 59:5702x2 + 19:6495x3 + 0:091464x4, x ∈
9
10 ,

19
20

� 

,

−7:98062 + 48:8796x − 61:3023x2 + 20:3726x3 + 0:0307403x4, x ∈
19
20 , 1
� 


:

   

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð71Þ

V x, 1ð Þ =

1:43183 × 10−18 − 1:53174x + 2:05977 × 10−14x2 +  

25:8542x3 − 6:29505x4, x ∈ 0, 1
20

� 

,

−0:0000243493 − 1:52879x − 0:118318x2 + 27:831x3 −  

18:1748x4, x ∈
1
20 ,

1
10

� 

,

−0:000218991 − 1:51313x − 0:471333x2 + 30:9718x3 −  

27:9956x4, x ∈
1
10 ,

3
20

� 

,

⋮  

⋮  

2:92425 − 32:3551x + 104:229x2 − 115:32x3 + 40:5233x4, x ∈
17
20 ,

9
10

� 

,

−6:19315 + 8:75716x + 34:725x2 − 63:10583 + 25:817x4, x ∈
9
10 ,

19
20

� 

,

−19:686 + 65:9016x − 56:0282x2 + 0:949023x3 + 8:86352x4, x ∈
19
20 , 1
� 


:

   

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð70Þ
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Example 7 (see [32]). Consider an analytic solution of (1)

v x, tð Þ = t + 1ð Þ cos πxx ∈ 0, 1½ �: ð72Þ

The initial and boundary conditions are to be evaluated
from (72). The function gðx, tÞ is to be chosen accordingly.

The proposed methodology is utilized to acquire the
numerical results for this problem. Table 3 shows the effi-

ciency of the presented scheme by comparing the errors with
those presented in [32, 34]. Figures 7 and 8 illustrate the 2D
and 3D comparison of the exact to approximate solutions.
The graphs are in excellent affirmation. The 2D and 3D
error functions for this example are shown in Figure 9.
The numerical solution when h = 0:05, t = 1, and Δt = 0:01
is given as

Example 8 (see [22]). Consider the equation (1) with IC

v x, 0ð Þ = 2 sin2πx, ð74Þ

and the BCs,

v 0, tð Þ = 0, v 1, tð Þ = 0: ð75Þ

The exact solution of this problems is

v x, tð Þ = 2 t2 + t + 1
� �

sin2πx: ð76Þ

gðx, tÞ is to be chosen accordingly. The introduced algo-
rithm is employed to the aforementioned problem to obtain
the numerical results. A comparison of computed errors
with those of [22, 24] is discussed in Table 4. In Figure 10,
a closed contrast between exact and approximate solution
is exhibited. 3D profiles of both exact and approximate solu-
tions are compared in Figure 11. Figure 12 displays the 2D
and 3D error portrayals between the approximate and exact
solutions. The numerical solution when h = 0:05, t = 1, and
Δt = 0:01 is given as

V x, 1ð Þ =

2 − 0:0163534x − 9:84508x2 + 0:613676x3 + 1:95785x4, x ∈ 0, 1
20

� 

,

1:99985 − 0:00725949x − 10:0272x2 + 1:83263x3 + 1:9096x4, x ∈
1
20 ,

1
10

� 

,

1:99867 + 0:0280521x − 10:3822x2 + 3:03508x3 + 1:81434x4, x ∈
1
10 ,

3
20

� 

,

⋮

⋮

3:50607 − 4:37378x − 9:60907x2 + 10:2924x3 − 1:81434x4, x ∈
17
20 ,

9
10

� 

,

4:29238 − 6:92536x − 6:92831x2 + 9:47104x3 − 1:9096x4, x ∈
9
10 ,

19
20

� 

,

5:2899 − 10:0341x − 3:74307x2 + 8:44509x3 − 1:95785x4, x ∈
19
20 , 1
� 


:

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð73Þ

V x, 1ð Þ =

−0:0162085x + 58:9241x2 − 18:0337x3 − 11:5028x4, x ∈ 0, 1
20

� 

,

0:0043058 − 0:274697x + 64:0995x2 − 52:6488x3 − 10:3781x4, x ∈
1
20 ,

1
10

� 

,

0:0337757 − 1:16093x + 73:0047x2 − 82:7609x3 − 8:23736x4, x ∈
1
10 ,

3
20

� 

,

⋮

⋮

−19:1207 + 136:384x − 224:702x2 + 115:71x3 − 8:23736x4, x ∈
17
20 ,

9
10

� 

,

0:802238 + 71:5344x − 156:115x2 + 94:1611x3 − 10:3781x4, x ∈
9
10 ,

19
20

� 

,

29:3714 − 17:7196x − 64:194x2 + 64:045x3 − 11:5028x4, x ∈
19
20 , 1
� 


:

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð77Þ
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6. Conclusion

In this study, a numerical technique based on the extended
cubic B-spline collocation method for the numerical solution
of a second order PIDE is presented. The standard finite differ-
ence approach is used to discretize the temporal derivatives,
while extended cubic B-splines are used to approximate the
spatial derivatives. The stability and convergence of the pro-
posed technique are established to ensure that errors do not
magnify. Moreover, experimental outcomes substantiate the
validity of the proposed scheme. The scheme’s accuracy is
confirmed by comparing the numerical results with those
computed by some available numerical schemes.
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