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In this paper, we obtain the novel exact traveling wave solutions in the form of trigonometric, hyperbolic and
exponential functions for the nonlinear time fractional generalized reaction Duffing model and density dependent fractional
diffusion-reaction equation in the sense of beta-derivative by using three fertile methods, namely, Generalized tanh (GT)
method, Generalized Bernoulli (GB) sub-ODE method, and Riccati-Bernoulli (RB) sub-ODE method. The derived solutions to
the aforementioned equations are validated through symbolic soft computations. To promote the vital propagated features;
some investigated solutions are exhibited in the form of 2D and 3D graphics by passing on the specific values to the parameters
under the confine conditions. The accomplished solutions show that the presented methods are not only powerful mathematical
tools for generating more solutions of nonlinear time fractional partial differential equations but also can be applied to
nonlinear space-time fractional partial differential equations.

1. Introduction

Soliton theory has much importance because many equations
of mathematical physics have the solution of soliton type.
Waves are generated when some disturbance occurs in the
phenomena. Soliton interaction takes place when two or more
soliton come close to each other. Solitons exhibit particle-like
properties because the energy is—at any instant—confined to
a limited region of space. The most important technical appli-
cation of the soliton is that these are used in the optical fibers
to carry the digital information. In electromagnetic soliton
studies, the transverse electromagnetic wave travels between
two strips of super conducting metal.

Fractional calculus has captured the interest of several
scholars during the past two centuries. Multiple nonlinear

aspects, biological processes, fluid mechanics, chemical
processes, etc., are modelled using them. Fractional order
partial differential equations (PDEs) serve as the generali-
zation of PDEs in the traditional integer-order. The litera-
ture contains several dentitions of fractional derivatives,
such as the Hadamard derivative (1892) [1], the Weyl
derivative [2], Riesz derivative [3], He’s fractional derivative
[4], Local derivative [5], Riemann-Liouville [6, 7], Abel-
Riemann derivative [8], Caputo [9], Caputo-Fabrizio [10],
Atangana-Baleanu derivative in the context of Caputo [11],
the conformable fractional derivative [12, 13], and the new
truncated M-fractional derivative [14]. Atangana et al. in
[15] have recently created the new beta-derivative which
satisfies a lot of characteristics that have been considered as
limitations for the fractional derivatives. This derivative has
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some appealing consequences in diverse areas including fluid
mechanics, optical physics, chaos theory, biological models,
disease analysis, circuit analysis, and others.

Nonlinear fractional differential equations (NLFDEs)
occur more frequently in engineering applications and dif-
ferent research areas [16–20]. Then, many real-life problems
can be modeled by ordinary or partial differential equations
involving the derivatives of fractional order. In order to bet-
ter understand and apply these physical phenomena in prac-
tical scientific research, it is important to find their exact
solutions. Finding exact solutions of most of the NLFDEs
is not easy, so searching and constructing exact solutions
of NLFDEs is a continuing investigation. Recently, many
powerful methods for obtaining exact solutions of nonlinear
partial differential equations (NLPDEs) have been presented,
such as exponential rational function method [21], expa
function, and the hyperbolic function methods [22]. ðG′/GÞ-
expansion method [23, 24], ðG′/G, 1/GÞ-expansion method
[25, 26], Sardar-subequation method [27], new subequation
method [28], Riccati equation method [29], homotopy pertur-
bation method [30], extended direct algebraic method [31],
Kudryashov method [32], Exp-function method [33], the
modified extended exp-function method [34], F-expansion
method [35], the Backlund transformation method [36], the
extended tanh-method [37], Jacobi elliptic function expansion
methods [38], extended sinh-Gordon equation expansion
method [39], and different other methods [40–43].

The core aim of this work is to establish the exact travel-
ing wave solutions of the fractional generalized reaction
doffing model arising in mathematical biology [44, 45] and
the density dependent fractional diffusion-reaction equation
with the beta-derivative based on three different methods,
the Generalized tanh (GT) method [46], Generalized Ber-
noulli (GB) sub-ODE method [47], and Riccati-Bernoulli
(RB) sub-ODE method [48]. These methods are the most
direct and effective algebraic methods used for obtaining
the exact traveling wave solutions of nonlinear partial differ-
ential equations. In [49], Jafari et al. applied the fractional
subequation method to construct exact solutions of the frac-
tional generalized reaction Duffing model and in [50],
Eslami et al. applied the first integral method to obtain the
exact solutions of fractional generalized reaction Duffing
model and the exact solutions of fractional diffusion-
reaction equation. Uddin et al. [44] obtained the close form
solutions of the fractional generalized reaction Duffing
model and the density dependent fractional diffusion
reaction equation by using the ðG′/G, 1/GÞ-expansion
method. In [51] Xia et al. applied hyperbolic function to
obtain new explicit and exact travelling wave solutions for
a class of nonlinear evolution equations. Sonmezoglu [52]
applied extended Jacobi elliptic function expansion to con-
struct the exact solutions of these models.

This paper is organized as follows: In Section 2, we pres-
ent beta derivative and its properties. The descriptions of
strategies are given in Section 3. In Sections 4 and 5, we pres-
ent a mathematical analysis of the models and its solutions
via proposed methods. In Section 6, the graphical compari-
sons of our obtained exact traveling wave solutions are
represented in both 2D and 3D plots for various values of

parameters. At the end, conclusions are announced in
Section 7.

2. Beta Derivative and Its Properties

Definition. The beta-derivative is defined as [15, 53]

A
0D

α

x f xð Þð Þ = lim
ε⟶0

f x+∈ x + 1/Γ αð Þð Þð Þð Þ − f xð Þ
∈

, 0 < α ≤ 1:

ð1Þ

Properties of Beta Derivative. Beta derivative has the fol-
lowing properties:

(1)

A
0D

α
x af xð Þ + bg xð Þ½ � = aAo D

α
x f xð Þ + bAo D

α
xg xð Þ ð2Þ

(2) A
0D

α
xðcÞ = 0, for any constant c

(3)

A
0D

α

x f xð Þ:g xð Þ½ � = g xð ÞAo Dα
x f xð Þ + f xð ÞAo Dα

xg xð ÞA0
ð3Þ

(4)

A
0D

α

x

f xð Þ
g xð Þ
� �

= g xð Þa0Dα
x f xð Þ − f xð Þa0Dα

xg xð Þ
g2 xð Þ ð4Þ

Considering ∈ = ðx + ð1/ΓðαÞÞÞα−1h, h⟶ 0 when
∈⟶0, therefore we have

A
0D

α

x f xð Þ = x + 1
Γ αð Þ

� �1−α df xð Þ
d xð Þ , ð5Þ

with ξ = ðl/αÞðx + ð1/ΓðαÞÞÞα, where l is a constant.

(5)

A
0D

α

x

f ξð Þ
g xð Þ
� �

= l
df ξð Þ
d ξð Þ : ð6Þ

The proofs of the above beta properties were simply pre-
sented in [11].

3. Description of Strategies

3.1. Riccati-Bernoulli (RB) Sub-ODE Method. In this section,
we represent the basic steps of the RB sub-ODE method
[48]. Let us consider the nonlinear partial differential equa-
tion of the following form:

F u, ux, ut , uxx, utt , uxt ,⋯ð Þ = 0, ð7Þ
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where u = uðx, tÞ is an unknown function and F is a polyno-
mial depending on uðx, tÞ and its various partial derivatives.

Step 1. By wave transformation

u x, tð Þ = u ξð Þ, ξ = sx + nt + d: ð8Þ

The wave variable permits us to reduce Equation (8) into
a nonlinear ordinary differential equation for u = uðξÞ:

H u, u′, u″,⋯
� �

= 0, ð9Þ

where H is a polynomial of uðξÞ and its total derivative with
respect to ξ.

Step 2. Assume that the solution of Equation (9) can be
expressed as:

u′ = a1u
2−m + b1u + c1u

m, ð10Þ

where a1, b1, c1 and m are constant to be determined later.

Equation (10) has the solution as follows:

Case 1. When m = 1, the solution of Equation (10) is

u ξð Þ = Ce a1+b1+c1ð Þξ: ð11Þ

Case 2. When m ≠ 1, b1 = 0, c1 = 0, the solution of Equation
(10) is

u ξð Þ = a1 m − 1ð Þð Þ ξ − c1ð Þð Þð Þ 1/ m−1ð Þð Þ: ð12Þ

Case 3. When m ≠ 1, b1 ≠ 0, c1 = 0, then solution of Equation
(10)

u ξð Þ = −
a1
b1

+ Ceb1 m−1ð Þξ
� � 1/ m−1ð Þð Þ

: ð13Þ

Case 4.When m ≠ 1, a1 = 0, b12 − 4a1c1 < 0, thus the solution
of Equation (10)

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2a1

 

� tan 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2 ξ + Cð Þ

 !! 1/ m−1ð Þð Þ
,

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2a1

 

� cot 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2 ξ + Cð Þ

 !! 1/ m−1ð Þð Þ
:

ð14Þ

Case 5. When m ≠ 1, a1 ≠ 0, b12 − 4a1c1 > 0, the solutions of
Equation (10) are

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p

2a1

 

� cot 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p
2 ξ + Cð Þ

 !! 1/ m−1ð Þð Þ
,

ð15Þ

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p

2a1

 

� tan 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p
2 ξ + Cð Þ

 !! 1/ 1−mð Þð Þ
:

ð16Þ
Case 6. When m ≠ 1, a1 ≠ 0, b12 − 4a1c1 = 0, the solution of
Equation (10) is

u ξð Þ = 1
a1 m − 1ð Þ ξ + Cð Þ −

b1
2a1

� � 1/ 1−mð Þð Þ
, ð17Þ

where C is an arbitrary constant.

4. Mathematical Analyses of the Models and
Its Solutions

4.1. For Fractional Generalized Reaction Duffing Model.
Here, we consider the fractional generalized reaction Duffing
model in the forms in [45].

∂2αu x, tð Þ
∂t2α

+ p
∂2αu x, tð Þ

∂x2α
+ qu x, tð Þ

+ ru2 x, tð Þ + su3 x, tð Þ = 0, t > 0, 0 < α ≤ 1,
ð18Þ

where p, q, r and s are all constants.
If we take r = 0, Equation (18) reduces to the following

nonlinear wave equation:

∂2αu x, tð Þ
∂t2α

+ p
∂2αu x, tð Þ

∂x2α
+ qu x, tð Þ + su3 x, tð Þ = 0, t > 0, 0 < α ≤ 1:

ð19Þ

Let us assume the transformation:

u x, tð Þ = u ξð Þ, ξ = k
α

x + 1
Γ αð Þ

� �α

−
c
α

t + 1
Γ αð Þ

� �α

, ð20Þ

where k and c are constants.
By using Equation (20) into Equation (19), we get the

following ODE:

c2u″ + pk2u″ + qu + su3 = 0: ð21Þ

3Journal of Function Spaces



In the following sections, the proposed methods are
applied to extract the required solutions:

4.2. Solutions with GT Method [46]. Considering the
homogenous balancing between the terms u″ and u3 in
Equation (21), we get N = 1. For N = 1, we write the solution
of Equation (9) in the following form [46]:

u ξð Þ = a0 + a1φ ξð Þ, ð22Þ

where a0 and a1 are unknown parameters.
Substituting Equation (22) into Equation (21) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2c2a1 + 2k2pa1 + sa31 = 0, ð23Þ

φ2 : 3sa0a12 = 0, ð24Þ
φ1 : 2c2Ca1 + 2Ck2pa1 + qa1 + 3sa20a1 = 0, ð25Þ

φ0 : qa0 + sa30 = 0: ð26Þ
Solving the system of algebraic equations in (23) with the

help of software MATHEMATICA, we obtain the following
solutions:

a0 = 0, a1 = ±
ffiffiffi
q

pffiffiffiffi
C

p ffiffi
s

p , c = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Ck2p − q

p
ffiffiffi
2

p ffiffiffiffi
C

p : ð27Þ

Case 1. For C<0,

u1 x, tð Þ = ±
ffiffiffi
q

p ffiffi
s

p −i tanh
ffiffiffiffiffiffi
−C

p
ξ

� �
, ð28Þ

u2 x, tð Þ = ±
ffiffiffi
q

p ffiffi
s

p −i coth
ffiffiffiffiffiffi
−C

p
ξ

� �
: ð29Þ

Case 2. For C>0.

u3 x, tð Þ = ±
ffiffiffi
q

p ffiffi
s

p tan
ffiffiffiffi
C

p
ξ

� �� �
: ð30Þ

u4 x, tð Þ = ∓
ffiffiffi
q

p ffiffi
s

p cot
ffiffiffiffi
C

p
ξ

� �� �
: ð31Þ

4.3. Solutions with GB Sub-ODE Method [47]. Consider the
homogenous balancing in Equation (21), we get N = 1. For
N = 1, we write the solution of Equation (9) in the following
form:

u ξð Þ = a0 + a1φ ξð Þ, ð32Þ

where a0 and a1 are unknown parameters.
Substituting Equation (32) into Equation (21) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2c2μ2a1 + 2k2pμ2a1 + sa1
3 = 0, ð33Þ

φ2 : −3c2λμa1 − 3k2pλμa1 + 3sa0a21 = 0, ð34Þ

φ1 : qa1 + c2λ2a1 + k2pλ2a1 + 3sa20a1 = 0, ð35Þ

φ0 : qa0 + sa30 = 0: ð36Þ
Solving the system of algebraic equations in (33) with the

help of software MATHEMATICA, we obtain the following
solutions:

a0 = ±i
ffiffiffi
q

p ffiffi
s

p , a1 = ± 2i ffiffiffiqp
μffiffi

s
p

λ
, c1 = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q − k2pλ2

p
λ

: ð37Þ

Case 1.

u1 x, tð Þ = ±i
ffiffiffi
q

p ffiffi
s

p ∓
i
ffiffiffi
q

pffiffi
s

p tanh λ

2 ξ
� �

− 1
� �

: ð38Þ

Case 2.

u2 x, tð Þ = ±i
ffiffiffi
q

p ffiffi
s

p ∓
i
ffiffiffi
q

pffiffi
s

p coth λ

2 ξ
� �

− 1
� �

: ð39Þ

4.4. Solutions with RB Sub-ODE Method. Considering the
homogenous balancing in Equation (21), we get N = 1. For
N = 1, Equation (9) has the solution:

u′ = a1u
2−m + b1u + c1u

m, ð40Þ

where a1, b1, c1, and m are constant to be determined later.
Setting m = 0 and each coefficient polynomial to zero

gives a set of algebraic equations for a1, b1, and c1 as follows:

u3 : s + 2c2a21 + 2k2pa21 = 0, ð41Þ

u2 : 3c2a1b1 + 3k2pa1b1 = 0, ð42Þ

u1 : q + c2b1
2 + k2pb1

2 + 2c2a1c1 + 2k2pa1c1 = 0, ð43Þ

u0 : c2b1c1 + k2pb1c1 = 0: ð44Þ
Solving the system of algebraic equations in (41) with the

help of software MATHEMATICA, we obtain the following
solutions:

a1 = −
ffiffi
s

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 − k2p

p ,

b1 = 0,

c1 = −
qffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2 − k2p
p ffiffi

s
p :

ð45Þ

Case 1. When m = 1, we have

u ξð Þ = Ce − ffiffi
s

pð Þ/ ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
−c2−k2p

pð Þð Þ− q/
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
−c2−k2p

p ffiffi
s

p	 
	 
	 

ξ
: ð46Þ
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Case 2. When m ≠ 1, a1 ≠ 0, and b21 − 4a1c1 < 0, we have

u ξð Þ =
ffiffiffi
q

p ffiffi
s

p tan
ffiffiffi
q

pffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − k2p

p ξ + Cð Þ
 !

, ð47Þ

u ξð Þ = −
ffiffiffi
q

p ffiffi
s

p cot
ffiffiffi
q

pffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − k2p

p ξ + Cð Þ
 !

: ð48Þ

5. Density Dependent Fractional Diffusion
Reaction Equation

Density dependent fractional diffusion reaction equation
which is widely used in mathematical biology in the
form [44, 45]

∂αu x, tð Þ
∂tα

+ ku x, tð Þ ∂
αu x, tð Þ
∂xα

=D
∂2αu x, tð Þ

∂x2α
+ au x, tð Þ − bu2 x, tð Þ, t > 0, 0 < α ≤ 1,

ð49Þ

Let us assume the transformation:

u x, tð Þ = u ξð Þ, ξ = p
α

x + 1
Γ αð Þ

� �α

−
c
α

t + 1
Γ αð Þ

� �α

: ð50Þ

Here p and c are constants. By using Equation (50)
into Equation (49), we get the following ODE:

Dp2u′′ − cu′ − kpuu′ + au − bu2 = 0: ð51Þ

5.1. Solutions with GT Method [46]. By applying homog-
enous balancing technique between the terms u″ and uu′
into Equation (51), we get N = 1. For N = 1, we write the
solution of Equation (9) in the following form [46]:

u ξð Þ = a0 + a1φ ξð Þ, ð52Þ

where a0 and a1 are unknown parameters.
Substituting Equation (52) into Equation (51) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2Dp2a1 − kpa21 = 0,

φ2 : ca1 − kpa0a1 − ba1
2 = 0,

φ1 : aa1 + 2CDp2a1 − 2ba0a1 − Ckpa21 = 0,

φ0 : aa0 − ba20 + cCa1 − Ckpa0a1 = 0:

ð53Þ

By using the software MATHEMATICA, we obtain the
following solutions:

a0 =
a
2b , a1 = ± ia

2b
ffiffiffiffi
C

p , c = ± ia

2
ffiffiffiffi
C

p , p = 0: ð54Þ

Case 1. For C<0,

u1 x, tð Þ = a
2b ± a

2b tanh
ffiffiffiffiffiffi
−C

p
ξ

� �
, ð55Þ

u2 x, tð Þ = a
2b ± a

2b coth
ffiffiffiffiffiffi
−C

p
ξ

� �
: ð56Þ

Case 2. For C>0,

u3 x, tð Þ = a
2b ± ia

2b tan
ffiffiffiffi
C

p
ξ

� �� �
, ð57Þ

u4 x, tð Þ = a
2b ∓

ia
2b cot

ffiffiffiffi
C

p
ξ

� �� �
: ð58Þ

5.2. Solutions with GB Sub-ODE Method. By applying
homogenous balancing technique between the terms into
Equation (51), we get N = 1. For N = 1, we write the solution
of Equation (9) in the following form [47]:

u ξð Þ = a0 + a1φ ξð Þ, ð59Þ

where a0 and a1 are unknown parameters.
Substituting Equation (59) into Equation (51) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2Dp2μ2a1 − kpμa21 = 0,

φ2 : cμa1 − 3Dp2λμa1 − kpμa0a1 − ba1
2 + kpλa1

2 = 0,

φ1 : aa1 − cλa1 +Dp2λ2a1 − 2ba0a1 + kpλa0a1 = 0,

φ0 : aa0 − ba20 = 0:
ð60Þ

By using the software MATHEMATICA, we obtain the
following solutions:

a0 =
a
b
, a1 = −

aμ
bλ

, c = −
4ab2D − a2k2

4b2Dλ
, p = −

ak
2bDλ : ð61Þ

Case 1.

u1 x, tð Þ = a
b
+ a
2b tanh λ

2 ξ
� �

− 1
� �

: ð62Þ

Case 2.

u2 x, tð Þ = a
b
+ a
2b coth λ

2 ξ
� �

− 1
� �

: ð63Þ

5.3. Solutions with RB Sub-ODE Method. By applying
homogenous balancing technique, the terms u″ and uu′ into
Equation (54) we get N = 1.
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Figure 1: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (28) at fα = 0:6, k = 0:7, q = 1, s = 1, C = −1, c = 0:5g:
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Figure 2: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (29) at fα = 0:6, k = 0:7, q = 1, s = 1, C = −1, c = 0:5:g.

6 Journal of Function Spaces



100

80
| u

 (x
,t

) |
60

40

20

0
–10 –5 0

x

5 10

120

200

150

| u
 (x

,t
) |

100

50

0
–10 –5 0

x

5 10

250

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

6

2
0

4

–10
–5

0
x 5

10
0.0

0.5

1.0
t

1.5

2.0
| u (x,t) |

–5
0 0.5

1.0

1

Figure 3: 2D and 3D graphics of Case 2 for trigonometric traveling wave solution (30) at fα = 0:6, k = 0:7, q = 1, s = 1, C = 1, c = 0:5g:

600

400

| u
 (x

,t
) |

300

200

100

0
–10 –5 0

8
6

2
0

4

–10
–5

0

x
5

10
0.0

0.5

1.0
t

1.5

x

5 10

500

| u (x,t) |
2.0

t = 0
t = 1
t = 2

300

200

| u
 (x

,t
) |

100

50

150

0
–10 –5 0

x

5 10

250

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

0.5

1.0
t

1.5

0
–5

0
5

Figure 4: 2D and 3D graphics of Case 2 for trigonometric traveling wave solution (31) at fα = 0:6, p = 0:7, q = 1, s = 1, C = −1, c = 0:5g.

7Journal of Function Spaces



3.0

2.0

| u
1 (x

,t
) |

1.5

1.0

0.5

0.0
–10 –5 0

3.0
2.5

1.5
1.0

2.0

–10
–5

0

x 5
10

0.0

0.5

1.0
t

1.5

x

5 10

2.5

| u1 (x,t) | 2.0

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

3.0

2.0

| u
1 (x

,t
) |

1.5

1.0

0.5

0.0
–10 –5 0

x

5 10

2.5

Figure 5: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (38) at fα = 0:6, k = 1:5, q = 1, s = 1, c = 0:5, λ = 1g:

40

| u
1 (x

,t
) |

30

20

10

0
–10 –5 0

6

2

0

4

–10
–5

0

x 5
10

0.0

0.5

1.0
t

1.5

x

5 10

| u1 (x,t) |
2.0

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

200

| u
1 (x

,t
) |

150

100

50

0
–10 –5 0

x

5 10

Figure 6: 2D and 3D graphics of Case 2 for hyperbolic traveling wave solution (39) at fα = 0:6, k = 1:5, q = 1, s = 1, c = 0:5, λ = 1g:

8 Journal of Function Spaces



| u
1 (x

,t
) |

0

10

–10 –5 0

1.15

1.05

1.00

1.10

–10
–5

0

x 5
10

0.0

0.5

1.0
t

1.5

x

5 10

| u1 (x,t) |
2.0

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

20

30

40

50

60

70

40

| u
1 (x

,t
) | 30

20

10

0
–10 –5 0

x

5 10

Figure 7: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (47) at fα = 0:6, k = 0:7, q = 1, s = 1, C = −1, c = 0:5g

| u
 (x

,t
) |

0.50

–10 –5 0

0.70

0.60

0.65

–10
–5

0

x 5
10

0.0

0.5

1.0
t

1.5

x

5 10

| u (x,t) |
2.0

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

0.55

0.60

0.65

0.70
0.70

| u
 (x

,t
) |

0.65

0.60

0.55

0.50
–10 –5 0

x

5 10

Figure 8: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (55) at fα = 0:6, k = 0:7, q = 1, s = 1, C = −1, c = 0:5g

9Journal of Function Spaces



| u
 (x

,t
) |

0

50

–10 –5 0

4

2
1
0

3

–10
–5

0
x 5

10
0.0

0.5

1.0
t

1.5

x

5 10

| u (x,t) |
2.0

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

100

150

200

250

300

800

| u
 (x

,t
) | 600

400

200

0
–10 –5 0

x

5 10

1000

Figure 9: 2D and 3D graphics of Case 2 for trigonometric traveling wave solution (57) at fα = 0:6, k = 0:7, q = 1, s = 1, C = 1, c = 0:5g:

| u
1 (x

,t
) |

0.0

0.2

–10 –5 0

1.0

0.0

0.5

–10
–5

0
x 5

10
0.0

0.5

1.0
t

1.5

x

5 10

| u1 (x,t) |
2.0

t = 0
t = 1
t = 2

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 1.0

0.4

0.6

0.8

1.0

0.8

| u
1 (x

,t
) | 0.6

0.4

0.2

0.0
–10 –5 0

x

5 10

1.0

1.0
t

1.5

2

Figure 10: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (62) at fα = 0:6, k = 0:7, a = 1, b = 1, c = 0:5, λ = 1g:

10 Journal of Function Spaces



For N = 1, Equation (9) has the solution given as:

u′ = a1u
2−m + b1u + c1u

m, ð64Þ

where a1, b1, c1 and m are constant to be determined later.
Substituting Equation (64) into Equation (51), setting

m = 0 and each coefficient polynomial to zero gives a set of
algebraic equations for a1, b1, and c1 as follows:

u4 : −kpa1 + 2Dp2a21 = 0, ð65Þ

u3 : −b + ca1 − kpb1 + 3Dp2a1b1 = 0, ð66Þ

u2 : a + cb1 +Dp2b1
2 − kpc1 + 2Dp2a1c1 = 0, ð67Þ

u1 : cc1 +Dp2b1c1 = 0: ð68Þ

By using the software MATHEMATICA, we obtain the
following solutions:

a1 =
k

2Dp , b1 = −
ak

2bDp , c1 = 0, c = 4b2D + ak2
	 


p

2bk : ð69Þ

Case 1. When m = 1, we have

u ξð Þ = Ce k/ 2Dpð Þð Þ− ak/ 2bDpð Þð Þð Þξ: ð70Þ

Case 2. When m ≠ 1, b1 ≠ 0, and c1 = 0, we have

u ξð Þ = −
b
a
+ Ce ak/ 2bDpð Þð Þξð Þ

� �−1
: ð71Þ

The above obtained solutions to the fractional general-
ized reaction Duffing model and density dependent frac-
tional diffusion reaction equation are compared with those
available in the earlier study and claimed to be recorded in
the literature for the first time [25, 45].

6. Results and Discussions

To show the dynamics and behavior of our obtained solu-
tions, various exact traveling wave solutions in Equations
(28), (29), (30), (31), (38), (39), (48), (55), (57), and (62)
are graphically represented and compared in both 3D and
2D plots in Figures 1–10 for various parameters’ values. A
3D plot highlights the amount of variation over a while or
compares multiple wave items. The 2D line plots are used
to represent very high and low frequency and amplitude.
The plots are constructed with unique values of α ∈ ð0, 1�
for different values of free parameters. The plots denote
many natures, such as the trigonometric, hyperbolic and sol-
itary wave solutions, and other forms of the solution gener-
ated by the correct physical description by choosing different
free parameters. We can observe from the plotted graphs in
Figures 1–10 that the wave’s frequency and amplitude
change with the change of fractional and time parameters.

7. Conclusions

In this article, three methods GT, GB sub-ODE, and RB sub-
ODE have been applied to construct a variety of novel exact
traveling wave solutions in the form of exponential,
hyperbolic, and trigonometric functions of the generalized
reaction Duffing model and density dependent fractional
diffusion reaction equation arising in Mathematical biology.
We have also depicted some of the obtained solutions graph-
ically (3D surface graphs and 2D line plots) and concluded
that the results we obtained are accurate, efficient, and versa-
tile in mathematical physics. It is worth to noticing that
compared to previous works [25, 26, 44, 45]; the results
obtained in this paper are presented for the first time. Lastly,
it can be concluded that our offered methods are more effec-
tive, reliable, and powerful, which give bounteous consistent
solutions to NLPFDEs arise in different fields of nonlinear
sciences.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] J. T. Machado, V. Kiryakova, and F. Mainardi, “Recent history
of fractional calculus,” Communication in Nonlinear Science
and Numerical Simulation, vol. 16, no. 3, pp. 1140–1153, 2011.

[2] H. Weyl, “Bemerkungen zum Begriff des differential quotien-
ten gebrochener Ordnung,” Vierteljshr. Naturforsch. Gesellsch.
Zürich, vol. 62, pp. 296–302, 1917.

[3] M. Riesz, “L’intégrale de Riemann-Liouville et le problème de
Cauchy pour l’équation des ondes,” Bulletin de la Société
Mathématique de France, vol. 67, pp. 153–170, 1939.

[4] K. L. Wang and S. Y. Liu, “He’s fractional derivative and its
application for fractional Fornberg-Whitham equation,” Ther-
mal Science, vol. 1, pp. 54–54, 2016.

[5] Y. Chen, Y. Yan, and K. Zhang, “On the local fractional deriv-
ative,” Journal of Mathematical Analysis and Applications,
vol. 362, no. 1, pp. 17–33, 2010.

[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Elsevier,
Amsterdam, UK, 2006.

[7] J. M. Kimeu, Fractional Calculus: Definitions and Applications,
Western Kentucky University, 2009.

[8] E. I. Kaikina, “Fractional derivative of Abel type on a half-line,”
Transactions of the American Mathematical Society, vol. 364,
no. 10, pp. 5149–5172, 2012.

[9] S. Miller and B. Ross, An Introduction to the Fractional Calcu-
lus and Fractional Differential Equations, Wiley, New York,
NY, USA, 1993.

[10] M. Caputo and M. Fabrizio, “A new definition of fractional
differential without singular kernel,” Progress in Fractional
Differentiation & Applications, vol. 1, no. 2, pp. 1–13, 2015.

[11] A. Atangana and D. Baleanu, “New fractional derivatives with
non-local and non-singular kernel. Theory and application to

11Journal of Function Spaces



heat transfer model,” Thermal Science, vol. 20, no. 2, pp. 763–
769, 2016.

[12] R. Khalil, M. A. Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Jornal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[13] A. Atangana, D. Baleanu, and A. Alsaedi, “New properties of
conformable derivative,” Open Mathematics, vol. 13, no. 1,
pp. 889–898, 2015.

[14] J. V. Sousa and E. C. de Oliveira, “A new truncated M-
fractional derivative type unifying some fractional derivative
types with classical properties,” International Journal of Anal-
ysis and Applications, vol. 16, no. 1, pp. 83–96, 2018.

[15] A. Atangana, D. Baleanu, and A. Alsaedi, “Analysis of time-
fractional Hunter-Saxton equation: a model of neumatic liquid
crystal,” Open Physics, vol. 14, no. 1, pp. 145–149, 2016.

[16] I. Podlubny, Fractional Differential Equation, Academic Press,
San Diego, CA, USA, 1999.

[17] K. J. Wang, G. D. Wang, and H. W. Zhu, “A new perspective
on the study of the fractal coupled Boussinesq–Burger equa-
tion in shallow water,” Fractals, vol. 29, no. 5, p. 2150122,
2021.

[18] M. A. E. Abdelrahman, M. A. Sohaly, and Y. F. Alharbi,
“Fundamental stochastic solutions for the conformable frac-
tional NLSE with spatiotemporal dispersion via exponential
distribution,” Physica Scripta, vol. 96, no. 12, article 125223,
2021.

[19] M. A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, and D. M.
Alsaleh, “Fundamental solutions for the conformable time
fractional Phi-4 and space-time fractional simplified MCH
equations,” AIMS Mathematics, vol. 6, no. 6, pp. 6555–6568,
2021.

[20] M. Alshammari, W. W. Mohammed, and M. Yar, “Novel
Analysis of fuzzy fractional Klein-Gordon model via Semiana-
lytical method,” Journal of Function Spaces, vol. 2022, Article
ID 4020269, 9 pages, 2022.

[21] H. Rezazadeh, M. S. Osman, M. Eslami et al., “Hyperbolic
rational solutions to a variety of conformable fractional
Boussinesq-like equations,” Nonlinear Engineering, vol. 8,
no. 1, pp. 224–230, 2019.

[22] A. Zafar, A. Bekir, M. Raheel, and H. Rezazadeh, “Investiga-
tion for optical soliton solutions of two nonlinear Schrödinger
equations via two concrete finite series methods,” Interna-
tional Journal of Applied and Computational Mathematics,
vol. 6, no. 3, pp. 1–13, 2020.

[23] I. Siddique, S. T. R. Rizvi, and F. Batool, “New exact traveling
wave solutions of nonlinear evolution equations,” Interna-
tional Journal of Nonlinear Science, vol. 9, no. 1, pp. 12–18,
2010.

[24] Y. Shang, “The Analytical Solutions for Stochastic Fractional-
Space Burgers’ Equation,” Journal of Mathematics, vol. 2022,
Article ID 9878885, 8 pages, 2022.

[25] I. Siddique, M. M. M. Jaradat, A. Zafar, and M. S. Osman,
“Exact traveling wave solutions for two prolific conform-
able M-fractional differential equations via three diverse
approaches,” Results in Physics, vol. 28, p. 104557, 2021.

[26] X. Z. Zhang, I. Siddique, K. B. Mehdi, A. A. Elmandouh, and
M. Inc, “Novel exact solutions, bifurcation of nonlinear and
supernonlinear traveling waves for M-fractional generalized
reaction Duffing model and the density dependent M-
fractional diffusion reaction equation,” Results in Physics,
vol. 37, p. 105485, 2022.

[27] N. Ullah, M. I. Asjad, J. Awrejcewicz, T. Muhammad, and
D. Baleanu, “On soliton solutions of fractional-order nonlinear
model appears in physical sciences,” AIMS Mathematics,
vol. 7, no. 5, pp. 7421–7440, 2022.

[28] W. Razzaq, A. Zafar, H. M. Ahmed, and W. B. Rabied,
“Construction solitons for fractional nonlinear Schrodin-
ger equation with β-time derivative by the new sub-
equation method,” Journal of Ocean Engineering and
Science, 2022.

[29] Y. Yıldırım and M. Mirzazadeh, “Optical pulses with Kundu-
Mukherjee-Naskar model in fiber communication systems,”
Chinese Journal of Physics, vol. 64, pp. 183–193, 2020.

[30] N. Iqbal, A. M. Albalahi, M. S. Abdo, and W. W. Mohammed,
“Analytical analysis of fractional-order Newell-Whitehead-
Segel equation: a modified homotopy perturbation transform
method,” Journal of Function Spaces, vol. 2022, Article ID
3298472, 10 pages, 2022.

[31] A. Jhangeer, A. R. Seadawy, F. Ali, and A. Ahmed, “New com-
plex waves of perturbed Shrodinger equation with Kerr law
nonlinearity and Kundu-Mukherjee-Naskar equation,” Results
in Physics, vol. 16, p. 102816, 2020.

[32] K. Hosseini, M. Mirzazadeh, M. Ilied, and S. Radmehr,
“Dynamics of optical solitons in the perturbed Gerdjikov-
Ivanov equation,” Optik, vol. 206, p. 164350, 2020.

[33] A. Bekir and A. Boz, “Exact solutions for nonlinear evolution
equations using Exp-function method,” Physics Letters A,
vol. 372, no. 10, pp. 1619–1625, 2008.

[34] A. Tozar, O. Tasbozan, and A. Kurt, “Analytical solutions of
Cahn-Hillard phase-field model for spinodal decomposition
of a binary system,” Europhysics Letters, vol. 130, no. 2,
p. 24001, 2020.

[35] M. Wang and X. Li, “Extended F-expansion method and peri-
odic wave solutions for the generalized Zakharov equations,”
Physics Letters A, vol. 343, no. 1-3, pp. 48–54, 2005.

[36] L. Tian and J. Yin, “Stability of multi-compacton solutions and
Backlund transformation in K (m, n ,1),” Chaos, Solitons and
Fractals, vol. 23, no. 1, pp. 159–169, 2005.

[37] A. M. Wazwaz, “The extended tanh method for new compact
and noncompact solutions for the KP- BBM and the ZK-BBM
equations,” Chaos, Solitons and Fractals, vol. 38, no. 5,
pp. 1505–1516, 2008.

[38] G. T. Liu and T. Y. Fan, “New applications of developed
Jacobi elliptic function expansion methods,” Physics Letters
A, vol. 345, no. 1-3, pp. 161–166, 2005.

[39] D. Kumar, J. Manafian, F. Hawlader, and A. Ranjbaran, “New
closed form soliton and other solutions of the Kundu-Eckhaus
equation via the extended sinh-Gordon equation expansion
method,” Optik, vol. 160, pp. 159–167, 2018.

[40] K. K. Ali, C. Cattani, J. F. Gómez-Aguilar, D. Baleanu,
and M. S. Osman, “Analytical and numerical study of the
DNA dynamics arising in oscillator-chain of Peyrard-
Bishop model,” Chaos, Solitons & Fractals, vol. 139,
p. 110089, 2020.

[41] F. M. Al-Askar, W. W. Mohammed, and M. Alshammari,
“Impact of Brownian motion on the analytical solutions of
the space-fractional stochastic approximate long water wave
equation,” Symmetry, vol. 14, no. 4, p. 740, 2022.

[42] M. Alshammari, N. Iqbal, W.W.Mohammed, and T. Botmart,
“The solution of fractional-order system of KdV equations
with exponential- decay kernel,” Results in Physics, vol. 38,
p. 105615, 2022.

12 Journal of Function Spaces



[43] M. S. Osman and K. K. Ali, “Optical soliton solutions of per-
turbing time-fractional nonlinear Schrodinger equations,”
Optik, vol. 209, p. 164589, 2020.

[44] M. Hafiz Uddin, M. A. Akbar, M. Md Ashrafuzzaman, and
A. Haque, “Close form solutions of the fractional generalized
reaction duffing model and the density dependent fractional
diffusion reaction equation,” Applied and Computational
Mathematics, vol. 6, no. 4, pp. 177–184, 2017.

[45] O. Guner and A. Bekir, “Exact solutions of some fractional dif-
ferential equations arising in mathematical biology,” Interna-
tional Journal of Biomathematics, vol. 8, no. 1, p. 1550003,
2015.

[46] N. Taghizadeh and M. Najand, “Generalized tanh method
with the Riccati equation for solving the sixth-order Ramani
equation,” Mathematica Aeterna, vol. 2, no. 5, pp. 483–487,
2012.

[47] M. A. Salam, M. S. Uddin, and P. Dey, “Generalized Bernoulli
sub- ODE method and its application,” Analysis of Pure and
Applied Mathematics, vol. 10, no. 1, pp. 1–6, 2015.

[48] X. F. Yang, Z. C. Deng, and Y. Wei, “A Riccati-Bernoulli sub-
ODE method for nonlinear partial differential equations and
its application,” Advances in Difference Equations, vol. 2015,
no. 1, p. 17, 2015.

[49] H. Jafari, H. Tajododi, D. Baleanu, A. A. Al-Zahrani, Y. A.
Alhamed, and A. H. Zahid, “Fractional sub-equation method
for the fractional generalized reaction duffing model and non-
linear fractional Sharma-Tasso-Olver equation,” Central Euro-
pean Journal of Physics, vol. 11, no. 10, pp. 1482–1486, 2013.

[50] M. Eslami, B. F. Vajargah, M. Mirzazadeh, and A. Biswas,
“Application of first integral method to fractional partial dif-
ferential equations,” Indian Journal of Physics, vol. 88, no. 2,
pp. 177–184, 2014.

[51] T. C. Xia, H. Q. Zhang, and Z. Y. Yan, “New explicit and exact
travelling wave solutions for a class of nonlinear evolution
equations,” Applied Mathematics and Mechanics, vol. 22,
no. 7, pp. 788–793, 2001.

[52] M. Sonmezoglu, “Exact solutions for some fractional differen-
tial equations,” Advances in Mathematical Physics, vol. 2015,
Article ID 567842, 10 pages, 2015.

[53] A. Yusuf, M. Inc, A. I. Aliyu, and D. Baleanu, “Optical solitons
possessing beta derivative of the Chen-Lee-Liu equation in
optical fibers,” Frontiers in Physics, vol. 7, p. 34, 2019.

13Journal of Function Spaces


	Diverse Precise Traveling Wave Solutions Possessing Beta Derivative of the Fractional Differential Equations Arising in Mathematical Physics
	1. Introduction
	2. Beta Derivative and Its Properties
	3. Description of Strategies
	3.1. Riccati-Bernoulli (RB) Sub-ODE Method

	4. Mathematical Analyses of the Models and Its Solutions
	4.1. For Fractional Generalized Reaction Duffing Model
	4.2. Solutions with GT Method [46]
	4.3. Solutions with GB Sub-ODE Method [47]
	4.4. Solutions with RB Sub-ODE Method

	5. Density Dependent Fractional Diffusion Reaction Equation
	5.1. Solutions with GT Method [46]
	5.2. Solutions with GB Sub-ODE Method
	5.3. Solutions with RB Sub-ODE Method

	6. Results and Discussions
	7. Conclusions
	Data Availability
	Conflicts of Interest

