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This paper discusses the controllability of continuous-time linear fractional systems with control delay. The Atangana-Baleanu
fractional derivative with the Caputo approach is used. First, the solution expression for a linear fractional system is obtained.
Then, the corresponding fractional delay controllability Gramian matrix is defined, and its non-singularity as necessary and
sufficient conditions for the controllability is proved. Finally, another equivalent condition based on the matrix rank formed by
the coefficients matrices of the original system is provided that is much easier to check.

1. Introduction

Fractional calculus, with its long-memory property, is an
excellent tool for modeling systems. In fact, some dynamic
processes in many practical systems (biological, electrochemi-
cal, viscoelastic, etc.) are fractional [1, 2]. Fractional-order
delay differential equations are applicable for establishing a
very realistic model of some processes and systems with mem-
ory. The achievements of many researchers about the occur-
rence of delay in practical systems are presented in [3–5].

Controllability, as one of the dynamic properties of frac-
tional systems, plays a major role in modern control theory
and engineering. Controllability of linear systems is estab-
lished in [6]. Balachandran et al. [7] obtained sufficient condi-
tions for the controllability of nonlinear fractional dynamical
systems. The necessary and sufficient conditions for global rel-
ative controllability of linear fractional systems containing
both lumped constant delay in state variables and distributed
delays in admissible controls are presented by Klamka [8].

The most well-known fractional derivatives are Riemann-
Liouville and Caputo [9, 10]. The other fractional derivatives
that look like the Riemann-Liouville and Caputo ones are pre-
sented in [11, 12]. The aforementioned operators with singular
kernels have difficulties in the management of many physical
phenomena. In 2015, Caputo and Fabrizio presented a new
definition of fractional differential operator with exponential
kernel [13]. Atangana and Baleanu suggested a generalized

fractional derivative with a non-singular kernel containing
theMittag-Leffler function, in 2016 [14]. In [15], some control-
lability criteria of fractional systems involving the Atangana-
Baleanu fractional derivative in Caputo sense are provided.

In the current study, we investigate the controllability of
linear fractional systems with control delay

ABCD
α
x tð Þ = Ax tð Þ + Bu tð Þ + Cu t − hð Þ, t ≥ 0,

x 0ð Þ = x0,
u tð Þ = υ tð Þ,−h ≤ t ≤ 0,

ð1Þ

where ABCDα
is the Atangana-Baleanu fractional derivative

using the Caputo approach of order 0 < α < 1; xðtÞ ∈ℝn is a
state vector; uðtÞ ∈ℝm is a control vector; A ∈ℝn×n, B, C ∈
ℝn×m are constant matrices; h > 0 is the time control delay;
and υðtÞ is the initial control function. The controllability of
fractional systems with delay in control is investigated by
Wei [16]. In [17], the constrained controllability of linear frac-
tional control systems with multiple delays in control is dis-
cussed. The controllability of linear fractional systems with
multiple variable delays and distributed delay in admissible
control under Caputo derivative are analyzed by Klamka [18].

The main novelties of this paper are that we present the
necessary and sufficient conditions for the controllability of
linear fractional systems with control delay under the
Atangana-Baleanu fractional derivative using the Caputo
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approach. We show that these conditions are equivalent to
the non-singularity of the controllability Gramian matrix
and the full-rank property of a suitably defined matrix.

The following are the major contributions of the paper:

(i) The solution expression of continuous-time linear
fractional systems with control delay, involving the
Atangana-Baleanu derivative using the Caputo
approach, is obtained

(ii) The fractional delay controllability Gramian matrix
is defined to deal with the controllability problem.
We also show that its non-singularity is equivalent
to the controllability of described system

(iii) The control uðtÞ, which steers the considered sys-
tem from any admissible initial state and initial con-
trol to any state, is introduced

(iv) Another controllability criterion based on the rank
of the matrix K is provided in Theorem 13

The following notations will be used throughout this
paper. Let A ∈ℝn×n. The symbol A∗ is used for the transpose
of matrix A. Assuming that I − ð1 − αÞA is non-singular, we
set Â = ðI − ð1 − αÞAÞ−1. The column space and the null space
of matrix A are denoted as Im ðAÞ and Ker ðAÞ, respectively.

The structure of this study is as follows: Section 2 is ded-
icated to a brief overview of fractional calculus. In Section 3,
some controllability criteria of a linear fractional system with
control delay are examined. Finally, a brief conclusion is
provided in Section 4.

2. Preliminaries

Let n − 1 < α ≤ n, α ∈ℝ+, n ∈ℕ and g be a suitable function.
In what follows, we recall some basic concepts of fractional
calculus. For more details, see [9, 14, 19–23].

Definition 1. The Riemann-Liouville fractional integral and
derivative of order α of g are given by

RL
α I

α
t g tð Þ = 1

Γ αð Þ
ðt
a
t − θð Þα−1g θð Þdθ,

RL
α D

α
t g tð Þ = 1

Γ n − αð Þ
d
dt

� �nðt
a

g θð Þ
t − θð Þα+1−n

dθ:

ð2Þ

For 0 < α < 1, the Riemann-Liouville fractional derivative
of order α of g is

RL
α D

α
t g tð Þ = 1

Γ 1 − αð Þ
d
dt

ðt
a

g θð Þ
t − θð Þα dθ: ð3Þ

Definition 2. The Caputo fractional derivative of order α of g
is defined as

C
αD

α

t g tð Þ = 1
Γ n − αð Þ

ðt
a

g nð Þ θð Þ
t − θð Þα+1−n

dθ: ð4Þ

When 0 < α < 1, the Caputo fractional derivative of order
α of g can be written as

C
αD

α

t g tð Þ = 1
Γ 1 − αð Þ

ðt
a

g′ θð Þ
t − θð Þα dθ: ð5Þ

Lemma 3. The following equality holds true for Convolution
operator in Riemann-Liouville sense:

RL
0 D

α

t

ðt
0
ϕ t − θð Þφ θð Þdθ =

ðt
0
φ t − θð ÞRL0 D

α

θϕ θð Þdθ + φ tð Þ lim
θ⟶0+

RL
0 I

1−α
θ ϕ θð Þ:

ð6Þ

Moreover, if gð0Þ = 0, then RL
0 Dα

t ðgðtÞÞ = C
0D

α
t ðgðtÞÞ.

Lemma 4. Let the function gðtÞ has the Laplace transform,
then the Laplace transform of the Caputo fractional deriva-
tive is

L C
0D

α

t g tð Þ
� �

sð Þ = sαL g tð Þð Þ sð Þ − 〠
n−1

k=0
sα−k−1g kð Þ 0ð Þ, n − 1 < α ≤ n:

ð7Þ

For 0 < α ≤ 1, the preceding equation becomes

L C
0D

α
t g tð Þ

� �
sð Þ = sαL g tð Þð Þ sð Þ − sα−1g 0ð Þ: ð8Þ

Definition 5. The well-known Mittag-Leffler function with
two parameters is defined as

Eα,β zð Þ = 〠
∞

j=0

zj

Γ αj + βð Þ , α > 0, β > 0ð Þ: ð9Þ

Lemma 6. Let Re ðsÞ > jaj1/α, then

L tβ−1Eα,β ±atαð Þ
� �

sð Þ = sα−β

sα ∓ a
: ð10Þ

Lemma 7. Let β > 0 and ν > 0, then

1
Γ νð Þ

ðt
0
t − θð Þν−1Eα,β λθαð Þθβ−1dθ = tβ+ν−1Eα,β+ν λtαð Þ: ð11Þ

For the matrix Mittag-Leffler function, similar equations
are provided.

Definition 8. The Atangana-Baleanu fractional derivative
using the Caputo approach of g ∈H1ða, bÞ, b > a, and α ∈ ½
0, 1� is given by

ABC
a D

α

t g tð Þ = B αð Þ
1 − α

ðt
a
g′ θð ÞEα −α

t − θð Þα
1 − α

� �
dθ, ð12Þ

where the normalization function BðαÞ is satisfied Bð0Þ = B
ð1Þ = 1. Throughout this paper, BðαÞ = 1.
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Lemma 9. Let the function gðtÞ has the Laplace transform,
then the Laplace transform of the Atangana-Baleanu frac-
tional derivative in Caputo sense is

L ABC
0 D

α
t g tð Þ

� �
sð Þ = B αð Þ

1 − α

sαL g tð Þð Þ sð Þ − sα−1g 0ð Þ
sα + α/1 − αð Þ : ð13Þ

For brevity’s sake, CDα
and ABCDα

are used instead of C0D
α
t

and ABC
0 D

α
t , respectively.

3. Controllability Problem

In this section, we firstly present the solution expression of
system (1). Then, defining the controllability Gramian
matrix, the necessary and sufficient conditions for the con-
trollability of this system are established.

Theorem 10. Let the initial conditions be xð0Þ = x0 ∈ℝn, uðtÞ
∈ℝm, and there exist CDαuðθÞ and CDα

υðθÞ. The solution of
linear fractional system with control delay (1) is

where

Ψα,β A, tð Þ = 〠
∞

j=0

Ajtαj+β−1

Γ αj + βð Þ = tβ−1 〠
∞

j=0

Ajtα j

Γ αj + βð Þ = tβ−1Eα,β Atαð Þ: ð15Þ

Proof. Taking Laplace transform of system (1), we have

sαL x tð Þð Þ sð Þ − sα−1x 0ð Þ
sα 1 − αð Þ + α

= AL x tð Þð Þ sð Þ + BL u tð Þð Þ sð Þ + CL u t − hð Þð Þ sð Þ,

ð16Þ

which can be rewritten as

I − 1 − αð ÞAð ÞsαL x tð Þð Þ sð Þ − αAL x tð Þð Þ sð Þ
= sα−1x0 + 1 − αð ÞBsαL u tð Þð Þ sð Þ
+ αBL u tð Þð Þ sð Þ + 1 − αð ÞCsαL u t − hð Þð Þ sð Þ
+ αCL u t − hð Þð Þ sð Þ:

ð17Þ

Then, pre-multiplying both sides of (17) by the matrix Â
gives

sαI − αÂA
� �

L x tð Þð Þ sð Þ = sα−1Âx0 + 1 − αð ÞÂBsαL u tð Þð Þ sð Þ
+ αÂBL u tð Þð Þ sð Þ + 1 − αð ÞÂCsαL u t − hð Þð Þ sð Þ
+ αÂCL u t − hð Þð Þ sð Þ:

ð18Þ

The above equation can be written as

L x tð Þð Þ sð Þ = sαI − αÂA
� �−1

sα−1Âx0 + 1 − αð Þ sαI − αÂA
� �−1

ÂBsαL u tð Þð Þ sð Þ
+ α sαI − αÂA

� �−1
ÂBL u tð Þð Þ sð Þ

+ 1 − αð Þ sαI − αÂA
� �−1

ÂCsαL u t − hð Þð Þ sð Þ
+ α sαI − αÂA

� �−1
ÂCL u t − hð Þð Þ sð Þ:

ð19Þ

By adding and subtracting ð1 − αÞðsαI − αÂAÞ−1ÂBsα−1u
ð0Þ and ð1 − αÞðsαI − αÂAÞ−1ÂCsα−1uð−hÞ, we have

L x tð Þð Þ sð Þ = sαI − αÂA
� �−1

sα−1Âx0

+ 1 − αð Þ sαI − αÂA
� �−1

ÂB sαL u tð Þð Þ sð Þ − sα−1u 0ð Þ� �
+ 1 − αð Þ sαI − αÂA

� �−1
ÂBsα−1u 0ð Þ

+ α sαI − αÂA
� �−1

ÂBL u tð Þð Þ sð Þ
+ 1 − αð Þ sαI − αÂA

� �−1
ÂC sαL u t − hð Þð Þ sð Þ − sα−1u −hð Þ� �

+ 1 − αð Þ sαI − αÂA
� �−1

ÂCsα−1u −hð Þ
+ α sαI − αÂA

� �−1
ÂCL u t − hð Þð Þ sð Þ:

ð20Þ

From Lemma 4 and taking the inverse Laplace transform,
we obtain

x tð Þ = L−1 sαI − αÂA
� �−1

sα−1
� �

Âx0

+ 1 − αð ÞL−1 sαI − αÂA
� �−1

ÂBL CDαu tð Þ� �� �
+ 1 − αð ÞL−1 sαI − αÂA

� �−1
ÂBsα−1

� �
u 0ð Þ

+ αL−1 sαI − αÂA
� �−1

ÂBL u tð Þð Þ sð Þ
� �

+ 1 − αð ÞL−1 sαI − αÂA
� �−1

ÂCL CDαu t − hð Þ� �� �
+ 1 − αð ÞL−1 sαI − αÂA

� �−1
ÂCsα−1

� �
u −hð Þ

+ αL−1 sαI − αÂA
� �−1

ÂCL u t − hð Þð Þ sð Þ
� �

:

ð21Þ

Finally, applying the Convolution theorem, Lemma 6 and
equation (21), we get

x tð Þ =Ψα,1 αÂA, t
� �

x 0ð Þ +
ðt−h
0

Ψα,α αÂA, t − θ
� �

ÂB +Ψα,α αÂA, t − θ − h
� �

ÂC
� �

× αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ +

ðt
t−h

Ψα,α αÂA, t − θ
� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

+
ð0
−h
Ψα,α αÂA, t − θ − h

� �
ÂC αυ θð Þ + 1 − αð ÞCDα

υ θð Þ
� �

dθ,

ð14Þ
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x tð Þ = Eα,1 αÂAtα
� �

Â x0 + 1 − αð ÞBu 0ð Þ + 1 − αð ÞCu −hð Þð Þ

+
ðt
0
t − θð Þα−1Eα,α αÂA t − θð Þα� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

+
ðt
0
t − θð Þα−1Eα,α αÂA t − θð Þα� �

ÂC αu θ − hð Þ + 1 − αð ÞCDα
u θ − hð Þ

� �
dθ

= Eα,1 αÂAtα
� �

Â x0 + 1 − αð ÞBu 0ð Þ + 1 − αð ÞCu −hð Þð Þ

+
ðt
0
t − θð Þα−1Eα,α αÂA t − θð Þα� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

+
ðt−h
−h

t − θ − hð Þα−1Eα,α αÂA t − θ − hð Þα� �
ÂC αu θð Þ + 1 − αð ÞCDα

u θð Þ
� �

dθ:

ð22Þ

Since Ax0 + Buð0Þ + Cuð−hÞ = 0, we have Âðx0 + ð1 − αÞB
uð0Þ + ð1 − αÞCuð−hÞÞ = x0, and the equation (22) result in (14).

Definition 11. The system (1) is controllable on ½0, t1�, if for
every admissible initial state x0, initial control uðtÞ, and x1,
there exists a control uðtÞ ∈ℝm defined on ½0, t1� such that
the corresponding solution of (1) satisfies xðt1Þ = x1.

Corresponding to system (1), the controllability Gramian
matrix is described as

Wt1
=
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �∗

dθ

+
ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB
� �

Ψα,α αÂA, t1 − θ
� �

ÂB
� �∗

dθ:

ð23Þ

Now, we present the main results of this paper in two fol-
lowing theorems.

Theorem 12. The linear fractional system with control delay
(1) is controllable on ½0, t1�, if and only if the controllability
Gramian matrix Wt1

is non-singular.

Proof. First, to prove the sufficiency, suppose that Wt1
is

non-singular.
Let

where γ = α/ð1 − αÞ. It is demonstrated that uðtÞ has the
Caputo derivative and satisfies in

To prove this, first 0 ≤ t ≤ t1 − h is considered. Since uð0Þ
= 0, then from Lemma 3, RLDαðuðtÞÞ = CDαðuðtÞÞ. Taking
Caputo fractional derivative of uðtÞ, we have

CD
α
u tð Þð Þ = CD

α 1
1 − α

ðt
0
B∗Â

∗
Ψα,α −γ, t − θð ÞΨα,α αA∗Â

∗, t1 − θ
� �

ydθ
� �

+ CD
α 1

1 − α

ðt
0
C∗Â

∗
Ψα,α −γ, t − θð ÞΨα,α αA∗Â

∗, t1 − θ − h
� �

ydθ
� �

= B∗Â
∗

1 − α

ðt
0
Ψα,α αA∗Â

∗, t1 − t − θð Þ
� �

RLD
α
Ψα,α −γ, θð Þydθ

+ B∗Â
∗

1 − α
Ψα,α αA∗Â

∗, t1 − t
� �

lim
θ⟶0+

RLI
1−α

Ψα,α −γ, θð Þy

+ C∗Â
∗

1 − α

ðt
0
Ψα,α αA∗Â

∗, t1 − t − θð Þ − h
� �

RLD
α
Ψα,α −γ, θð Þydθ

+ C∗Â
∗

1 − α
Ψα,α αA∗Â

∗, t1 − t − h
� �

lim
θ⟶0+

RLI
1−α

Ψα,α −γ, θð Þy,

ð26Þ

where y =W−1
t1
ðx1 −Ψα,1ðαÂA, t1Þx0Þ. Following Lemma 7,

we get

RLI
1−α

Ψα,α −γ, θð Þ = Eα,1 −γθαð Þ, ð27Þ

RLD
α
Ψα,α −γ, θð Þ = d

dθ
Eα,1 −γθαð Þð Þ: ð28Þ

Equation (28) is easily equivalent to

RLD
α
Ψα,α −γ, θð Þ = d

dθ
Eα,1 −γθαð Þð Þ = d

dθ
〠
∞

j=0

−γθαð Þj
Γ jα + 1ð Þ

= −γθα−1 〠
∞

j=0

−γθαð Þj
Γ jα + αð Þ = −γθα−1Eα,α −γθαð Þ:

ð29Þ

The equations (26), (27), and (29) result in

u tð Þ =

1
1 − α

ðt
0
Ψα,α −γ, t − θð Þ B∗Â

∗
Ψα,α αA∗Â

∗, t1 − θ
� �

+ C∗Â
∗
Ψα,α αA∗Â

∗, t1 − θ − h
� �� �

×W−1
t1

x1 −Ψα,1 αÂA, t1
� �

x0
� �

dθ, 0 ≤ t ≤ t1 − h,

B∗Â
∗

1 − α

ðt
0
Ψα,α −γ, t − θð ÞΨα,α αA∗Â

∗, t1 − θ
� �

×W−1
t1

x1 −Ψα,1 αÂA, t1
� �

x0
� �

dθ, t1 − h < t ≤ t1,

0, −h ≤ t ≤ 0,

8>>>>>><
>>>>>>:

ð24Þ

αu tð Þ + 1 − αð ÞCDα
u tð Þ =

Ψα,α αÂA, t1 − t
� �

ÂB +Ψα,α αÂA, t1 − t − h
� �

ÂC
� �∗ ×W−1

t1
x1 −Ψα,1 αÂA, t1

� �
x0

� �
, 0 ≤ t ≤ t1 − h,

B∗Â
∗
Ψα,α αA∗Â

∗, t1 − t
� �

W−1
t1

x1 −Ψα,1 αÂA, t1
� �

x0
� �

, t1 − h < t ≤ t1,

0, −h ≤ t ≤ 0:

8>>><
>>>:

ð25Þ
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Now, from (24) and (30), we get the result for 0 ≤ t ≤ t1
− h. Similarly, the desired results for t1 − h < t ≤ t1 and −h
≤ t ≤ 0 are achieved.

From (14) and (25), we obtain

which demonstrates that system (1) is controllable.
Now, to prove the necessity, suppose that system (1) is con-

trollable. IfWt1
is singular, then a vector y ≠ 0 exists such that

y∗Wt1
y = 0, ð32Þ

that is

0 = y∗
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �∗

dθy

+ y∗
ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB
� �

Ψα,α αÂA, t1 − θ
� �

ÂB
� �∗

dθy:

ð33Þ

This equation is clearly equivalent to

0 =
ðt1−h
0

y∗ Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� ��� ��2dθ

+
ðt1
t1−h

y∗Ψα,α αÂA, t1 − θ
� �

ÂB
�� ��2dθ:

ð34Þ

It follows from the above equation

0 = y∗ Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

, 0 ≤ θ ≤ t1 − h,

0 = y∗Ψα,α αÂA, t1 − θ
� �

ÂB, t1 − h < θ ≤ t1:

(

ð35Þ

Let x0 = ðΨα,1ðαÂA, t1ÞÞ−1y. According to the assump-
tion of controllability, a control uðtÞ exists on ½0, t1� such
that xðt1Þ = 0. Consequently,

0 =Ψα,1 αÂA, t1
� �

Ψα,1 αÂA, t1
� �� �−1

y

+
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

+
ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ:

ð36Þ

CD
α
u tð Þð Þ = −

γB∗Â
∗

1 − α

ðt
0
Ψα,α αA∗Â

∗, t1 − t − θð Þ
� �

Ψα,α −γ, θð Þydθ + B∗Â
∗

1 − α
Ψα,α αA∗Â

∗, t1 − t
� �

y

−
γC∗Â

∗

1 − α

ðt
0
Ψα,α αA∗Â

∗, t1 − t − θð Þ − h
� �

Ψα,α −γ, θð Þydθ + C∗Â
∗

1 − α
Ψα,α αA∗Â

∗, t1 − t − h
� �

y

= −
γ

1 − α

ðt
0
Ψα,α −γ, θð Þ B∗Â

∗
Ψα,α αA∗Â

∗, t1 − t − θð Þ
� �

+ C∗Â
∗
Ψα,α αA∗Â

∗, t1 − t − θð Þ − h
� �� �

ydθ

+ 1
1 − α

B∗Â
∗
Ψα,α αA∗Â

∗, t1 − t
� �

+ C∗Â
∗
Ψα,α αA∗Â

∗, t1 − t − h
� �� �

y:

ð30Þ

x t1ð Þ =Ψα,1 αÂA, t1
� �

x0 +
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ +

ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ,

=
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �∗

×W−1
t1

x1 −Ψα,1 αÂA, t1
� �

x0
� �

dθ +
ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB
� �

Ψα,α αÂA, t1 − θ
� �

ÂB
� �∗

×W−1
t1

x1 −Ψα,1 αÂA, t1
� �

x0
� �

dθ, =Ψα,1 αÂA, t1
� �

x0 +Wt1
W−1

t1
x1 −Ψα,1 αÂA, t1

� �
x0

� �
= x1,

ð31Þ
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Then,

It follows from the equations (35) and (37) that y∗y = 0.
So, a contradiction is obtained. Therefore,Wt1

is non-singular.

Theorem 13. The linear fractional system with control delay
(1) is controllable on ½0, t1�, if and only if the matrix

K = BAB⋯ An−1B C AC⋯ An−1C
	 


, ð38Þ

is full-rank.

Proof. Suppose

K̂ ≔ ÂB ÂA
� �

ÂB⋯ ÂA
� �n−1

ÂB ÂC ÂA
� �

ÂC⋯ ÂA
� �n−1

ÂC
h i

: ð39Þ

We prove that Im ðK̂Þ = Im ðWt1
Þ. To accomplish this,

consider the set of reachable states of system (1) as

Rt = η ∈ Rn : there exists control u such that x tð Þ = ηf g,
ð40Þ

from initial conditions x0 = 0 and uðtÞ = υðtÞ = 0, −h ≤ t ≤ 0.
We prove that for every t > 0, Rt = Im ðK̂Þ = Im ðWt1

Þ. The
proof is in three steps.

The first step is to demonstrate that Rt ⊂ Im ðK̂Þ. Let η
∈ Rt , then a control uðtÞ exists such that

η =
ðt−h
0

Ψα,α αÂA, t − θ
� �

ÂB +Ψα,α αÂA, t − θ − h
� �

ÂC
� �

× αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

+
ðt
t−h

Ψα,α αÂA, t − θ
� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ,

ð41Þ

which is equal to

η =
ðt
0
Ψα,α αÂA, t − θ

� �
ÂB αu θð Þ + 1 − αð ÞCDα

u θð Þ
� �

dθ

+
ðt−h
0

Ψα,α αÂA, t − θ − h
� �

ÂC αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

= lim
L⟶∞

〠
L

j=0
ÂA
� �j

ÂBβj + ÂCγj
� �

,

ð42Þ

where

βj =
ðt
0

αj t − θð Þ j+1ð Þα−1

Γ αj + αð Þ αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ,

γj =
ðt−h
0

αj t − θ − hð Þ j+1ð Þα−1

Γ αj + αð Þ αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ,

ð43Þ

for j = 0, 1,⋯, L.
Equation (42) can be written as the following product:

η = lim
L⟶∞

ÂB ÂA
� �

ÂB⋯ ÂA
� �L

ÂB ÂC ÂA
� �

ÂC⋯ ÂA
� �L

ÂC
h i

β0

β1

⋮

βL

γ0

γ1

⋮

γL

2
666666666666666664

3
777777777777777775

:

ð44Þ

By Cayley-Hamilton theorem, η ∈ Im ðK̂Þ. Therefore, Rt

⊂ Im ðK̂Þ.
The second step is to demonstrate that Im ðK̂Þ ⊂ Im Wt1

.

We prove equivalently that ðIm ðWt1
ÞÞ⊥ ⊂ ðIm ðK̂ÞÞ⊥, where

ðIm ðWt1
ÞÞ⊥ and ðIm ðK̂ÞÞ⊥ are the orthogonal comple-

ments of Im ðWt1
Þ and Im ðK̂Þ, respectively. We demon-

strate that if η ∈ ðIm ðWt1
ÞÞ⊥ = Ker ðW∗

t1
Þ = Ker ðWt1

Þ, then
η ∈ ðIm ðK̂ÞÞ⊥. Let η ∈ Ker ðWt1

Þ, then

η∗Wt1
η = 0, ð45Þ

that is

0 =
ðt1−h
0

η∗ Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� ��� ��2dθ

+
ðt1
t1−h

η∗Ψα,α αÂA, t1 − θ
� �

ÂB
�� ��2dθ:

ð46Þ

0 = y∗y +
ðt1−h
0

y∗ Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ +

ðt1
t1−h

y∗Ψα,α αÂA, t1 − θ
� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ:

ð37Þ
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The above equation is clearly equivalent to

For the second equation of (47) with y = ðt1 − θÞα, we have

η∗ 〠
∞

j=0

αj ÂA
� �j

yj

Γ αj + αð Þ ÂB = 0: ð48Þ

Taking derivative j times ðj = 0, 1, 2,⋯,n − 1Þ, with respect
to y and taking the limit y⟶ 0+, it follows

η∗ ÂA
� �j

ÂB = 0, j = 0, 1,⋯, n − 1: ð49Þ

Then when 0 ≤ θ ≤ t1 − h, from the Cayley-Hamilton the-
orem, we have

η∗Ψα,α αÂA, t1 − θ
� �

ÂB = 〠
∞

j=0

αj t1 − θð Þ j+1ð Þα−1

Γ αj + αð Þ η∗ ÂA
� �j

ÂB

= 〠
n−1

j=0

αj t1 − θð Þ j+1ð Þα−1

Γ αj + αð Þ η∗ ÂA
� �j

ÂB = 0:

ð50Þ

The preceding equation and the first equation of (47)
imply that

0 = η∗Ψα,α αÂA, t1 − θ − h
� �

ÂC

= η∗ 〠
∞

j=0

αj ÂA
� �j

t1 − θ − hð Þ j+1ð Þα−1

Γ αj + αð Þ ÂC⇒ η∗ 〠
∞

j=0

αj ÂA
� �j

t1 − θ − hð Þjα
Γ αj + αð Þ ÂC = 0:

ð51Þ

Setting y = ðt1 − θ − hÞα, we can write

η∗ 〠
∞

j=0

αj ÂA
� �j

yj

Γ αj + αð Þ ÂC = 0: ð52Þ

As mentioned procedure, differentiating j times with
respect to y and taking the limit y⟶ 0+ result in

η∗ ÂA
� �j

ÂC = 0, j = 0, 1,⋯, n − 1: ð53Þ

From (49) and (53), we obtain

η∗ ÂB ÂA
� �

ÂB⋯ ÂA
� �n−1

ÂB ÂC ÂA
� �

ÂC⋯ ÂA
� �n−1

ÂC
h i

= η∗K̂ = 0⇒ K̂
∗
η = 0:

ð54Þ

It follows that η ∈ Ker ðK̂∗Þ = ðIm ðK̂ÞÞ⊥: Therefore, Im
ðK̂Þ ⊂ Im ðWt1

Þ.
The third step is to demonstrate that Im ðWt1

Þ ⊂ Rt . Let
x1 ∈ Im ðWt1

Þ, then a vector y exists such that x1 =Wt1
y.

Let

It is possible to show that DαuðtÞ exists and

0 = η∗ Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

, 0 ≤ θ ≤ t1 − h,

0 = η∗Ψα,α αÂA, t1 − θ
� �

ÂB, t1 − h < θ ≤ t1:

(
ð47Þ

u tð Þ =

1
1 − α

ðt
0
Ψα,α −β, t − θð Þ B∗Â

∗
Ψα,α αA∗Â

∗, t1 − θ
� �

+ C∗Â
∗
Ψα,α αA∗Â

∗, t1 − θ − h
� �� �

ydθ, 0 ≤ t ≤ t1 − h,

B∗Â
∗

1 − α

ðt
0
Ψα,α −β, t − θð ÞΨα,α αA∗Â

∗, t1 − θ
� �

ydθ, t1 − h < t ≤ t1,

0, −h ≤ t ≤ 0:

8>>>>>><
>>>>>>:

ð55Þ

αu tð Þ + 1 − αð ÞCDαu tð Þ =
Ψα,α αÂA, t1 − t

� �
ÂB +Ψα,α αÂA, t1 − t − h

� �
ÂC

� �∗
y, 0 ≤ t ≤ t1 − h,

B∗Â
∗
Ψα,α αA∗Â

∗, t1 − t
� �

y, t1 − h < t ≤ t1,

0, −h ≤ t ≤ 0:

8>>><
>>>:

ð56Þ
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Then, from Theorem 10 with xð0Þ = 0, we obtain

x t1ð Þ =
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ

+
ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB αu θð Þ + 1 − αð ÞCDα
u θð Þ

� �
dθ,

=
ðt1−h
0

Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �

× Ψα,α αÂA, t1 − θ
� �

ÂB +Ψα,α αÂA, t1 − θ − h
� �

ÂC
� �∗

ydθ

+
ðt1
t1−h

Ψα,α αÂA, t1 − θ
� �

ÂB
� �

Ψα,α αÂA, t1 − θ
� �

ÂB
� �∗

ydθ,

=Wt1
y = x1:

ð57Þ

It follows that x1 ∈ Rt . Therefore, Im ðWt1
Þ ⊂ Rt .

Taking into account the three preceding steps, Im ðK̂Þ
= Im ðWt1

Þ is concluded. Since, the matrix Â is commuta-
tive with A, we can write

K̂ =
K1 0
0 K1

" #
K , ð58Þ

where

K1 =

Â 0 ⋯ 0
0 Â

2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Â
n

2
666664

3
777775: ð59Þ

So, Im ðKÞ = Im ðK̂Þ = Im ðWt1
Þ. Therefore, the matrix K

is full-rank if and only if the Gramian matrix Wt1
is non-

singular. Now, from Theorem 12, the desired result is achieved.

4. Conclusion

In this paper, we investigated the controllability problem of
linear fractional system with delay in control, involving the
Atangana-Baleanu derivative in Caputo sense. The solution
expression of such a system has been stated. Then, we intro-
duced the fractional delay controllability Gramian matrix.
According to the controllability Gramian matrix, the neces-
sary and sufficient conditions for the controllability of a lin-
ear fractional system with control delay have been presented.
Moreover, the desired control has been provided. We also
established another controllability criterion based on the
rank of the matrix presented in Theorem 13.

As future recommendations, the controllability of semi-
linear or generally nonlinear fractional systems with differ-
ent types of delays not only in admissible controls but also
in the state variables under the Atangana-Baleanu derivative
can be considered. Another important issue to handle is the

controllability of fractional systems with different orders of
derivatives under the Atangana-Baleanu derivative.
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