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With the help of the k-Gamma function, a new form of Gamma operator is given in this article. Voronovskaya type theorem,
weighted approximation, rates of convergence, and pointwise estimates have been found for approximation features of the
newly described operator. Finally, numerical examples have been provided to demonstrate that the operator is approaching the
function.

1. Introduction

One of the most important topics in mathematical analysis
is approximation theory. The theory is studied in almost
every subject, including engineering and physics. Many
mathematicians have made investigation in this area. In
1885 [1], Weierstrass claimed that polynomials can
approximate every function in the closed interval ½a, b�.
Besides, theorems about this subject are prepared by Kor-
ovkin around 1950 [2]. The Korovkin approximation the-
orem is one of the well-known theorems in mathematics.
Their theorems indicate that a series of positive linear
operators can converge to the identity operator under spe-
cific condition [2]. As a result using these theorems, some
studies on linear and positive linear operators have been
added to the literature. For example, King [3] introduced
the Bernstein operator to preserve the function a2ðhÞ = h2

in 2003. Then, King constructed a new set of operators
with respect to the test functions f1, h, h2g and obtained
their linear combinations. On the other hand, one of these
operators is the Gamma operator which is constructed by

Lupas and Müller [4]. The classical Gamma operator in
[4] is expressed as follows:

Km φ ; yð Þ = ym+1

Γ m + 1ð Þ
ð∞
0
e−yvvmφ

m
v

� �
dv,∀y ∈ 0,∞ð Þ,m ∈ℕ:

ð1Þ

Then, in the literature, some researchers introduced
the generalizations of Gamma and beta functions and also
the extensions of Gamma-type operators and their exten-
sions [5–14]. One of the studies of this topic was by Daz
and Pariguan [15]; they introduced and researched k-
Gamma function when they were assessing Feynman inte-
grals. k-Gamma function has been showed up various
effects on mathematics and applications. One of these
effects has been working the Schrodinger equation for har-
monium and related models in view of important opera-
tions in quantum chemistry [16]. The others have used k
-Gamma function for combinatorial analysis in statistic.
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According to these studies, the k-Gamma function was
defined by Daz and Pariguan as follows:

Γk zð Þ =
ð∞
0
tz−1e−t

k/kdt, k ∈ℝ, Re zð Þ > 0ð Þ: ð2Þ

As can be seen from the definition, Γk is a one parameter
deformation of the classical Gamma function such that Γk
⟶ Γ as k⟶ 1: For k = 2, it reduces to an integral of
Gaussian functions [17]. When we get u = −tk/k in equation
(2), we find the expression ΓkðzÞ = kðz/kÞ−1Γðz/kÞ, and all
properties of the classic Gamma operator can be generalized
into k-Gamma function. It also led to a few new conclusions
for k-Gamma function. A few of them are given that

Γk kð Þ = 1,
Γk z + kð Þ = zΓk zð Þ,

zð Þn,k =
Γk z + nkð Þ
Γk zð Þ ,

ð3Þ

in [15]. For more such properties of k-Gamma and related
functions, we can refer to the article [11, 15, 17].

The primary goal of this research is to give the k-Gamma
operator given by (4) and its approximation properties. For
the operator in (4), in Section 2, we will use Korovkin theo-
rem in [18]. Then, in Section 3, we will consider the Voro-
novskaya type theorem. In Section 4, we will examine the
weighted approximation. Later, we will give the rates of con-
vergence with Peetre’s K-functional and Lipschitz class in
Section 5. Moreover, in Section 6, we will obtain pointwise
estimates, and finally, in Section 7, we will show the numer-
ical examples for the operators in (4).

2. A New Modification of Gamma Operators
Defined with the Help of k-Gamma Function

We shall see a new type of Gamma operators defined with
the help of the k-Gamma function in this section, and some
findings will be presented in the rest of the article. In this
paper, we will use the expressions azðhÞ = hz and ψy,z =
ðh − yÞz , y ∈ ð0,∞Þ as polynomial functions. The modified
representation of the classical Gamma operator is shown as
follows:

K∗
m φ ; yð Þ = ym+1+ 1/kð Þ

Γk mk + k + 1ð Þ
ð∞
0
e−yv vkð Þm+ 1/kð Þφ

m
v

� �
dv,∀y ∈ 0,∞ð Þ, k > 0,m ∈ℕ,

ð4Þ

where for v > 0, φ ∈ Cγð0,∞Þ = fφ ∈ Cð0,∞Þ: φðuÞ =OðuγÞ,
asu⟶∞g for m > γ. Here Cð0,∞Þ is the set of continuous
functions on ð0,∞Þ: This modified operator is clearly posi-
tive and linear in this case. Furthermore, the new Gamma
operator defined with the help of the k-Gamma function is
directly preserved constant, and test functions are provided
in case of limit.

We note that for special case of k = ð1/pÞðp ∈ℕÞ in (4),
we have Schurer variant of Gamma operators in (1).

The following lemma will be presented without proof
and used in fundamental theorems for the rest of the paper.

Lemma 1. Let y ∈ ð0,∞Þ: The following are the moment
values:

K∗
m a0 hð Þ ; yð Þ = a0 yð Þ,

K∗
m a1 hð Þ ; yð Þ = mk

mk + 1
a1 yð Þ,

K∗
m a2 hð Þ ; yð Þ = mkð Þ2

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ,

K∗
m a3 hð Þ ; yð Þ = mkð Þ3

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ a3 yð Þ,

K∗
m a4 hð Þ ; yð Þ = mkð Þ4

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ mk − 3k + 1ð Þ a4 yð Þ:

ð5Þ

By generalizing the moment values, we have the following
lemma.

Lemma 2. Let y ∈ ð0,∞Þ and z ∈ℕ, K∗
mða0ðhÞ ; yÞ = a0ðyÞ:

Then, the general formula for the following moment values
is obtained

K∗
m az hð Þ ; yð Þ = mkð ÞzQz−1

i=0 mk − ki + 1ð Þ az yð Þ, z = 1, 2,⋯: ð6Þ

Lemma 3. Let y ∈ ð0,∞Þ: Using the equations in Lemma 1,
the following are obtained:

K∗
m ψy,0 hð Þ ; y
� �

= 1,

K∗
m ψy,1 hð Þ ; y
� �

= −1
mk + 1

a1 yð Þ,

K∗
m ψy,2 hð Þ ; y
� �

= mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ,

K∗
m ψy,3 hð Þ ; y
� �

= m3k3

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ

 

−
3m2k2

mk + 1ð Þ mk − k + 1ð Þ +
3mk
mk + 1

− 1

!
a3 yð Þ,

K∗
m ψy,4 hð Þ ; y
� �

= m4k4

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ mk − 3k + 1ð Þ

 

− 4
m3k3

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ

+6 m2k2

mk + 1ð Þ mk − k + 1ð Þ − 4
mk

mk + 1
+ 1

!
a4 yð Þ:

ð7Þ

As a result of our research, the Schurer variant of
Gamma operators have not been defined or used. Also, if it
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is realized that k ∈ℝ+, it is obtained that our operators are a
generalization of the Schurer type operators.

Throughout this paper, we use the norm kφk = sup fφð
yÞ: y ∈ ð0,∞Þg for φ ∈ Cð0,∞Þ:

Lemma 4. Let φ ∈ CBð0,∞Þ: Then, we get

K∗
m φ ; yð Þk k ≤ φk k: ð8Þ

Proof. By using the result of Lemma 1, we have

K∗
m φð Þk k ≤ ym+1+ 1/kð Þ

Γk mk + k + 1ð Þ
ð∞
0
e−yv vkð Þm+ 1/kð Þ φ

m
v

� ���� ���dv
≤ φk k ym+1+ 1/kð Þ

Γk mk + k + 1ð Þ
ð∞
0
e−yv vkð Þm+ 1/kð Þdv

= φk kK∗
m a0 hð Þ ; yð Þ = φk k:

ð9Þ

Thus, we obtain the desired result. Because the moments
are conserved in the limit state of the Korovkin test func-
tions, K∗

m is an approximation process on any compact T
⊂ ð0,∞Þ, according to the Korovkin theorem in [18].

Theorem 5. Let φ ∈ Cð0,∞Þ ∩ E, where E = fφ : lim
y⟶∞

ðφ/1
+ y2Þ = k constantg. Then, consistently in each compact sub-
set of ð0,∞Þ, we have

lim
m⟶∞

K∗
m φ ; yð Þ = φ yð Þ: ð10Þ

Proof. By using Lemma 1, when z = 0, 1, 2, we get

lim
m⟶∞

K∗
m az hð Þ ; yð Þ = az yð Þ ð11Þ

for uniformly each compact subset of ð0,∞Þ. Then, using
the Korovkin theorem in [18], we give lim

m⟶∞
K∗

mðφ ; yÞ = φð
yÞ for uniformly each compact subset of ð0,∞Þ.

3. Voronovskaya Type Theorem

By establishing Voronovskaya’s theorem below, we will illus-
trate the asymptotic behavior of ðK∗

mÞm≥1 operators in this
section.

Theorem 6. Let φ ∈ Cð0,∞Þ ∩ E such that φ′, φ′′ ∈ Cð0,∞Þ
∩ E: The following limit is valid:

lim
m⟶∞

m K∗
m φ ; yð Þ − φ yð Þ½ � = −

1
k
yφ′ yð Þ + 1

2
y2φ′′ yð Þ: ð12Þ

Proof. From the definition of Taylor formula

φ hð Þ = φ yð Þ + φ′ yð Þ h − yð Þ + 1
2φ

′′ yð Þ h − yð Þ2 +Ω h, yð Þ h − yð Þ2,
ð13Þ

where

Ω h, yð Þ = φ′′ δð Þ − φ′′ yð Þ
2 , ð14Þ

such that δ lying between y and h and

lim
h⟶y

Ω h, yð Þ = 0: ð15Þ

When the ðK∗
mÞm≥1 operator is applied to (13), we get

K∗
m φ ; yð Þ = φ yð Þ + φ′ yð ÞK∗

m h − yð Þ ; yð Þ + 1
2φ

′′ yð ÞK∗
m h − yð Þ2 ; y� �

+ K∗
m Ω h, yð Þ h − yð Þ2 ; y� �

:

ð16Þ

To get the formula

m K∗
m φ ; yð Þ − φ yð Þ½ � = φ′ yð ÞmK∗

m h − yð Þ ; yð Þ
+ 1
2φ

′′ yð ÞmK∗
m h − yð Þ2 ; y� �

+mK∗
m Ω h, yð Þ h − yð Þ2 ; y� �

,

ð17Þ

multiply both sides of the last inequality by m. In the limit
case, this equation is

lim
m⟶∞

m K∗
m φ ; yð Þ − φ yð Þ½ � = φ′ yð Þ lim

m⟶∞
mK∗

m h − yð Þ ; yð Þ

+ 1
2φ

′′ yð Þ lim
m⟶∞

mK∗
m h − yð Þ2 ; y� �

+ lim
m⟶∞

mK∗
m Ω h, yð Þ h − yð Þ2 ; y� �

:

ð18Þ

We know the values

lim
m⟶∞

mK∗
m h − yð Þ ; yð Þ = lim

m⟶∞
m

−1
mk + 1

� �
y = −1

k
y,

lim
m⟶∞

mK∗
m h − yð Þ2 ; y� �

= lim
m⟶∞

m
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ

" #
y2 = y2,

ð19Þ

using Lemma 3. So, we have

lim
m⟶∞

m K∗
m φ ; yð Þ − φ yð Þ½ � = −1

k
yφ′ yð Þ + 1

2φ
′′ yð Þy2

+ lim
m⟶∞

mK∗
m Ω h, yð Þψy,2 hð Þ ; y
� �

:

ð20Þ

We show that the limit to the right of the equation in
(20) is equal to zero. It can easily be said from the Cauchy-
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Schwarz inequality that

mK∗
mΩ h, yð Þψy,2 hð Þ ; y

�
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∗

m Ω2 h, yð Þ ; y� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2K∗

m ψy,4 hð Þ ; y
� �r

:

ð21Þ

Then, using Korovkin theorem, we have

lim
m⟶∞

K∗
m Ω2 h ; yð Þ, y� �

=Ω2 y, yð Þ = 0, ð22Þ

since Ω2ðy, yÞ = 0 and Ωð:,yÞ ∈ Cð0,∞Þ ∩ E and bounded as
h⟶∞ and in view of fact that

K∗
m ψy,4 hð Þ ; y
� �

=O
1
m2


 �
, ð23Þ

where K∗
mðψy,4ðhÞ ; yÞ = ð3m2k4 +mð18k4 − 22k3 + 6k2Þ − 6

k3 + 11k2 − 6k + 1Þ/ððmk + 1Þðmk − k + 1Þðmk − 2k + 1Þðmk
− 3k + 1ÞÞ: The proof is completed when equations (21) and
(22) are written in (13).

4. Weighted Approximation

The Korovkin theorem for weighted approximation of the
operators in (4) is given in this section. To demonstrate this,
we will follow the theorems given by Gadjiev [19].

Consider ϑðyÞ = 1 + y2 as continuous weighted function
on ℝ, with lim

jyj⟶∞
ϑðyÞ =∞, ϑðyÞ ≥ 1 for all y ∈ ½0,∞Þ: Let

us have a look at the weighted spaces below. The property
jφðyÞj ≤NφϑðyÞ represents the weighted space of real-
valued functions φ on ℝ. This subspace is denoted by

Bϑ 0,∞½ Þ = φ : 0,½ ∞Þ⟶ 0,½ ∞Þ: φ yð Þj j ≤Nφϑ yð Þ, y ∈ 0,½ ∞Þ� 
:

ð24Þ

Nφ is a constant depending on the functions φ.
Since, the weighted subspaces of Bϑ½0,∞Þ is given by

Cϑ 0,∞½ Þ = φ ∈ Bϑ 0,∞½ Þ: φ is continous onℝf g = C 0,∞½ Þ ∩ Bϑ 0,∞½ Þ:
ð25Þ

Eventually, additional subspace for all φ ∈ Cϑ½0,∞Þ for
which lim

jyj⟶∞
φðyÞ/ϑðyÞ exists finitely defined as

Cκ
ϑ 0,∞½ Þ = φ ∈ Cϑ 0,∞½ Þ: lim

yj j⟶∞

φ yð Þ
ϑ yð Þ = κφ exists and it is finite

� �
:

ð26Þ

This κφ is a constant dependent on the φ functions. All
three mapping spaces above are normed spaces endowed
with

φk kϑ = sup
y∈ 0,∞ð Þ

φ yð Þj j
ϑ yð Þ : ð27Þ

Lemma 7. Let φ ∈ Cϑð0,∞Þ: Then, for the modified operator
K∗

mðφÞ, we have

K∗
m φð Þk kϑ ≤ C φk kϑ, ð28Þ

which imply that the sequence of the modified operators K∗
m

ðφÞ is an approximation process from Cϑð0,∞Þ to Bϑð0,∞Þ
:

Proof. The desired result of this lemma is easily obtained
from properties of the modified Gamma operator and
Lemma 1.

Gadjiev proposed a weighted approach to linear positive
operator sequences for unbounded intervals in [19]. The fol-
lowing theorem is similar to the Gadjiev theorem.

Theorem 8. Let φ ∈ Cκ
ϑð0,∞Þ: For the modified Gamma oper-

ator, the following equality holds:

lim
m⟶∞

K∗
m φ ; yð Þ − φ yð Þk kϑ = 0: ð29Þ

Proof. It will be enough to show that equivalence is attained
for lim

m⟶∞
kK∗

mðaz ; yÞ − azkϑ = 0, z = 0, 1, 2 using the theorem
in [19]. For z = 0, we have kK∗

mða0 ; yÞ − a0kϑ = 0: Now, let
us examine the cases z = 1, 2. When the necessary results
for these situations are used,

K∗
m a1 ; yð Þ − a1k kϑ = sup

y∈ 0,∞ð Þ

K∗
m a1 ; yð Þ − a1j j

1 + y2

= sup
y∈ 0,∞ð Þ

mk/mk + 1ð Þy − yj j
1 + y2

≤
mk

mk + 1 − 1
����

���� sup
y∈ 0,∞ð Þ

y
1 + y2

: ≤
1

mk + 1

����
����

ð30Þ

is obtained. If we take the limit of this expression, it becomes

lim
m⟶∞

1
mk + 1 = 0: ð31Þ

Then, we have

K∗
m a2 ; yð Þ − a2k kϑ = sup

y∈ 0,∞ð Þ

K∗
m a2 ; yð Þ − a2j j

1 + y2

= sup
y∈ 0,∞ð Þ

m2k2/ mk + 1ð Þ mk − k + 1ð Þð Þy2 − y2
�� ��

1 + y2

≤
m2k2

mk + 1ð Þ mk − k + 1ð Þ − 1
�����

����� sup
y∈ 0,∞ð Þ

y2

1 + y2

≤
mk2 − 2mk + k − 1
mk + 1ð Þ mk − k + 1ð Þ

�����
�����:

ð32Þ
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If we take the limit of this expression, it becomes

lim
m⟶∞

mk2 − 2mk + k − 1
mk + 1ð Þ mk − k + 1ð Þ = 0: ð33Þ

As a result of the equations obtained above, the evidence
is finished.

5. The Rates of Convergence

Now, we can concentrate on the rates of convergence the
modified Gamma operator in terms of the modulus continu-
ity. We shall now show that K∗

mðφÞ outperforms the classical
operator in terms of error estimation. Let us define the fol-
lowing in light of this goal.

The modulus of continuity of w is denoted by ωy0
ðφ, δÞ

for interval ð0, y0�, y0 ≥ 0 and can be described as follows:

ωy0
φ, δð Þ = sup

h−yj j≤δ;y,h∈ 0,y0ð �
φ hð Þ − φ yð Þj j: ð34Þ

The modulus of continuity ωy0
ðφ, δÞ⟶ 0 is easily

understood as δ⟶ 0 for the function φ ∈ CBð0,∞Þ, where
CBð0,∞Þ is defined as space of all continuous and bounded
functions on the interval ð0,∞Þ: Now, let us look at the rates
of convergence theorem for ðK∗

mÞm≥1.

Theorem 9. For y0 > 0 and φ ∈ CBð0,∞Þ, let ωy0+1ðφ, δÞ be
the modulus of continuity on the finite interval ð0, y0 + 1� ⊂
ð0,∞Þ: Then, the following inequality exists:

K∗
m φ ; yð Þ − φ yð Þj j ≤ 3Nφ

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ

 !
y20 1 + y0ð Þ2

+ 2ωy0+1 φ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ y

2
0

s0
@

1
A,

ð35Þ

where Nφ is a constant only according as φ:

Proof. Now, let φ ∈ CBð0,∞Þ,0 < y ≤ y0, and h > y0 + 1:Then,
we can conclude that

φ hð Þ − φ yð Þj j ≤ φ hð Þj j + φ yð Þj j ≤ 3Nφ h − yð Þ2 1 + y0ð Þ2 ð36Þ

for h − y > 1: Then, again let φ ∈ CBð0,∞Þ, 0 < y ≤ y0: So, the
following inequality holds

φ hð Þ − φ yð Þj j ≤ ωy0+1 φ, h − yj jð Þ ≤ ωy0+1 φ, δð Þ 1 + 1
δ
h − yj j


 �
ð37Þ

for h ≤ y0 + 1: As a result, from the above inequalitiy, we

deduce that

φ hð Þ − φ yð Þj j ≤ 3Nφ h − yð Þ2 1 + y0ð Þ2 + ωy0+1 φ, δð Þ 1 + 1
δ
h − yj j


 �
ð38Þ

for 0 < y ≤ y0 and 0 < h <∞: Applying K∗
m and Cauchy-

Schwarz inequality to (38), we obtain

K∗
m φ ; yð Þ − φ yð Þj j ≤ 3NφK

∗
m h − yð Þ2 ; y� �

1 + y0ð Þ2

+ ωy0+1 φ, δð Þ 1 + 1
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∗

m h − yð Þ2 ; y� �q
 �

≤ 3Nφ

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ

 !
1 + y0ð Þ2

+ 2ωy0+1 φ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ


 �
y20

s0
@

1
A:

ð39Þ

By choosing δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððmk2 − k + 1Þ/ððmk + 1Þðmk − k + 1ÞÞÞy20

p
, we can conclude the proof.

Let

C2
B 0,∞ð Þ = φ ∈ CB 0,∞ð Þ: φ′, φ′′ ∈ CB 0,∞ð Þ

n o
, ð40Þ

with the norm

φk kC2
B 0,∞ð Þ = φk kCB 0,∞ð Þ + φ′

�� ��
CB 0,∞ð Þ + φ′′

�� ��
CB 0,∞ð Þ ð41Þ

also

φk kCB 0,∞ð Þ = sup
y∈ 0,∞ð Þ

φ yð Þj j ð42Þ

in [20].

Theorem 10. Let K∗
m be the operator defined in (4). Then, for

any φ ∈ C2
Bð0,∞Þ, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤ 1

2

ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
φk kC2

B 0,∞ð Þ, ð43Þ

where τ is K∗
mðψy,2 ; yÞ in Lemma 3.

Proof. Let φ ∈ C2
Bð0,∞Þ. When referring to the Taylor series,

obtain

φ hð Þ = φ yð Þ + φ′ yð Þ h − yð Þ + 1
2φ

′′ ξð Þ h − yð Þ2, ð44Þ

where ξ between y and h, from which it follows:

φ hð Þ − φ yð Þj j ≤N1 h − yj j + 1
2N2 h − yð Þ2, ð45Þ
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where

N1 = sup
y∈ 0,∞ð Þ

φ′ yð Þ�� �� = φ′
�� ��

CB 0,∞ð Þ ≤ φk kC2
B 0,∞ð Þ,

N2 = sup
y∈ 0,∞ð Þ

φ′′ yð Þ�� �� = φ′′
�� ��

CB 0,∞ð Þ ≤ φk kC2
B 0,∞ð Þ,

ð46Þ

because of (41). Thus, we have

φ hð Þ − φ yð Þj j ≤ h − yj j + 1
2 h − yð Þ2


 �
φk kC2

B 0,∞ð Þ: ð47Þ

Since

K∗
m φ ; yð Þ − φ yð Þj j = K∗

m φ hð Þ − φ yð Þ ; yð Þj j ≤ K∗
m φ hð Þ − φ yð Þj j ; yð Þ,

ð48Þ

and K∗
mðjh − yj ; yÞ ≤ K∗

mððh − yÞ2 ; yÞ1/2 = ffiffiffi
τ

p , we get

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m h − yj j ; yð Þ + 1
2K

∗
m h − yð Þ2 ; y� �
 �

φk kC2
B 0,∞ð Þ

≤
1
2
ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
φk kC2

B ; 0,∞ð Þ:

ð49Þ

The desired result is obtained.

The Peetre’s K-functional is expressed by

K∗
2 φ, δð Þ = infC2

B 0,∞ð Þ φ − uk kCB 0,∞ð Þ + δ uk kC2
B 0,∞ð Þ : u ∈ C

2
B 0,∞ð Þ

n o
:

ð50Þ

The second-order modulus of continuity is defined by

ω2 φ, δð Þ = sup
0<u<δ

sup
y∈ 0,∞ð Þ

φ y + 2uð Þ − 2φ y + uð Þ + φ uð Þj j ð51Þ

in [20]. The relation ω2 and K∗
2 is as follows:

K∗
2 φ, δð Þ ≤N ω2 φ ; δð Þ +min 1, δð Þ φk kCB 0,∞ð Þ

n o
ð52Þ

in [21].

Theorem 11. Let K∗
mð:;:Þ be the operator defined in (4). Then,

for any φ ∈ CBð0,∞Þ, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤ 2N ω2 φ ;

ffiffiffiffiffiffiffiffiffi
Δm,y

q� �
+min 1, Δm,y

� �
φk kCB 0,∞ð Þ

n o
,

ð53Þ

where N is a positive constant and Δm,y =
ffiffiffi
τ

p ð2 + ffiffiffi
τ

p Þ/2 and
τ = K∗

mðψy,2 ; yÞ:

Proof.We prove this by using Theorem 10. Let u ∈ C2
Bð0,∞Þ.

Since

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ − u ; yð Þj j + K∗
m φ ; yð Þ − u yð Þj j + φ yð Þ − u yð Þj j

≤ 2 φ − uk kCB 0,∞ð Þ +
1
2
ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
uk kC2

B 0,∞ð Þ

≤ 2 φ − uk kCB 0,∞ð Þ +
1
4
ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
uk kC2

B 0,∞ð Þ


 �
:

ð54Þ

By taking infimum over all u ∈ C2
Bð0,∞Þ on the right side

of the last inequality and by using (50), we get

K∗
m φ ; yð Þ − φ yð Þj j ≤ 2K∗

2 φ ;
ffiffiffi
τ

p 2 + ffiffiffi
τ

p� �
4


 �
: ð55Þ

This completes the proof, by using equation (52).

6. Pointwise Estimates

Let us look at some pointwise estimates of rates of conver-
gence of K∗

mðφ ; yÞ. At first, the relationship between the
local approximation and the local smoothness of the func-
tion is given. In this direction, let us give the following defi-
nitions. Let s ∈ ð0, 1� and Î ⊂ ð0,∞Þ: In this case, a function
φ ∈ CBð0,∞Þ can be called LipNφ

ðsÞ on Î if the following con-

dition holds:

φ vð Þ − φ yð Þj j ≤Nφ,s v − yj js, v ∈ 0,∞ð Þand y ∈ Î, ð56Þ

where Nφ,s is a constant that relies on φ and s mentioned
above.

Theorem 12. Let φ ∈ CBð0,∞Þ ∩ LipNφ
ðsÞ such that s and Î

given as above. In the circumstances, we give

K∗
m φ ; yð Þ − φ yð Þj j ≤Nφ,s

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ

 !s/2"

+ 2 d y, Î
� �� �si, y ∈ 0,∞ð Þ,

ð57Þ

where Nφ,s given above and dðy, ÎÞ is the distance between y

and Î. This distance is described as:

d y, Î
� �

= inf v − yj j, v ∈ Î�  ð58Þ

Proof. Let us define the closure of the set Î as €I. Then, one
can argue that at least one point v0 ∈€I occurs where

d y, Î
� �

= y − v0j j: ð59Þ

Then, due to the monotonicity properties of ðK∗
mÞm≥1, we
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deduce that

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ vð Þ − φ v0ð Þj j ; yð Þ + K∗
m φ yð Þ − φ v0ð Þj j ; yð Þ

≤Nφ,s K
∗
m v − v0j js ; yð Þ + y − v0j js½ �

≤Nφ,s K
∗
m v − yj js ; yð Þ + 2 y − v0j js½ �:

ð60Þ

Then, from the definition of Hölder’s inequality, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤Nφ,s K∗

m v − yj j2 ; y� �S/2 + 2 d y, Î
� �� �sh i

=Nφ,s
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ
 !S/2

+ 2 d y, Î
� �� �s2

4
3
5,

ð61Þ

which concludes the theorem.

Now, let us try to determine the local direct approxima-
tion of the new Gamma operator modification. Let us start

with the Lipschitz type maximum function of order s pre-
sented in [22] for this goal, that is,

ω
~
s φ, yð Þ = sup

0<v<∞, v≠y

φ vð Þ − φ yð Þj j
v − yj js , ð62Þ

where s ∈ ð0, 1� and y ∈ ð0,∞Þ:

Theorem 13. For φ ∈ CBð0,∞Þ and ω~
s ∈ ð0, 1�, the following

inequality holds:

K∗
m φ ; yð Þ − φ yð Þj j ≤ ω

~
s φ, yð ÞK∗

m
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ
 !s/2

ð63Þ

for y ∈ ð0,∞Þ:

2

0.1

0.2

0.3

0.4

0.5

4 6 8 10

Figure 1: Graphics of the K∗
m operator for k = 1/3, 1, 3, 30, respectively, andm = 10 is fixed (blue for k = 1/3, orange for k = 1, green for k = 3,

red for k = 30, and purple for φðyÞ).

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

Figure 2: Graphics of the K∗
m operator form = 10,20,60, respectively, and k = 3 is fixed (blue form = 10, orange form = 20, green form = 60,

and red for φðyÞ).
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Proof. Thanks to the definition of ω~
sðϕ, yÞ given above and

well-known Hölder inequality, we deduce that

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ vð Þ − φ yð Þj j ; yð Þ ≤ ω
~
s φ, yð ÞK∗

m v − yj js ; yð Þ
≤ ω

~
s φ, yð ÞK∗

m v − yj j2 ; y� �s/2
≤ ω

~
s φ, yð ÞK∗

m
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ
 !s/2

:

ð64Þ

As a result, the desired outcome is achieved.

Now, finally, let us consider the following Lipschitz type
space with two parameters, c, d > 0, such that

Lipc,dN sð Þ = φ ∈ C 0,∞ð Þ: φ vð Þ − φ yð Þj j ≤N
v − yj js

cy2 + dy + vð Þs/2
; y, v ∈ 0,∞ð Þ

 !

ð65Þ

introduced in [23] where s ∈ ð0, 1� and N is a positive
constant.

Theorem 14. For φ ∈ Lipc,dN ðsÞ and y ∈ ð0,∞Þ, then, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤N

mk2 − k + 1
� �

/ mk + 1ð Þ mk − k + 1ð Þð Þ� �
a2 yð Þ

cy2 + dy

" #
,

ð66Þ

where c, d > 0:

Proof. The proof is divided into two parts. For the first, we
use s = 1, which means

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ vð Þ − φ yð Þj j ; yð Þ,

≤NK∗
m

v − yj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cy2 + dy + 1

p
; y

 !
,

≤
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cy2 + dy
p K∗

m v − yj j ; yð Þ,

ð67Þ

for φ ∈ Lipc,dN ðsÞ and y ∈ ð0,∞Þ. We conclude that

K∗
m φ ; yð Þ − φ yð Þj j ≤ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cy2 + dy
p K∗

m v − yj j2 ; y� �� �1/2

≤N
mk2 − k + 1
� �

/ mk + 1ð Þ mk − k + 1ð Þð Þ� �
a2 yð Þ

cy2 + dy

" #1/2
,

ð68Þ

by using the well-known Cauchy-Schwarz inequality, which
validates the theory for s = 1: Then, let us consider s ∈ ð0, 1Þ:
For φ ∈ Lipc,dN ðsÞ and y ∈ ð0,∞Þ, we obtain that

K∗
m φ ; yð Þ − φ yð Þj j ≤ N

cy2 + dyð Þs/2
K∗

m v − yj js ; yð Þ: ð69Þ

We derive that

K∗
m φ ; yð Þ − φ yð Þj j ≤ N

cy2 + dyð Þs/2
K∗

m v − yj js ; yð Þ

≤
N

cy2 + dyð Þs/2
K∗

m v − yj j ; yð Þð Þs
ð70Þ

with the help of the well-known Hölder inequality. Finally,
we have

K∗
m φ ; yð Þ − φ yð Þj j ≤ N

cy2 + dyð Þs/2
K∗

m v − yj j2 ; y� �� �s/2

≤N
mk2 − k + 1
� �

/ mk + 1ð Þ mk − k + 1ð Þð Þ� �
a2 yð Þ

cy2 + dy

" #s/2
,

ð71Þ

which completes the proof by applying the well-known
Cauchy-Schwarz inequality.

For the case of c = 1 and d = 0, we have the following
corollary.

Corollary 15. The local estimate in parametric Lipschitz
space is obtained for special fixed parameters c = 1 and d =
0.

K∗
m φ ; yð Þ − φ yð Þj j ≤N

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ

 !
ð72Þ

for φ ∈ Lip1,0N ðsÞ and y ∈ ð0,∞Þ:

7. Numerical Example

In this section of the article, we provide some numerical
examples to verify the rates of convergence of K∗

mðφ ; yÞ in
two dimensions (m = 10 is fixed for Figure 1 and k = 3 is
fixed for Figure 2). In our first example, we compare the
operator K∗

mðφ ; yÞ with the classical Gamma operator.
In this example, K∗

mðφ ; yÞ and φðyÞ = y2e−y applied for
φ : ½0, 10�⟶ ½0,∞Þ:

In Figure 1, it is seen that the operator puts closer to the
function as the value of k gets larger (m = 10 is fixed). In
Figure 2, it is seen that the operator puts closer to the func-
tion as the value of m gets larger (k = 3 is fixed).

8. Concluding Remarks

We have defined a new form of Gamma operator by consid-
ering k-Gamma function. With the operator defined, the
conditions of the Korovkin theorem are completed. Later,
Voronovskaya type theorem, weighted approximation, the
rates of convergence, and pointwise estimates are obtained.
Finally, we give numerical example to confirm its
approximation.
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