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By constructing a coupling with unbounded time-dependent drift, a lower bound estimate of dimension-free Harnack inequality
with power is obtained for a large class of stochastic differential equation with multiplicative noise. The key is an application of the
inverse Hölder inequality. Combining this with the well-known upper bound, bilateral dimension-free Harnack inequality with
power is established. As a dual inequality, the bilateral shift-Harnack inequalities with power are also investigated for stochastic
differential equation with additive noise. Applications to the study of heat kernel inequalities are provided to illustrate the
obtained inequalities.

1. Introduction

We consider the following stochastic differential equation
(SDE for brief) on ℝd :

dXt = b t, Xtð Þdt + σ t, Xtð ÞdBt , ð1Þ

where fBtgt≥0 is the d-dimensional Brownian motion on
a filtered complete probability space ðΩ,F , fF tgt≥0,ℙÞ sat-
isfying the usual hypotheses, and

b : Ω × 0,∞½ Þ ×ℝd ⟶ℝd ,

σ : Ω × 0,∞½ Þ ×ℝd ⟶ℝd ⊗ℝd ,
ð2Þ

are progressively measurable and locally bounded in the
second variable and are continuous in the third variable. We
will assume throughout this paper that, for any initial value
X0 ∈ℝd , the SDE above has a unique strong solution which
is nonexplosive and continuous in time t. To establish the
bilateral Harnack inequalities, we will introduce the follow-
ing assumptions:

Assumption 1. For b, σ, there exists an increasing function
K on ½0,∞Þ so that for all t ≥ 0, all y′, y ∈ℝd , and

2 b t, y′
� �

− b t, yð Þ, y′ − y
D E

+ σ t, y′
� �

− σ t, yð Þ
��� ���2

HS
≤ Kt y′ − y

�� ��2, a:s:
ð3Þ

Assumption 2. There exists a decreasing function λ : ½0,∞Þ
⟶ ð0,∞Þ s.t. for all x ∈ℝd , t ≥ 0,

σ t, xð Þ∗σ t, xð Þ ≥ λ2t I, a:s: ð4Þ

Assumption 3. For σ, there exists an increasing positive func-
tion δ on ½0,∞Þ s.t. for all t ≥ 0, all y′, y ∈ℝd , δt < λt , and

σ t, y′
� �

− σ t, yð Þ
� �

y′ − y
� ���� ��� ≤ δt y′ − y

�� ��, a:s: ð5Þ

Assumption 4. For n ≥ 1, there exists a constant cn > 0 s.t. for
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any jy′j, jyj, t ≤ n,

σ t, y′
� �

− σ t, yð Þ
��� ���

HS
+ b t, y′

� �
− b t, yð Þ

��� ��� ≤ cn y′ − y
�� ��, a:s:

ð6Þ

It follows from the above assumptions that the existence
and uniqueness of the strong solution of SDE (1) are ensured
(see Protter [1]). For more results about existence and
uniqueness of the solution of differential equations, we can
see [2–4].

Let Xx
t be the solution to the SDE (1) for X0 = x. In this

paper, we will establish the bilateral Harnack inequalities
for the operator Pt ; for any f ∈B+

b ðℝdÞ, here B+
b ðℝdÞ is

the class of all bounded nonnegative measurable functions:

Pt f xð Þ≔ Ef Xx
tð Þ, x ∈ℝd , t ≥ 0, ð7Þ

where E is the expectation with respect to the probability
measure ℙ. In Wang [5], under the above assumptions
(Assumptions 1–4), the author has successfully established
the dimension-free Harnack inequalities for a large class of
SDEs with multiplicative noise by constructing a coupling.

The dimension-free Harnack inequality was firstly estab-
lished by Wang [6] for diffusion semigroups on Riemannian
manifolds under a curvature condition. As a useful tool in
the study of diffusion semigroups, in particular, for the uni-
form integrability, contractivity properties, and estimates on
heat kernels, Wang’s remarkable work has cause a lot of
studies in the last two decades (see Aida and Zhang [7],
Arnaudon et al. [8], and Da Prato [9]).

Wang’s Harnack inequality has been extended in a large
number of papers. For instance, by using coupling method,
the upper bounded of dimension-free Harnack inequality
has been established in [10] for a delay SDE with additive
noise, in Wang and Yuan [11] for a delay SDE with multipli-
cative noise, in Wang and Zhang [12] for SDE with non-
Lipschitz drift and driven by additive anisotropic cylindrical
α-stable process, and in Wang et al. [13] for stochastic Bur-
gers equation. Recently, using coupling by change of mea-
sures, the dimension-free Harnack inequality is
investigated in Wang [14] for a distribution-dependent sto-
chastic differential equation with regular coefficients and in
Huang and Wang [15] for a distribution-dependent SDE
with singular coefficients. For more details, we can refer to
the book of Wang [16] for a deep analysis about
dimension-free Harnack inequalities. All existing literatures
focus on the upper bound of the dimension-free Harnack
inequality. So far, we have not seen the lower bound estimate
of dimension-free Harnack inequality with power in any
previous literature. The aim of this paper is to establish the
lower bound of the dimension-free Harnack inequality with
power for SDE with multiplicative noise.

Theorem 1 in Wang [5] gives an upper bound of the
dimension-free Harnack inequality with power for SDE with
multiplicative noise. Hence, combining Theorem 1 in Wang
[5] with our lower bound of the dimension-free Harnack
inequality with power for SDE with multiplicative noise,

actually, we have the following bilateral dimension-free Har-
nack inequality with power for SDE with multiplicative
noise.

Theorem 5. Let

κ1 pð Þ≔ 1 − ffiffiffi
p

pð ÞKT

4
ffiffiffi
p

p
δp,T δp,T − λT 1 − ffiffiffi

p
pð Þ� �

1 − e−KTTð Þ , ð8Þ

where δp,T ≔max fδT , λTð1 −
ffiffiffi
p

p Þ/2g, and

κ2 pð Þ≔
ffiffiffi
p

p − 1ð ÞKT

4
ffiffiffi
p

p
δp,T λT

ffiffiffi
p

p − 1ð Þ − δp,T
� �

1 − e−KTTð Þ , ð9Þ

where δp,T ≔max fδT , λTð
ffiffiffi
p

p − 1Þ/2g.
For P 1 ≔ ð0, ð1 − ðδT /λTÞÞ2Þ and P 2 ≔ ðð1 + ðδT /λTÞÞ2,

+∞Þ, the bilateral dimension-free Harnack inequality with
power

sup
p∈P 1

PT f
p xð Þ� �1/p exp κ1 pð Þ x − yj j2	 


≤ PT f yð Þ ≤ inf
p∈P 2

PT f
p xð Þ� �1/p exp κ2 pð Þ x − yj j2	 


,
ð10Þ

holds for all T > 0, x, y ∈ℝd and f ∈B+
b ðℝdÞ.

In this paper, we will give a direct proof about the lower
bound estimate of dimension-free Harnack inequality with
power for a large class of SDE with multiplicative noise,
rather than the reciprocal transformation based on the
upper bound of dimension-free Harnack inequality with
power. Of course, based on the reciprocal transformation
of our lower bound estimate, we can also get the upper
bound of dimension-free Harnack inequality with power.
Unfortunately, our method does not adapt to establish the
lower bound estimate of dimension-free log-Harnack
inequality. At the same time, there is no evidence that the
lower bound estimate of dimension-free log-Harnack
inequality can be easily obtained by reciprocal transforma-
tion. This also leaves an open problem of how to establish
the lower bound estimate of dimension-free log-Harnack
inequality for a large class of SDE with additive noise or
multiplicative noise.

Let ptðx, yÞ be the density of the operator Pt with respect
to a Radon measure μ. It follows from Theorem 5 that the
following corollary on bilateral heat kernel inequalities is a
direct consequence.

Corollary 6. Assume that Assumptions 1–4 hold and the
operator Pt have a strictly positive density Ptðx, yÞ with
respect to μ. Then, for p > ð1 + δT /λTÞ2, the upper bound of
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heat kernel inequality

ð
ℝd
pT x, zð Þ pt x, zð Þ

pt y, zð Þ
� �1/ p−1ð Þ

,

μ dzð Þ ≤ exp pκ2 pð Þ
p − 1

x − yj j2
 �

,
ð11Þ

holds, and for 0 < p < ð1 − δT /λTÞ2, the lower bound of
heat kernel inequality, and for all T > 0,

intMpT x, zð Þ pT x, zð Þ
pT y, zð Þ
� �1/p

μ dzð Þ ≥ exp κ1 pð Þ x − yj j2	 

, ∀x, y ∈ℝd ,

ð12Þ

holds.

The main aim of this paper is to establish lower bound of
dimension-free Harnack inequality with power for SDE with
multiplicative noise. As a dual inequality, the shift-Harnack
inequality has been developed and applied in Wang [17].
Obviously, it is relatively easy to establish lower bound of
shift-Harnack inequality by the method used in this paper.

Next, we establish the bilateral dimension-free Wang’s
shift-Harnack inequalities with power for Pt introduced in
Wang [17]. We now only consider the additive noise for
which the SDE (1) reduces to

dXt = b t, Xtð Þdt + σ tð ÞdBt , X0 = x: ð13Þ

Theorem 7. Let σ from ½0,∞Þ to ℝd ⊗ℝd and b from ½0,∞
Þ ×ℝd to ℝd be measurable and satisfy the assumptions in
Section 1. Furthermore, the function σðtÞ is invertible and
satisfies the assumption.

Assumption 8. There exists a decreasing function λ from ½0
,∞Þ to ½0,∞Þ s.t. for all t ≥ 0,

σ tð Þ∗σ tð Þ ≥ λ2t I, a:s: ð14Þ

Then,

(1) for any p ∈ ð0, 1Þ, T > 0, x, v ∈ℝd , and for any f ∈
B+

b ðℝdÞ,

PT fð Þ xð Þ ≥ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp 1

2 p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #

ð15Þ

(2) for any p > 1, T > 0, x, v ∈ℝd , and for any f ∈B+
b ð

ℝdÞ,

PT fð Þ xð Þ ≤ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp 1

2 p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #

ð16Þ

It is quite remarkable that the lower bound of
dimension-free Harnack inequality with power in Theorem
5 is essentially equivalent to the upper bounded of
dimension-free Harnack inequality with power through
appropriate transformation. The same remark as Theorem
5 is also true for bilateral dimension-free shift-Harnack
inequalities with power in Theorem 7. In the future, we want
to establish bilateral Harnack inequalities for various
models, for example, functional SDEs with additive/multi-
plication noise, distribution-dependent SDEs, distribution-
dependent SDEs with singular coefficients, and SDEs driven
by cylindrical α-stable processes. However, the method we
use here is not suitable for the lower bounded dimension-
free log-Harnack inequality. How to establish the lower
bounded dimension-free log-Harnack inequality is a very
interesting and meaningful question.

In Section 2, we construct a coupling and prove several
auxiliary results which will be needed for the proof of theo-
rem. The dimension-free bilateral Harnack inequality with
power and dimension-free bilateral shift-Harnack inequality
with power are given in Sections 3–4, respectively. As appli-
cations, bilateral heat kernel estimates are derived in Section
5.

2. Auxiliary Results

Let x, y ∈ℝd , T > 0, and

0 < p < 1 − δT
λT

� �2
, ð17Þ

be fixed such that x ≠ y. Due to δT < λT , we have

θT ≔
2δT

λT 1 − ffiffiffi
p

pð Þ ∈ 0, 2ð Þ: ð18Þ

For any θ ∈ ð0, 2Þ, write

κt =
2 − θ

KT
1 − eKT t−Tð Þ
� �

, t ∈ 0, T½ �: ð19Þ

Then, function κ is smooth and strictly positive on ½0, TÞ
such that

2 − KTκt + κt′= θ, t ∈ 0, T½ �: ð20Þ

We now construct the following coupling:

dXt = σ t, Xtð ÞdBt + b t, Xtð Þdt, X0 = x,

dYt = σ t, Ytð ÞdBt + b t, Ytð Þdt + 1
κt
σ t, Ytð Þσ t, Xtð Þ−1 Xt − Ytð Þdt, Y0 = y:

ð21Þ
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We set inf∅ = T by convention. Let

ζn ≔ inf t ∈ 0, T½ Þ: Ytj j ≥ nf g, ð22Þ

and ζ = lim
n⟶∞

ζn is the explosion time of Yt , and then, the

coupling ðXt , YtÞ is a well-defined continuous process for t
< T∧ζ. For t < T∧ζ, let

d~Bt = dBt +
1
κt

Xt − Ytð Þσ t, Xtð Þ−1dt: ð23Þ

If ζ = T and

Rs ≔ exp −
ðs
0
κ−1t Xt − Ytð Þσ t, Xtð Þ−1, dBt

� �
−
1
2

ðs
0
κ−2t σ t, Xtð Þ−1 Xt − Ytð Þ�� ��2dt �

,

ð24Þ

is a uniformly integrable martingale for s ∈ ½0, TÞ, then
by the martingale convergence theorem, RT ≔ limt↑TRt exists
and fRtgt∈½0,T� is a martingale. In this case, by the Girsanov

theorem, f~Btgt∈½0,TÞ is a d-dimensional Brownian motion
under the probability RTℙ. We can rewrite (21) as

dXt = σ t, Xtð Þd~Bt + b t, Xtð Þdt − Xt − Yt

κt
dt, X0 = x,

dYt = σ t, Ytð Þd~Bt + b t, Ytð Þdt, Y0 = y:

ð25Þ

Let

τn ≔ inf
t∈ 0,T½ Þ

t : Xtj j + Ytj j ≥ nf g: ð26Þ

We have τn↑ζ as n⟶∞ because of the nonexplosibil-
ity of Xt .

By the Lemma 2.1 in Wang [5], we know that for any s
∈ ½0, T�, the following limits

Rs∧ζ ≔ lim
n⟶∞

Rs∧τn∧ T−1/nð Þ,

RT∧ζ ≔ lim
s↑T

Rs∧ζ,
ð27Þ

exist such that fRs∧ζgs∈½0,TÞ with respect to ℙ is a uni-

formly integrable martingale, and

ℚ ζ = Tð Þ = 1, ð28Þ

so that ℚ = RTℙ.

Lemma 9. Assume Assumptions 1–4. Then, for s ∈ ½0, TÞ,

Eℚ
s,ζ

ðs∧ζ
0

Xt − Ytj j
κ2t

2

dt ≤
1
θκ0

x − yj j2, ð29Þ

where the expectation E
ℚ
s,ζ is under the probability measure

ℚ = Rs∧ζℙ.

Proof. Fixed s ∈ ½0, TÞ. Using the Itô’s formula for jXt − Yt j2
and Assumption 1, we have, for t ≤ s∧τn,

d Xt − Ytj j2 = −
2
κt

Xt − Ytj j2dt + 2 b t, Xtð Þ − b t, Ytð Þð Þ, Xt − Yð Þt
� �

dt

+ σ t, Xtð Þ − σ t, Ytð Þk k2HSdt

+ 2 Xt − Ytð Þ σ t, Xtð Þ − σ t, Ytð Þð Þ, d~Bt

� �
≤ −

2
κt

Xt − Ytj j2dt

+ KT Xt − Ytj j2dt + 2 Xt − Ytð Þ σ t, Xtð Þ − σ t, Ytð Þð Þ, d~Bt

� �
:

ð30Þ

Combining this with the fact 2 − KTκt + κ′t = θ, we
obtain

d
Xt − Ytj j2

κt
≤ −

2 − KTκt + κt ′
κt

Xt − Ytj j2dt

+ 2
κt

Xt − Ytð Þ σ t, Xtð Þ − σ t, Ytð Þð Þ, d~Bt

� �
= −

θ

κ2t
Xt − Ytj j2dt

+ 2
κt

Xt − Ytð Þ σ t, Xtð Þ − σ t, Ytð Þð Þ, d~Bt

� �
,

ð31Þ

for t ≤ s∧τn. Multiplying this inequality by ð1/θÞ and
then integrating in ½0, s∧τn�, we get

ðs∧τn
0

Xt − Ytj j2
κt

dt ≤ −
Xs∧τn − Ys∧τn

�� ��2
θκs∧τn

+ 1
θκ0

x − yj j2

+
ðs∧τn
0

2
θκt

Xt − Ytð Þ σ t, Xtð Þ − σ t, Ytð Þð Þ, d~Bt

� �
:

ð32Þ

By the Girsanov theorem, f~Btgt≤s∧τn ia the d-dimen-
sional Brownian motion under the probability measure
Rs∧τnℙ. Taking expectation Eℚ

s,n with respect to Rs∧τnℙ, hence
we obtain, for any s ∈ ½0, TÞ,

Eℚ
s,n

ðs∧τn
0

Xt − Ytj j2
κ2t

dt ≤
1
θκ0

y − xj j2, n ≥ 1: ð33Þ

By the dominated convergence theorem, we have

E
ℚ
s,ζ

ðs∧ζ
0

Xt − Ytj j2
κ2t

dt ≤
1
θκ0

x − yj j2, ð34Þ

where the expectation E
ℚ
s,ζ is under the probability mea-

sure ℚ = Rs∧ζℙ; hence, we obtain the desired result.

Lemma 10. Assume Assumptions 1–4. Let

rT = λ2Tθ
2
T

4δ2T − 4θTλTδT
< −1: ð35Þ
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Then,

sup
s∈ 0,T½ �

ER1+rT
s∧ζ ≤ exp θTKT 2δT − λTθTð Þ x − yj j2

8δ2T 2 − θTð Þ δT − λTθTð Þ 1 − e−KTTð Þ

" #
:

ð36Þ

Proof. By the definition of Rs, we have

ER1+rT
s∧τn = Eℚ

s,nR
rT
s∧τn = Eℚ

s,n exp −rT
ðs∧τn
0

1
κt

σ t, Xtð Þ−1 Xt − Ytð Þ, d~Bt

� �

+ rT
2

ðs∧τn
0

σ t, Xtð Þ−1 Xt − Ytð Þ�� ��2
κ2t

dt

#
:

ð37Þ

Observing that for any exponential integrable martingale
Λt with respect to Rs∧τnℙ, one has

Eℚ
s,n exp

rTΛt + rT Λh it
2

 �
= Eℚ

s,n exp
rTΛt − r2Tβ Λh it

2 + rT βrT + 1ð Þ Λh it
2

 �

≤ Eℚ
s,n exp

rTβΛt − r2Tβ
2 Λh it

2

" # !1/β

× Eℚ
s,n exp

rTβ rTβ + 1ð Þ
2 β − 1ð Þ Λh it

 �� � β−1ð Þ/β

= Eℚ
s,n exp

rTβ rTβ + 1ð Þ
2 β − 1ð Þ Λh it

 �� � β−1ð Þ/β
,

ð38Þ

where β > 1. It follows that

ER1+rT
s∧τn ≤ Eℚ

s,n exp
rTβ rTβ + 1ð Þ
2 β − 1ð Þ

ðs∧τn
0

σ t, Xtð Þ−1 Xt − Ytð Þ�� ��2
κ2t

dt

" # ! β−1ð Þ/β

≤ Eℚ
s,n exp

rTβ rTβ + 1ð Þ
2 β − 1ð Þλ2T

ðs∧τn
0

Xt − Ytð Þj j2
κ2t

dt

" # ! β−1ð Þ/β
:

ð39Þ

Noting that rT < −1, take β = 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + r−1T

p
, i.e.,

which minimizes ðrTβðrTβ + 1ÞÞ/ð2ðβ − 1ÞÞ for β ∈ ð1,
∞Þ (see Figure 1), such that

rTβ rTβ + 1ð Þ
2 β − 1ð Þλ2T

=
rT −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp� �

rT + 1ð Þ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp� �

−2/rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp

λ2T

=
rT −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp� �2
2λ2T

= θ2T
8δ2T

:

ð40Þ

Hence, noting that ðβ − 1Þ/β ∈ ð0, 1Þ, we can write (39)

as

ER1+rT
s∧τn ≤ Eℚ

s,n exp
rTβ rTβ + 1ð Þ
2 β − 1ð Þλ2T

ðs∧τn
0

Xt − Ytð Þj j2
κ2t

dt

" # ! β−1ð Þ/β

≤ Eℚ
s,n exp

θ2T
8δ2T

ðs∧τn
0

Xt − Ytð Þj j2
κ2t

dt

" # ! β−1ð Þ/β
:

ð41Þ

Furthermore, we see from (40) that

rT −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þ

p
= −

λTθT
2δT

: ð42Þ

Noting that rTβ = rT −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTð1 + rTÞ

p
, it follows from the

above relation (42) that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þ

p
= rT + λTθT

2θT
= λ2Tθ

2
T

4δ2T − 4λTθTδT
+ λTθT

2δT

= λ2Tθ
2
T

2δT 2δT − 2λTθTð Þ + λTθT
2δT

= λ2Tθ
2
T

2δT 2δT − 2λTθTð Þ + λTθT 2δT − 2λTθTð Þ
2δT 2δT − 2λTθTð Þ

= λ2Tθ
2
T + λTθT 2δT − 2λTθTð Þ
2δT 2δT − 2λTθTð Þ

= 2λTθTδT − λ2Tθ
2
T

2δT 2δT − 2λTθTð Þ :

ð43Þ

Due to the choice of β and the definition of rT (35) and

𝛽

f (𝛽) =
rT𝛽 (rT𝛽+ 1)

𝛽− 1

1 − 1
rT √ rT (1 + rT)

𝛽 = 1

Figure 1: Minimize ðrTβðrTβ + 1ÞÞ/β − 1 when rT < −1:
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(43), we can compute

β − 1
β

= −1/rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp

1 − 1/rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT 1 + rTð Þp

− rT

= 2λTθTδT − λ2Tθ
2
T

� �
/ 2δT 2δT − 2λTθTð Þð Þ

λTθT /2δT

= 2λTθTδT − λ2Tθ
2
T

λTθT /2δTð Þ × 2δT 2δT − 2λTθTð Þ

= 2λTθTδT − λ2Tθ
2
T

λTθT 2δT − 2λTθTð Þ = 2δT − λTθT
2δT − 2λTθT

:

ð44Þ

For any α > 0, it follows from (32) that

Eℚ
s,n exp α

ðs∧τn
0

Xt − Ytj j2
κ2t

dt
 �

≤ exp α

θTκ0
x − yj j2

 �
⋅ Eℚ

s,n exp
2α
θT

ðs∧τn
0

1
κt

Xt − Ytð Þ σ t, Xtð Þ − σ t, Ytð Þð Þ, d~Bt

� � �

≤ exp αKT

θT 2 − θTð Þ 1 − e−KTTð Þ x − yj j2
 �

⋅ Eℚ
s,n exp

8α2δ2T
θ2T

ðs∧τn
0

Xt − Ytj j2
κ2t

dt

" # !1/2

ð45Þ

Taking α = θ2T /8δ2T , we have

Eℚ
s,n exp

θ2T
8δ2T

ðs∧τn
0

κ−2t Xt − Ytj j2dt
" #

≤ exp θTKT x − yj j2
4δ2T 2 − θTð Þ 1 − e−KTTð Þ

" #
:

ð46Þ

Now, returning to (41), and noticing that ðβ − 1Þ/β ∈ ð0
, 1Þ, then we obtain

ER1+rT
s∧τn ≤ Eℚ

s,n exp
rTβ rTβ + 1ð Þ
2 β − 1ð Þ

ðs∧τn
0

σ t, Xtð Þ−1 Xt − Ytð Þ�� ��2
κ2t

dt

" # ! β−1ð Þ/β

≤ Eℚ
s,n exp

θ2T
8δ2T

ðs∧τn
0

Xt − Ytj j2
κ2t

dt

" # ! β−1ð Þ/β

≤ exp θKT

4δ2T 2 − θTð Þ 1 − e−KTTð Þ
y − xj j2

" # ! β−1ð Þ/β

= exp θKT 2δT − λTθTð Þ
8δ2T 2 − θTð Þ δT − λTθTð Þ 1 − e−KTTð Þ

y − xj j2
" #

:

ð47Þ

Therefore, by letting n⟶∞, the Fatou lemma implies
that

sup
s∈ 0,T½ �

ER1+rT
s∧ζ ≤ exp θTKT 2δT − λTθTð Þ

8δ2T 2 − θTð Þ δT − λTθTð Þ 1 − e−KTTð Þ
x − yj j2

" #
:

ð48Þ

This proves the assertion.

3. Proof of Lower Bounded of
Harnack Inequality

We will only give the proof of the lower bounded of the
dimension-free Harnack inequality with power, since the
upper bounded of the dimension-free Harnack inequality
with power has been established in Wang [5]. We will first
introduce an inverse Hölder inequality, which is the key
building stone for this paper to obtain successfully lower
bound of the dimension-free Harnack inequality with
power. In the literature, we can find the earlier version of
inverse Hölder inequality with integral form in Hardy et al.
[18], P23-24, and more inverse Hölder inequalities can be
found in Nehari [19] and Lin and Bai [20] for the following
type and the references there cited.

Lemma 11. For any p ∈ ð0, 1Þ, q≔ p/ðp − 1Þ < 0, then

1
p
+ 1
q
= 1, ð49Þ

and for any positive random variables X, Y , the inverse
Hölder inequality holds:

E XY½ � ≥ E Xp½ �ð Þ1/p E Yq½ �ð Þ1/q: ð50Þ

For our purpose to establish the dimension-free Harnack
inequality with power and for simplicity, we only consider
p ∈ ð0, 1Þ, although the inverse Hölder inequality also holds
for p < 0. With the inverse Hölder inequality in hand, we
now can start to prove the lower bounded of dimension-
free Harnack inequality with power.

Theorem 12. Let

κ1 pð Þ≔ 1 − ffiffiffi
p

pð ÞKT

4
ffiffiffi
p

p
δp,T δp,T − λT 1 − ffiffiffi

p
pð Þ� �

1 − e−KTTð Þ , ð51Þ

where δp,T ≔max fδT , λTð1 −
ffiffiffi
p

p Þ/2g. If Assumptions 1–

4 hold, then for 0 < p < ð1 − δT /λTÞ2, the dimension-free Har-
nack inequality with power

PT f yð Þ ≥ PT f
p xð Þ� �1/p exp κ1 pð Þ x − yj j2	 


, ð52Þ

holds for all T > 0, x, y ∈ℝd and f ∈B+
b ðℝdÞ.

Proof. Since fRs∧ζgs∈½0,TÞ with respect to ℙ is a uniformly

integrable martingale and f~Btgt∈½0,T� is the d-dimensional
Brownian motion under new probability measure ℚ, thus
Yt can be solved up to time T . Let

τ≔ inf t ∈ 0, T½ �: Xt = Ytf g, ð53Þ

and set inf∅ =∞ by convention. We claim τ ≤ T and
thus, XT = YT ,ℚ-a.s. Indeed, if for some ω ∈Ω such that τ
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ðωÞ > T , by the continuity of the processes, we have

inf
t∈ 0,T½ �

Xt ωð Þ − Yt ωð Þj j2 > 0: ð54Þ

So, on the set fτ > Tg, we have
ðT
0

Xt − Ytj j2
κ2t

dt =∞: ð55Þ

But according to Lemma 9, we obtain

Eℚ

ðT
0

Xt − Ytj j2
κ2t

dt <∞: ð56Þ

Hence, we conclude that ℚðτ > TÞ = 0. Therefore, XT =
YT ,ℚ-a.s.

Now, since XT = YT and f~Btgt∈½0,T� is the d-dimensional
Brownian motion under new probability measure ℚ, we
have

PT f yð Þð Þp = Eℚ f YTð Þ½ �� �p = E RT∧ζ f XTð Þ	 
� �p
: ð57Þ

Using the inverse Hölder inequality, for 0 < p < 1, hence
−1 < p − 1 < 0, we have

E RT∧ς f XTð Þ	 
� �p ≥ PT f
p xð Þ ERp/ p−1ð Þ

T∧ζ

� �p−1
: ð58Þ

Hence, we arrive at

PT f yð Þð Þp ≥ PT f
p xð Þ ERp/ p−1ð Þ

T∧ζ

� �p−1
= PT f

p xð Þ ER1+rT
T∧ς

� �p−1
:

ð59Þ

Here, rT = 1/ðp − 1Þ < −1.
Let θ = θT . Noting the choice of the θ (18), we have

rT = 1
p − 1 = λ2Tθ

2

4δ2T − 4θλTδT
, ð60Þ

that is,

p − 1ð Þλ2Tθ2 = 4δ2T − 4θλTδT : ð61Þ

In fact, in (18), we choose

θ = 2δT
λT 1 − ffiffiffi

p
pð Þ , ð62Þ

which solves the equation ðp − 1Þλ2Tθ2 = 4δ2T − 4θλTδT .
Observing that the function xp−1 is a decreasing function

with respect to x in ð0,∞Þ if 0 < p < 1, it follows from

Lemma 10 that

PT f yð ÞÞp ≥ PT f
p xð Þ ER1+rT

T∧ς

h ip−1
≥ PT f

p xð Þ exp p − 1ð ÞθKT 2δT − λTθð Þ
8δ2T 2 − θð Þ δT − λTθð Þ 1 − e−KTTð Þ x − yj j2
" #

:

ð63Þ

Replacing θ with 2δT /ðλTð1 −
ffiffiffi
p

p ÞÞ in (63), we can
rewrite (63) and then obtain

PT f yð Þð Þp ≥ PT f
p xð Þ exp 2δT

ffiffiffi
p

p 1 − pð ÞKT

8δ2T δT p + 1p Þ + λT p − 1ð Þð Þ 1 − e−KTTð Þð x − yj j2
" #

= PT f
p xð Þ exp

ffiffiffi
p

p 1 − ffiffiffi
p

pð ÞKT

4δT δT − λT 1 − ffiffiffi
p

pð Þð Þ 1 − e−KTTð Þ x − yj j2
 �

:

ð64Þ

This completes the proof of this theorem.

Remark 13. In this theorem, we give a direct proof about the
lower bound estimate of dimension-free Harnack inequality
with power for a large class of stochastic differential equa-
tion with multiplicative noise, rather than the reciprocal
transformation based on the upper bound of dimension-
free Harnack inequality with power. Of course, based on
the reciprocal transformation of our lower bound estimate,
we can also get the upper bound of dimension-free Harnack
inequality with power. Unfortunately, our method does not
adapt to establish the lower bound estimate of dimension-
free log-Harnack inequality. At the same time, there is no
evidence that the lower bound estimate of dimension-free
log-Harnack inequality can be easily obtained by reciprocal
transformation. This also leaves an open problem of how
to establish the lower bound estimate of dimension-free
log-Harnack inequality for a large class of stochastic differ-
ential equation with additive noise or multiplicative noise.

4. Bilateral Shift-Harnack Inequalities

In this section, we establish the bilateral dimension-free
Wang’s shift-Harnack inequalities with power for Pt , and
the upper bounded of this inequality has been introduced
in Wang (2014). As seen in the previous section, the study
for the multiplicative noise case is very complicated; we
hence only consider the additive noise for which the SDE
(1) reduces to

dXt = b t, Xtð Þdt + σ tð ÞdBt , X0 = x: ð65Þ

Proposition 14. Let function σ from ½0,∞Þ to ℝd ×ℝd and b
from ½0,∞Þ ×ℝd to ℝd be two progressively measurable pro-
cess and satisfy assumptions in Section 1. Furthermore, the
function σðtÞ is invertible and satisfies the following
assumption.
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Assumption 15. There exists a decreasing function λ from ½
0,∞Þ to ½0,∞Þ s.t. for all x ∈ℝd , t ≥ 0,

σ tð Þ∗σ tð Þ ≥ λ2t I, a:s: ð66Þ

Then,

(1) for any p ∈ ð0, 1Þ, T > 0, x, v ∈ℝd , and any f ∈B+
b ð

ℝdÞ,

PT fð Þ xð Þ ≥ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp vj j2

2 p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #

ð67Þ

(2) for any p > 1, T > 0, x, v ∈ℝd , and any f ∈B+
b ðℝdÞ,

PT fð Þ xð Þ ≤ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp vj j2

2 p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #

ð68Þ

Proof. Let Yt = Xt + ðt/TÞv, t ∈ ½0, T�. Then, we have

dYt = b t, Ytð Þdt + σ tð Þd~Bt , Y0 = x, t ∈ 0, T½ �, ð69Þ

where

~Bt ≔ Bt +
ðt
0
ηsds,

ηt ≔ σ−1 tð Þ v
T

+ b t, Xtð Þ − b t, Xt + tv/Tð Þ
h i

:

ð70Þ

Let

RT = e−
Ð T

0
ηt ,dBth i−1/2

Ð T

0
ηsj j2ds

: ð71Þ

By the Girsanov theorem, we have

PT fð Þ xð Þ = E RT f YTð Þ½ � = E RT f XT + vð Þ½ �: ð72Þ

Similar to (58), by inverse Hölder inequality, we obtain

PT fð Þ xð Þ ≥ PT f
p v+ ⋅ð Þ� �1/p xð Þ E Rp/ p−1ð Þ

T

h i� � p−1ð Þ/p
: ð73Þ

Due to (71), we have

E Rp/ p−1ð Þ
T

h i
≤ E Mt exp

p

2 p − 1ð Þ2
ðT
0
ηsj j2ds

" #" #

= E MT exp p

2 p − 1ð Þ2
ðT
0
σ−2 tð Þ v

T
+ b t, Xtð Þ − b t, Xt +

tv
T

� � �2
ds

" #" #

≤ E MT exp p

2 p − 1ð Þ2λ2T

ðT
0

v
T

+ b t, Xtð Þ − b t, Xt +
tv
T

� � �2
ds

" #" #
:

ð74Þ

Here, the last inequality holds according to Assumption
15, and

Mt ≔ exp −
p

p − 1

ðt
0
ηsdBs −

p2

2 p − 1ð Þ2
ðt
0
ηsj j2ds

" #
: ð75Þ

Now, noticing from Assumption 1 that

b t, xð Þ − b t, yð Þj j ≤ KT x − yj j, ð76Þ

we see that for all x ∈ℝ,

v
T

+ b t, xð Þ − b t, x + tv/Tð Þ
��� ��� ≤ 1 + KTt

T
vj j: ð77Þ

Thus, in view of the above assertion (77) and E½MT � ≤ 1,
estimate (74) becomes

E Rp/ p−1ð Þ
T

h i
≤ exp p vj j2

2 p − 1ð Þ2λ2T
1
T

+ KT + K2
TT
3

� �" #
: ð78Þ

Using again the fact that the function xp−1 is a decreasing
function with respect to x in ð0,∞Þ if −1 < p − 1 < 0, it fol-
lows from (73) that

PT fð Þ xð Þ ≥ PT f
p v+ ⋅ð Þ� �1/p xð Þ E Rp/ p−1ð Þ

T

h i� � p−1ð Þ/p

≥ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp vj j2

2 p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #
:

ð79Þ

This completes the proof of the first part of this theorem.
Noticing that (78) holds for all p > 0, the second part of this
theorem can be obtained.

In fact, we can get a better conclusion than Proposition
14.

Theorem 16. Let function σ from ½0,∞Þ to ℝd ×ℝd and
function b from ½0,∞Þ ×ℝd to ℝd be measurable and satisfy
assumptions in Section 1. Furthermore, the function σðtÞ is
invertible and satisfies Assumption 15. Then,

(1) for any p ∈ ð0, 1Þ, T > 0, x, v ∈ℝd , and f ∈B+
b ðℝdÞ,
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PT fð Þ xð Þ ≥ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp

ffiffiffi
p

p
vj j2

2 1 + ffiffiffi
p

pð Þ p − 1ð Þλ2T
1
T

+ KT +
K2

TT
3

� �" #

ð80Þ

(2) for any p > 1, T > 0, x, v ∈ℝd , and f ∈B+
b ðℝdÞ,

PT fð Þ xð Þ ≤ PT f
p v+ ⋅ð Þ� �1/p xð Þ exp

ffiffiffi
p

p
vj j2

2 1 + ffiffiffi
p

pð Þ p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #

ð81Þ

Proof. Similar to (39), we have

E Rp/ p−1ð Þ
T

h i
≤ Eℚ exp p

2 p − 1ð Þ2
ðT
0
ηsj j2ds

( )" # ! ffiffi
p

p / ffiffipp +1

= Eℚ exp p

2 p − 1ð Þ2
ðT
0
σ−2 tð Þ v

T
+ b t, Xtð Þ − b t, Xt +

tv
T

� � �2
ds

( )" # ! ffiffi
p

p / ffiffipp +1

≤ Eℚ exp p

2 p − 1ð Þ2λ2T

ðT
0

v
T

+ b t, Xtð Þ − b t, Xt +
tv
T

� � �2
ds

( )" # ! ffiffi
p

p / ffiffipp +1

,

ð82Þ

Due to (77), we have

E Rp/ p−1ð Þ
T

h i
≤ exp p

ffiffiffi
p

p
vj j2

2 1 + ffiffiffi
p

pð Þ p − 1ð Þ2λ2T
1
T

+ KT + K2
TT
3

� �" #
:

ð83Þ

(1) For p that satisfies 0 < p < 1, using the fact that the
function xp−1 is a decreasing function with respect
to x in ð0,∞Þ, it follows from (73) based on the
inverse Hölder inequality that

PT fð Þ xð Þ ≥ PT f
p v + ·ð Þ� �1/p xð Þ E Rp/ p−1ð Þ

T

h i� � p−1ð Þ/p

≥ PT f
p v + ·ð Þ� �1/p xð Þ exp

ffiffiffi
p

p
vj j2

2 1 + ffiffiffi
p

pð Þ p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #
:

ð84Þ

This completes the proof of the lower bounded

(2) For p > 1, by Hölder inequality, we have

PT fð Þ xð Þ ≤ PT f
p v + ·ð Þ� �1/p xð Þ E Rp/ p−1ð Þ

T

ih i� � p−1ð Þ/p ð85Þ

Notice that (83) holds for all p > 0; hence, we get

PT fð Þ xð Þ ≤ PT f
p v + ·ð Þ� �1/p xð Þ exp

ffiffiffi
p

p
vj j2

2 1 + ffiffiffi
p

pð Þ p − 1ð Þλ2T
1
T

+ KT + K2
TT
3

� �" #
:

ð86Þ

This completes the proof of this theorem.

Remark 17. From this simplified proof of the bilateral
dimension-free shift-Harnack inequality with power for
additive case, we can easily see that the moment estimation
(83) is the key to establishing the bilateral dimension-free
shift-Harnack inequality with power. We need to specifically
point out that the moment estimation (83) holds for all p > 0
. To establish the upper bound, we need to use the moment
estimation (83) and Hölder inequality, but to establish the
lower bound, we need to use the moment estimation (83)
and the inverse Hölder inequality.

5. Proof of the Corollary 6

Let ptðx, yÞ be the density of Pt with respect to μ which is a
Radon measure. Then, it follows from Corollary 1.2 in Wang
[5] that for p > ð1 + δT /λTÞ2, the Harnack inequality with
power in Wang [5] is equivalent to the following heat kernel
inequalities:

ð
ℝ
pT x, zð Þ pt x, zð Þ

pt y, zð Þ
� �1/ p−1ð Þ

μ dzð Þ

≤ exp KT
ffiffiffi
p

p
x − yj j2

4δp,T
ffiffiffi
p

p + 1ð Þ ffiffiffi
p

p − 1ð ÞλT − δp,T
	 


1 − e−KTTð Þ

" #
:

ð87Þ

For all x, y ∈ℝd , T > 0, hence, (11) holds. Due to this,
then we will complete the proof of the Corollary 6, if we
prove the following proposition:

Proposition 18. Assume that Assumptions 1–4 hold. Let ptð
x, yÞ be a strictly positive density of the operator Pt with
respect to a Radon measure μ. Then, for 0 < p <
ð1 − δT /λTÞ2, the following heat kernel inequality
ð
M
pT x, zð Þ pT x, zð Þ

pT y, zð Þ
� �1/p

μ dzð Þ

≥ exp 1 − ffiffiffi
p

pð ÞKT

4
ffiffiffi
p

p
δT δT − λT 1 − ffiffiffi

p
pð Þð Þ 1 − e−KTTð Þ x − yj j2

 �
,

ð88Þ

holds for all x, y ∈ℝd .

Proof. By Theorem 12, we have

PT f yð Þð Þp ≥ PT f
p xð Þ exp ~κ pð Þ x − yj j2	 


: ð89Þ
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Here,

~κ pð Þ≔
ffiffiffi
p

p 1 − ffiffiffi
p

pð ÞKT

4δT δT − λT 1 − ffiffiffi
p

pð Þð Þ 1 − e−KTTð Þ : ð90Þ

Let PTðx, dyÞ be a transition probability such that

PT f xð Þ =
ð
E
f yð ÞPT x, dyð Þ, x ∈ E: ð91Þ

Obviously, the above inequality implies that PTðx, ·Þ and
PTðy, ·Þ are equivalent to each other. Indeed, if PTðx, AÞ = 0,
then applying the above inequality to f = IA, we conclude
that PTðy, AÞ = 0.

Let

pT , x,yð Þ zð Þ≔ PT x, dzð Þ
PT y, dzð Þ , ð92Þ

be the Radon-Nikodym derivative of PTðx, ·Þ with
respect to PTðy, ·Þ.

Applying (89) to f ðzÞ≔ fpT ,ðx,yÞðzÞg1/p, we have

PT f xð Þð Þp ≥ PT f
p yð Þ exp ~κ pð Þ x − yj j2	 


= exp ~κ pð Þ x − yj j2	 
ð
E

pT , x,yð Þ zð Þ
n op/p

P y, dzð Þ

= exp ~κ pð Þ x − yj j2	 
ð
E
pT , x,yð Þ zð ÞP y, dzð Þ

= exp ~κ pð Þ x − yj j2	 
ð
E
P x, dzð Þ = exp ~κ pð Þ x − yj j2	 


:

ð93Þ

So we obtain

PT f xð Þð Þp ≥ exp ~κ pð Þ x − yj j2	 

, ð94Þ

that is,

PT f xð Þ ≥ exp ~κ pð Þ
p

x − yj j2
 �

: ð95Þ

Thus,

ð
M
pT x, zð Þ pT x, zð Þ

pT y, zð Þ
� �1/p

μ dzð Þ ≥ exp ~κ pð Þ
p

 �
x − yj j2: ð96Þ

Therefore, the desired result in (88) holds.
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