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In this article, we analyze the analytical result of fractional-order Jaulent-Miodek equations with the help of two novel methods,
namely, ρ-Laplace decomposition method and ρ-Laplace variational iteration method. The achieved results are shown in a series
form, which is rapidly converging. The approximate simulations were performed in absolute error to ensure that the suggested
methods are accurate and reliable. The achieved results are graphically presented to confirm the validity and accuracy of the
techniques. The study results reveal that the ρ-Laplace decomposition method is computationally very effective and accurate
compared to ρ-Laplace variational iteration method to analyze the nonlinear system of fractional-order Jaulent-Miodek equations.

1. Introduction

Jaulent and Miodek developed the Jaulent-Miodek equation
in 1979 as an extension to energy-dependent potentials [1,
2]. The JM equation was developed in many related fields
of physics, optics [3], condensed matter physics [4], plasma
physics [5], and including fluid mechanics [6]. The purpose
of this research is to investigate the approximate results for
arbitrary order of the following anomalous and difficult
physical model,
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The nonlinear system JM equation has been analyzed in
past years by several researchers through different methods
like homotopy perturbation transform method [7], optimal

homotopy asymptotic method and Hermite wavelets [8],
invariant subspace technique [9], and others [10–12].

Systems of nonlinear partial differential equation
[13–17] appear in a variety of scientific physical models.
The classical Jaulent-Miodek equations have been the
subject of extensive investigation in recent years. Several
techniques such as suitable algebraic technique [18], Ado-
mian decomposition technique [19], tanh-sech technique
[20], homotopy perturbation technique [21], Exp-function
technique [22], and homotopy analysis technique [23] had
been applied for solving of the system of Jaulent-Miodek
equations. But the complete evaluation of the nonlinear
fractional-order combined with the Jaulent-Miodek equa-
tion is only an initiation by the available information.

Abdeljawad and Jarad [24] recently developed the Laplace
transform of the fractional-order Caputo derivatives. We
proposed a new iterative technique based on the ρ-Laplace
transformation to study fractional-order ordinary and partial
differential equations with fractional-order Caputo deriva-
tives. This novel proposed method is used to solve numerous
fractional-order differential equations, including linear and
nonlinear diffusion equations, fractional-order Fokker-
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Planck equations, and Zakharov-Kuznetsov equations
[25–27]. Adomian, an American mathematician, introduced
the Adomian decomposition method. It concentrates on
obtaining series-like solutions and decomposing the nonlin-
ear operator into a sequence, with the terms currently
obtained usingAdomian polynomials [28–31]. The ρ-Laplace
transform is used tomodify this procedure, resulting in the ρ-
Laplace decompositionmethod. Thismethod is applied to the
nonhomogeneous fractional differential equations [32–34].
He [35, 36] was the first to introduce the variational iteration
method (VIM), which was successfully applied to autono-
mous ordinary differential equations in [37], nonlinear poly-
crystal line solids in [38], and other fields. The variational
iterationmethod is modified with the help of ρ-Laplace trans-
form, known as ρ-Laplace variational iteration method.
Different types of ODEs and PDEs have been analyzed with
the aid of the variational iteration method. For instance,
this method is investigated for solving fractional differen-
tial equations in [37]. In [38], this method is used to solve
nonlinear oscillator equations. Compared to the Adomians
decomposition method, variational iteration transforms
approach solving without the need to compute Adomian’s
polynomials. The [39] mesh point procedures provide an
analytical solution, whereas this scheme provides a fast
response to the equation [40–42]. This technique can also
be used to approximate accurate results.

This article has applied the ρ-Laplace decomposition
method and ρ-Laplace variational iteration method to
solve the fractional coupled Jaulent-Miodek equation with
the Caputo fractional derivative operator. The analytical
results attained via the ρ-Laplace decomposition method
were compared with exact results and those derived by
using the ρ-Laplace variational iteration method in case
of fractional order.

2. Basic Preliminaries

2.1. Definition. The fractional-order generalized integral ϑ of
a continuous function f : ½0,+∞�⟶ R is given as [24]

Iϑ,ρg
� �

εð Þ = 1
Γ ϑð Þ

ðε
0

ερ − sρ

ρ

� �ϑ−1 g sð Þds
s1−ρ

, ð2Þ

the gamma function is defined by Γ, ρ > 0, ε > 0, and
0 < ϑ < 1.

2.2. Definition. The fractional-order generalized derivative
of ϑ of a continuous function g : ½0,+∞�⟶ R is defined
as [24]
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where expressed the gamma function Γ, ρ > 0, ε > 0, and
0 < ϑ < 1.

2.3. Definition. The fractional-order Caputo derivative ϑ of a
continuous function g : ½0,+∞�⟶ R is defined as [24]
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where ρ > 0, ε > 0, ϑ = ε1−ϑd/dε and 0 < ϑ < 1.

2.4. Definition. The ρ-Laplace transform of a continuous
function g : ½0,+∞�⟶ R is given as [24]

Lρ g εð Þf g sð Þ =
ð∞
0
e−sε

ρ/ρg εð Þ dε
ε1−ρ

: ð5Þ

The fractional-order Caputo generalized ρ-Laplace
transformation derivative of a continuous function g is given
by [24]

Lρ Dϑ,ρg εð Þ
n o

sð Þ = sϑLρ g εð Þf g − 〠
n−1

k=0
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2.5. Definition. The generalized Mittag-Leffler function is
defined by

Eϑ,ρ zð Þ = 〠
∞

k=0

zϑ

Γ ϑk + βð Þ , ð7Þ

where ϑ > 0, β > 0, and EϑðzÞ = Eϑ,1ðzÞ.

3. The Methodology of ρ-
Laplace Decomposition Method

In this section, the ρ-Laplace decomposition method solution
system for fractional partial differential fractional equations.

Dϑ
Iμ ε,Ið Þ + �M1 μ, ωð Þ +N 1 μ, ωð Þ −P 1 ε,Ið Þ = 0,

Dϑ
Iω ε,Ið Þ + �G2 μ, ωð Þ +N 2 μ, ωð Þ −P 2 ε,Ið Þ = 0, κ − 1 < ϑ ≤ κ,

ð8Þ

with initial conditions

μ ε, 0ð Þ = g1 εð Þ, ω ε, 0ð Þ = g2 εð Þ: ð9Þ

where is Dϑ
I = ∂ϑ/∂Iϑ the Caputo fractional derivative of

order ϑ, �M1, �G2, and N 1, N 2 are linear and nonlinear func-
tions, respectively, and P 1 and P 2 are source operators.
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The ρ-Laplace transformation is applied to Eq. (8),
we have
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Using the ρ-Laplace transform differentiation property,
we get
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ρ-LDM defines the result of infinite series μðε,IÞ and
ωðε,IÞ,
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∞

κ=0
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Adomian polynomial decomposition of nonlinear terms
of N 1 and N 2 is described as
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All forms of nonlinearity the Adomian polynomials can
be represented as
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Putting equations (12) and (14) into equation (11) gives
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Using the inverse ρ-Laplace transform of equation (15),

we get
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we define the following terms,
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μ1 ε,Ið Þ = −L−1
1
sϑ
L �M1 μ0, ω0ð Þ +A0
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,

ω1 ε,Ið Þ = −L−1
1
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the general for κ ≥ 1 is given by

μκ+1 ε,Ið Þ = −L−1
1
sϑ
L �M1 μκ, ωκð Þ +Aκ

	 
� �
,

ωκ+1 ε,Ið Þ = −L−1
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� �
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4. The Producer of ρ-LVITM

In this section, explain the ρ-Laplace variational iteration
method of the solution of FPDEs.

Dϑ
Iμ ε,Ið Þ + �M1 μ, ωð Þ +N 1 μ, ωð Þ −P 1 ε,Ið Þ = 0,

Dϑ
Iω ε,Ið Þ + �G2 μ, ωð Þ +N 2 μ, ωð Þ −P 2 ε,Ið Þ = 0,m − 1 < ϑ ≤m,

ð22Þ
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with initial conditions

μ ε, 0ð Þ = g1 εð Þ, ω ε, 0ð Þ = g2 εð Þ: ð23Þ

where is Dϑ
I = ∂ϑ/∂Iϑ the Caputo fractional derivative of

order ϑ, �M1, �G2 and N 1, N 2 are linear and nonlinear func-
tions, respectively, and P 1,P 2 are source operators.

The ρ-Laplace transformation is applied to Eq. (22),
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Using the differentiation property ρ-Laplace transform,
we get
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The procedure iteration method is defined as
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A Lagrange multiplier as

λ sð Þ = −
1
sϑ
, ð28Þ

the inverse ρ-Laplace transformation L−1, the iteration
method Eq. (26) can be given as

μκ+1 ε,Ið Þ = μκ ε,Ið Þ − L−1
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the initial iteration can be find as
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5. Implementation of Techniques

5.1. Problem. Consider the fractional-order non-linear
Jaulent-Miodek equation is given as

∂ϑμ
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With initial conditions

μ ε, 0ð Þ = 1
8 λ

2 1 − 4 sec h2 λε

2

� �� �
, ð33Þ

ω ε, 0ð Þ = λ sec h λε

2

� �
: ð34Þ

Taking ρ-Laplace transform of (31),

sϑL μ ε,Ið Þ½ � − sϑ−1μ ε, 0ð Þ

= −L
∂3μ
∂ε3
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2ω

∂3ω
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sϑL ω ε,Ið Þ½ � − sϑ−1ω ε, 0ð Þ

= −L
∂3ω
∂ε3

− 6 ∂μ
∂ε

ω − 6μ ∂ω
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−
15
2
∂ω
∂ε

ω2
" #

:
ð36Þ

Using inverse ρ-Laplace transformation, we get

Applying Adomian procedure, we have

The nonlinear terms find with the help of Adomain
polynomials

For κ = 1

μ1 ε,Ið Þ = −2λ5 csc h3 λεð Þ sec h4 λε/2ð Þ Iρ/ρð Þϑ
Γ ϑ + 1ð Þ ,

ω1 ε,Ið Þ = λ4 csc h2 λεð Þ sec h3 λε/2ð Þ Iρ/ρð Þϑ
Γ ϑ + 1ð Þ ,

ð43Þ

for κ = 2

μ2 ε,Ið Þ = −
λ8 −2 + cos h λεð Þð Þ sec h4 λε/2ð Þ Iρ/ρð Þ2ϑ
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s

� �
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" #
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� �� �
, ð39Þ
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� �
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� �
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∞
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∞
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〠
∞

κ=0
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∞
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∞
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∞
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)#
, κ = 0, 1, 2,⋯:
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μ3 ε,Ið Þ = −
1

1024 Γ ϑ + 1ð Þð Þ2Γ 3ϑ + 1ð Þ λ
11 2 −165 + 28 cos h λεð Þ + cos h 2λεð Þ Γ ϑ + 1ð Þð Þ2 + 3 43 − 20 cos h λεð Þ + cos h 2λεð ÞΓ 2ϑ + 1ð Þ sec h6 λε

2

� �
tan h
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2

� �
Iρ

ρ

� �3ϑ
 ! !( )

,

ð45Þ

ω3 ε,Ið Þ = 1
512 Γ ϑ + 1ð Þð Þ2Γ 3ϑ + 1ð Þ λ
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2

� �
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2
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Iρ

ρ

� �3ϑ( )
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The ρ-LDM solution of Example 1 is

The approximate solution by ρ-LVIM. Apply the iteration technique, we have

where

μ ε,Ið Þ = μ0 ε,Ið Þ + μ1 ε,Ið Þ + μ2 ε,Ið Þ + μ3 ε,Ið Þ+⋯,
ω ε,Ið Þ = ω0 ε,Ið Þ + ω1 ε,Ið Þ + ω2 ε,Ið Þ + ω3 ε,Ið Þ+⋯,

ð47Þ

μ ε,Ið Þ = 1
8 λ

2 1 − 4 sec h2 λε

2

� �� �
−
2λ5 csc h3 λεð Þ sec h4 λε/2ð Þ Iρ/ρð Þϑ

Γ ϑ + 1ð Þ −
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Figure 1: Exact and approximate solution of μðε,IÞ and ωðε,IÞ at ϑ = 1:
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Figure 2: Exact and approximate solution of μðε,IÞ at ϑ = 1.
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Figure 3: The different fractional-order of ϑ = 0:8 and 0:6 of the model.
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The exact solution of equation (8) at ϑ = 1,

μ ε,Ið Þ = 1
8 λ

2 1 − 4 sec h2 λ

2 ε + 1
2 λ

2I

� �� �� �
,

ω ε,Ið Þ = λ sec h λ

2 ε + 1
2 λ

2I

� �� �
:

ð67Þ

In Figure 1, the first figure shows the ρ-Laplace decompo-
sition method and ρ-Laplace variational transform method
and exact solutions graphs of the given problem at μðε,IÞ
and ωðε,IÞ. From the given graphs, it can be observed that
both the exact, ρ-Laplace decomposition method, and ρ-
Laplace variational transform method solution are in strong
agreement with each other. In Figure 2, the exact and approx-
imate solution of μðε,IÞ at ϑ = 1. Figure 3, different
fractional-order of ϑ = 0:8 and 0:6 of the model. Similarly,
in Figure 4, the exact and approximate solution of ωðε,IÞ
at ϑ = 1. Figure 5, different fractional-order of ϑ = 0:8 and
0:6 of the model. It is investigated that results of fractional-
order problem are convergent to an integer-order result as
fractional-order analysis to integer-order. The same
phenomenon of convergence of fractional-order solutions
towards integral-order solutions is observed.

6. Conclusion

In this paper, two analytical methods are applied to solve
fractional-order nonlinear Jaulent-Miodek equation. The
analytical results of the equations are calculated to show the
reliability and validity of the suggested techniques. Figures
of the results are plotted to show the closed contact between
the achieved and exact solutions. Moreover, the proposed
methods provide easily computable components for the
series-form solutions. It has been discovered that the results
obtained in series form have a better rate of convergence to
the exact solutions. Finally, the proposed strategies are found
to be a sophisticated strategy for solving various fractional-
order nonlinear partial differential equations.
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Figure 4: Exact and approximate solution of ωðε,IÞ at ϑ = 1.
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