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In this paper, we study the existence and uniqueness of the solution for a coupled system of mixed fractional differential equations.
The main results are established with the aid of “Mönch’s fixed point theorem.” In addition, an applied example that supports the
theoretical results reached through this study is included.

1. Introduction

Fractional calculus has an extended history, going all the
way back to Leibniz’s 17th-century explanation of the
derivative order in 1965. Mathematicians use fractional
calculus to study how derivatives and integrals of noninte-
ger order work and how they change over time. Subse-
quently, the subject attracted the interest of numerous
famous mathematicians, including Fourier, Laplace, Abel,
Liouville, Riemann, and Letnikov. For current and wide-
ranging analyses of fractional derivatives and their applica-
tions, we recommend the monographs [1, 2], and the
recently mentioned papers [3, 4].

Many problems in various scientific branches can be suc-
cessfully studied using partial differential equations, such as
theoretical physics, biology, viscosity, electrochemistry, and
other physical processes see [5–9]. For example, but not lim-
ited, the authors in [10] employed the fractional derivative of
the ψ-Caputo type in modeling the logistic population equa-
tion, through which they were able to show that the model
with the fractional derivative led to a better approximation
of the variables than the classical model. In addition, the
authors in [11] employed the fractional derivative of the ψ-

Caputo type and used the kernel Rayleigh, to improve the
model again in modeling the logistic population equation.

The obvious difference between the ordinary differential
equation and the fractional differential equation is that the
latter is an equation that contains fractional derivatives and
also comes in a relationship so that the definition of the frac-
tional derivative is an integral equation on the other side of
this equation. Fractional derivatives have drawn the atten-
tion of researchers in various fields of research. One of the
main goals of solving these equations is to investigate
whether these derivatives will help in the future in improv-
ing the accuracy of predicting the values of variables in var-
ious mathematical models in all sciences, whether in
scientific or human aspects.

Before starting this research for solutions to these prob-
lems, which are recently considered in the applied sciences,
verifying the issue of the existence and uniqueness of such
equations is an indispensable thing. To study these condi-
tions, most of the researchers use the most important fixed
point theorems in the Banach space, such as the Banach con-
traction principle and Leray- Schauder theorem see [12–18].

In 2016, Aljoudi et al. [19] published a study investigat-
ing the existence results for the following boundary value
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problem (sequential Hadamard type).

HD
ν1
1 + ηHD

ν1−1
1

� �
ξ ωð Þ = φ1 ω, ξ ωð Þ, ζ ωð Þ,HDr1

1 ζ ωð Þ� �
,

HD
ν2
1 + ηHD

ν2−1
1

� �
ζ ωð Þ = φ2 ω, ξ ωð Þ,HDr2

1 ξ ωð Þ, ζ ωð Þ� �
,

ξ 1ð Þ = 0, ξ eð Þ = HI
θ1ζ ε1ð Þ,

ζ 1ð Þ = 0, ζ eð Þ = HI
θ2ξ ε2ð Þ,

8>>>>>>>><
>>>>>>>>:

ð1Þ

where HDð:Þ
1 , ν1, ν2 ∈ ð1, 2�, r1, r2 ∈ ð0, 1Þ is the Hadamard

fractional derivative, and HIθ1 is the Hadamard fractional
integral with order θ1, θ2 > 0, φ1, φ2 ∈ Cð½1, e� ×ℝ3,ℝÞ, ε1,
ε2 ∈ ½1, e�.

In 2017, Ahmad and Ntouyas [20] published a study
investigating the existence results for the following initial
value problem

CHD
ν1
1

CHD
ν2
1 x tð Þ − f1 t, xtð Þ

� �
= f2 t, xtð Þ, t ∈ 1, b½ �,

x tð Þ = φ tð Þ, t ∈ 1 − τ, 1½ �,
CHD

ν2
1 x tð Þ = μ ∈ℝ,

8>>><
>>>:

ð2Þ

where CHD
νi
1 , νi ∈ ð0, 1Þ, i = 1, 2 is the Hadamard fractional

derivative, f i ∈ ½1, b� × Cð½−τ, 0�,ℝÞ⟶ℝ, φ ∈ Cð½1 − τ, 1�,
ℝÞ,xt ∈ Cð½−τ, 0�,ℝÞ, where xtðγÞ = xðt + γÞ, γ ∈ ½−τ, 0�:

Many researchers went deeper in their research beyond
the issue of verifying the issue of the existence of a solution
to such equations and studied the issue of the stability of
these solutions, it can be seen in [21, 22]. Furthermore,
many specialists in this field have taken an interest in hybrid
partial differential equations see [23–26].

Newly, interest in fractional calculus has increased from
a purely mathematical theory and from an applied point of
view in various sciences. Focusing on the theory, there are
many experts in this field who have studied the existence
of solutions for many types’ fractional differential equations
(FDEs) using the most famous fixed-point theories such as
Banach’s principle and nonlinear Leary-Schauder alterna-
tive. While a few of them tried other theories to examine
the existence of solutions to these problems, Derbazi and
Baitiche [27] publish one of these scientific papers.

The aim of this paper is to investigate the existence of
solutions for the following nonlinear sequential fractional
differential equation subject to the Dirichlet boundary con-
ditions.

CDα1 CHDβ1ψ tð Þ
� �

= ς t, ψ tð Þ, φ tð Þð Þ,
CDα2 CHDβ2φ tð Þ

� �
= ξ t, ψ tð Þ, φ tð Þð Þ,

ψ að Þ = ψ Tð Þ = 0, φ að Þ = φ Tð Þ = 0,

8>>>><
>>>>:

ð3Þ

where CDαi , CHDβi are the Caputo and Caputo-Hadamard
fractional derivatives of order 0 < αi, βi ≤ 1, i = 1, 2:
, a ≤ t ≤ T .

In this work, we will try to follow the researchers and
specialists in this field, by working to prove the existence
of a solution to the problem presented above. In which the
work will be presented in this format: Section 2 contains
some basic results for fractional calculus. Section 3 shows
an important result for the establishment of our main find-
ings, and after that, we present our main findings. In Section
4, an applied example is obtained illustrating what has been
obtained in the theoretical aspect of this manuscript. In Sec-
tion 5, a conclusion and future work section is introduced.

2. Preliminaries

This part is dedicated to presenting some definitions, postu-
lates, and theorems related to the fixed point concept of
solutions of differential equations, which will be used to ver-
ify the existence of a solution to the system of equations
given by Equation (3).

Definition 1 (see [7]). The Hadamard fractional integral of
order ν for a continuous function φ is defined as

HI
ν
φ ωð Þ = 1

Γ νð Þ
ðω
a

ln ω

τ

� �q−1 1
τ
φ τð Þdτ, ν > 0: ð4Þ

Definition 2 (see [7]). The Hadamard fractional derivative of
order ν > 0 for a continuous function φ : ½a,∞Þ⟶ℝ is
defined as

HD
ν
φ ωð Þ = δn HI

ν
φ

� �
ωð Þ, ð5Þ

n − 1 < ν < n, n = ½ν� + 1, where δ = ωðd/dωÞ, ½ν� denotes
the integer part of the real number v.

Definition 3 (see [5]). The Caputo-Hadamard fractional
derivative of order ν for at least n − times differentiable func-
tion φ : ½a,∞Þ⟶ℝ is defined as

CHD
ν
φ ωð Þ = 1

Γ n − νð Þ
ðω
a

ln ω

τ

� �n−ν−1
δn

g τð Þ
τ

dτ: ð6Þ

Lemma 4 (see [20]). Let u ∈ Cn
δð½a, T�,ℝÞ,where Cn

δ½a, T� =
fu : ½a, T�⟶ℝ : δðn−1Þu ∈ C½a, T�g, then HIνðHDνuÞðωÞ =
uðωÞ −∑n

k=1ckðln ðω/aÞÞν−k, and

HI
ν CHD

ν
u

� �
ωð Þ = u ωð Þ − 〠

n−1

k=0
ck ln ω

a

� �k
: ð7Þ

Denote the Banach space of all continuous functions z
from ½a, T� into Q by Cð½a, T�,QÞ,

accompanied by the norm: kzk∞ = sup
a≤t≤T

fzðtÞg.
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Definition 5 (see [28]). The Kuratowski measure of noncom-
pactness kð·Þ.

Defined on bounded set U of Banach space Q is

k Uð Þ≔ inf r > 0 : U = ∪m
i=1Ui and diam Uið Þ ≤ r for 1 ≤ i ≤mf g:

ð8Þ

Lemma 6 (see [28]). Given the Banach space Q with U, V are
two bounded proper subsets of Q, then the following proper-
ties hold true

(I) If U ⊂V , then kðUÞ ≤ kðVÞ ;
(II) kðUÞ = kð�UÞ = kðconv UÞ ;
(III) U is relativly compact⇄ kðUÞ = 0 ;
(IV) kðδUÞ = jδjkðUÞ, δ ∈ℝ ;
(V) kðU ∪ VÞ =max fkðUÞ, kðVÞg ;
(VI) kðU + VÞ ≤ kðUÞ + kðVÞ,U +V = fxjx = u + v, u

∈U , v ∈ Vg ;
(VII) kðU + yÞ = kðUÞ, ∀y ∈Q:

Lemma 7 (see [29]). Given an equicontinuous and bounded
set S ⊂ Cð½a, T�,QÞ, then the function.

ω↦ kðSðωÞÞ is continuous on ½a, T�, kCðSÞ =maxω∈½a,T�k
ðSðωÞÞ, and

k
ðT
a
x τð Þdτ

� �
≤
ðT
a
k x τð Þð Þdτ

� �
, S τð Þ = x τð Þ: x ∈ Sf g: ð9Þ

Definition 8 (see [3]). Given the function ψ : ½a, T� ×Q
⟶Q, ψ satisfy the Carathéodory conditions, if the follow-
ing conditions applies:

(I) ψðω, zÞ is measurable in ω for z ∈Q ;
(II) ψðω, zÞ is continuous in z ∈Q for ω ∈ ½a, T�:

Theorem 9 (Mönch’s fixed point theorem [4]). Given a
bounded, closed, and convex subset Ω ⊂Q, such that 0 ∈Ω,
let also Τ be a continuous mapping of Ω into itself.

If S = convΤðSÞ, or S = ΤðSÞ ∪ f0g, then kðSÞ = 0, satisfied
∀S ⊂Ω, then Τ has a fixed point.

3. Existence Results

Let B = fðψðtÞ, φðtÞÞjðψ, φÞ ∈ Cð½a, T�,ℝÞ × Cð½a, T�,ℝÞg:
Obviously, the defined set B is a Banach space with
kðψ, φÞkB = kψk∞ + kφk∞.

The measurable functions ðψ, φÞ ∈ Cð½a, T�,ℝÞ × Cð½a,
T�,ℝÞ are said to be solutions of problem Equation (3) if
they satisfy problem (3) associated with the given boundary
conditions, our next lemma will introduce the solutions of
Equation (3), which indeed needed to investigate the exis-
tence results.

Lemma 10. If p, q ∈ Cð½a, T�,ℝÞ, then the solution of

CD
α1 CHD

β1ψ tð Þ
� �

= p tð Þ,
CD

α2 CHD
β2φ tð Þ

� �
= q tð Þ,

ψ að Þ = ψ Tð Þ = 0, φ að Þ = φ Tð Þ = 0:

8>>>><
>>>>:

ð10Þ

With 0 < αi, βi ≤ 1, i = 1, 2:a ≤ t ≤ T , is given by

ψ tð Þ = 1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1p xð Þdx dr

r

−
ln t/að Þ
n T/að Þ

� �β1 1
Γ α1ð ÞΓ β1ð Þ

ðT
a

ðr
a

� ln T
r

� �β1−1

r − xð Þα1−1p xð Þdx dr
r
,

ð11Þ

φ tð Þ = 1
Γ α2ð ÞΓ β2ð Þ

ðt
a

ðr
a

ln t
r

� �β2−1

r − xð Þα2−1q xð Þdx dr
r

−
ln t/að Þ
n T/að Þ

� �β2 1
Γ α2ð ÞΓ β2ð Þ

ðT
a

ðr
a

� ln T
r

� �β2−1

r − xð Þα2−1q xð Þdx dr
r
:

ð12Þ

Proof. Apply RLIαi , i = 1, 2 to Equation (10), respectively,
implies

CHD
β1ψ tð Þ = RLI

α1p tð Þ + c0, c0 ∈ℝ, ð13Þ

CHD
β2φ tð Þ = RLI

α2q tð Þ + d0, d0 ∈ℝ: ð14Þ

Now, apply HIβi , i = 1, 2 to Equation (13) and Equation
(14), respectively, implies

ψ tð Þ = HI
β1 RLI

α1p
� �

tð Þ + c0
ln t/að Þð Þβ1
Γ β1 + 1ð Þ + c1, c0, c1 ∈ℝ,

ð15Þ

φ tð Þ = HI
β2 RLI

α2q
� �

tð Þ + d0
ln t/að Þð Þβ2

Γ β2 + 1ð Þ + d1, d0, d1 ∈ℝ:

ð16Þ

Using the conditions ψðaÞ = 0, φðaÞ = 0 in Equation (15)
and Equation (16), respectively, yields c1, d1 are both zeros.
Again the conditions ψðTÞ = 0, φðTÞ = 0 in Equation (15)
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and Equation (16), respectively, give

c0 = −
Γ β1 + 1ð Þ
ln T/að Þð Þβ1

HI
β1 RLI

α1p
� �

Tð Þ,

d0 = −
Γ β2 + 1ð Þ
ln T/að Þð Þβ2

HI
β2 RLI

α2q
� �

Tð Þ:
ð17Þ

Back substituting ci, di, i = 1, 2 obtained above in equa-
tions Equation (15) and Equation (16), we get

ψ ðtÞ = HIβ1ðRLIα1pÞðtÞ − ðln ðt/aÞ/ln ðT/aÞÞβ1HIβ1ðRLIα1
pÞðTÞ, and φðtÞ = HIβ2ðRLIα2qÞðtÞ − ðln ðt/aÞ/ln ðT/aÞÞβ2

HIβ2ðRLIα2qÞðTÞ . The proof is completed.

To begin formulating theoretical results regarding the
problem of having a solution to the system of fractional dif-
ferential equations given by Equation (3). We will force the
following conditions to be hold true.

(C1). Assume the functions ς, ξ : ½a, T� ×ℝ2 ⟶ℝ sat-
isfy Carathéodory conditions.

(C2). ∃lς, lξ ∈ L∞ð½a, T�,ℝ+Þ, and there exist a nonde-
creasing continuous function ϑς, ϑξ : ℝ+ ⟶ℝ+, such that
, ∀t ∈ ½a, T�, ∀ðψ, φÞ ∈ B, we have

ς t, ψ, φð Þk k∞ ≤ lς tð Þϑς ψk k∞ + φk k∞
� �

,
ξ t, ψ, φð Þk k∞ ≤ lξ tð Þϑξ ψk k∞ + φk k∞

� �
:

ð18Þ

(C3). Let S ⊂ B × B, be a bounded set, and ∀t ∈ ½a, T�,
then

κ ς t, Sð Þð Þ ≤ lς tð Þκ Sð Þ,
κ ξ t, Sð Þð Þ ≤ lξ tð Þκ Sð Þ:

ð19Þ

Also, one can use the fact that ðr − aÞα1 ≤ ðT − aÞα1 , to
deduce that

Ξ1 = sup
a≤t≤T

1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1dx dr

r

(

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1dx dr

r

)

≤
2 T − að Þα1 ln T/að Þð Þα1
Γ α1 + 1ð ÞΓ β1 + 1ð Þ ,

Ξ2 = sup
a≤t≤T

1
Γ α2ð ÞΓ β2ð Þ

ðt
a

ðr
a

ln t
r

� �β2−1
r − xð Þα2−1dx dr

r

(

+ ln t/að Þ
ln T/að Þ
� �β2 1

Γ α2ð ÞΓ β2ð Þ
ðT
a

ðr
a

ln T
r

� �β2−1
r − xð Þα2−1dx dr

r

)

≤
2 T − að Þα2 ln T/að Þð Þα2
Γ α2 + 1ð ÞΓ β2 + 1ð Þ :

ð20Þ

Theorem 11. Assume that the conditions (C1), (C2), and
(C3) are satisfied. If max fΞ1

�lς, Ξ2
�lξg < 1, then there exist at

least one solution for the boundary value problem Equation
(3) on ½a, T�.

Proof. Beginning with introducing the following continuous
operator ϒ : B⟶ B, asϒ = ðϒ 1ðψ, φÞðtÞ,ϒ 2ðψ, φÞðtÞÞ,
where

ϒ 1 ψ, φð Þ tð Þ = 1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk kdx dr

r

−
ln t/að Þ
n T/að Þ

� �β1 1
Γ α1ð ÞΓ β1ð Þ

ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk kdx dr

r
,

ϒ 2 ψ, φð Þ tð Þ = 1
Γ α2ð ÞΓ β2ð Þ

ðt
a

ðr
a

ln t
r

� �β2−1
r − xð Þα2−1ξ x, ψ xð Þ, φ xð Þð Þdx dr

r

−
ln t/að Þ
n T/að Þ

� �β2 1
Γ α2ð ÞΓ β2ð Þ

ðT
a

ðr
a

� ln T
r

� �β2−1
r − xð Þα2−1ξ x, ψ xð Þ, φ xð Þð Þdx dr

r
:

ð21Þ

According to the conditions (C1) and (C2), the operator
ϒ is well defined. Then, the following operator equation can
be an equivalent equation to the fractional equations given
by Equation (11) and Equation (12)

ψ, φð Þ =ϒ ψ, φð Þ: ð22Þ

Subsequently, proving the existence of the solution to
Equation (22) is equivalent to proving the existence of a
solution to Equation (3).

Let Θε = fðψ, φÞ ∈ B : kðψ, φÞk ≤ ε, ε > 0g be a closed
bounded convex ball in B with ε ≥�lςΞ1ϑςðεÞ +�lξΞ2ϑξðεÞ,
where �lς = sup

a≤t≤T
lςðtÞ,.

For the possibility of applying Mönch’s fixed point theo-
rem, we will proceed in the proof in the form of four steps,
and thus, we achieve the desired goal by proving the exis-
tence of a solution to the equation given in Equation (3).

Firstly, we show that ϒΘε ⊂Θε, for this, we lett ∈ ½a, T�,
and for any ðψ, φÞ ∈Θε, we have

ϒ 1 ψ, φð Þk k∞ ≤
1

Γ α1ð ÞΓ β1ð Þ
ðt
a

ðr
a

� ln t
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r
:

ð23Þ

Based on (C2), ∀t ∈ ½a, T�, observe that

ς t, ψ tð Þ, φ tð Þð Þk k∞ ≤ lς tð Þϑς ψ tð Þk k∞ + φ tð Þk k∞
� �

≤�lςϑς εð Þ,
ð24Þ
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then

ϒ 1 ψ, φð Þk k∞ ≤
1

Γ α1ð ÞΓ β1ð Þ
ðt
a

ðr
a

ln t
r

� �β1−1

� r − xð Þα1−1lς tð Þϑς ψ tð Þk k∞ + φ tð Þk k∞
� �

dx
dr
r

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1lς tð Þϑς ψ tð Þk k∞ + φ tð Þk k∞

� �
dx

dr
r
,

≤�lςϑς ψ tð Þk k∞ + φ tð Þk k∞
� �

sup
a≤t≤T

� 1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1dx dr

r

(

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1dx dr

r

)

≤�lςΞ1ϑς εð Þ:
ð25Þ

Similarly,

ϒ 2 ψ, φð Þk k∞ ≤
1

Γ α2ð ÞΓ β2ð Þ
ðt
a

ðr
a

ln t
r

� �β2−1

� r − xð Þα2−1lξ tð Þϑξ ψ tð Þk k∞ + φ tð Þk k∞
� �

dx
dr
r

+ ln t/að Þ
n T/að Þ

� �β2 1
Γ α2ð ÞΓ β2ð Þ

ðT
a

ðr
a

� ln T
r

� �β2−1
r − xð Þα2−1lξ tð Þϑξ ψ tð Þk k∞ + φ tð Þk k∞

� �
dx

dr
r

≤�lξΞ2ϑξ εð Þ:
ð26Þ

Equation (25) and Equation (26) imply that

ϒ ψ, φð Þk kB = ϒ 1 ψ, φð Þk k∞ + ϒ 2 ψ, φð Þk k∞ ≤�lςΞ1ϑς εð Þ+ ≤�lξΞ2ϑξ εð Þ ≤ ε:

ð27Þ

This proves that ϒΘε ⊂Θε.
Secondly, we need to show the continuity for ϒ to see

this, we take the sequence fun = ðψn, φnÞg ∈Θε, such that
un ⟶ u = ðψ, φÞ as n⟶∞:.

Owing to the Carathéodory continuity of ς, it is obvious
that

ς ·ð Þ, ψn ·ð Þ, φn ·ð Þð Þ⟶ ς ·ð Þ, ψ ·ð Þ, φ ·ð Þð Þas n⟶∞: ð28Þ

Keeping in mind was given in (C2), one can deduce that

ln t
r

� �β1−1
r − xð Þα1−1 ς rð Þ, ψn rð Þ, φn rð Þð Þ − ς rð Þ, ψ rð Þ, φ rð Þð Þk k∞

≤�lςϑς εð Þ ln t
r

� �β1−1
r − xð Þα1−1

 !
:

ð29Þ

Together with the Lebesgue dominated convergence the-
orem and the fact that the function

r↦�lςϑςðεÞððln ðt/rÞÞβ1−1ðr − xÞα1−1Þ is the Lebsegue inte-
grable on ½a, T�, we have

1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1 ς rð Þ, ψn rð Þ, φn rð Þð Þ − ς rð Þ, ψ rð Þ, φ rð Þð Þk k∞dx

dr
r

 

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1 ς rð Þ, ψn rð Þ, φn rð Þð Þk

− ς rð Þ, ψ rð Þ, φ rð Þð Þk∞dx
dr
r

�
⟶ 0as n⟶∞:

ð30Þ

Yields to kϒ 1ðψn, φnÞðtÞ −ϒ 1ðψ, φÞðtÞk∞ ⟶ 0
as n⟶∞:∀t ∈ ½a, T�, we get

ϒ 1 ψn, φnð Þ −ϒ 1 ψ, φð Þk k∞ ⟶ 0 as n⟶∞, ð31Þ

that is the operator ϒ 1 is continuous.
In a like manner, we have

ϒ 2 ψn, φnð Þ −ϒ 2 ψ, φð Þk k∞ ⟶ 0 as n⟶∞, ð32Þ

Combining (31) and (32), we obtain

ϒ ψn, φnð Þ −ϒ ψ, φð Þk k∞ ⟶ 0 as n⟶∞: ð33Þ

From equation (33), we conclude that the operator ϒ is
continuous.

Third, to verify the equicontinuity for the operator ϒ , let
t1, t2 ∈ ½a, T�, ðt1 < t2Þ, and for any ðψ, φÞ ∈Θε, then

ϒ 1 ψ, φð Þ t2ð Þ −ϒ 1 ψ, φð Þ t1ð Þk k∞
≤

1
Γ α1ð ÞΓ β1ð Þ

ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

� ln t2
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

l n T/að Þð Þβ1Γ α1ð ÞΓ β1ð Þ

 !ðT
a

ðr
a

ln T
r

� �β1−1

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r
,

≤ �lς tð Þϑς εð Þ� �
× 1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" # 

� r − xð Þα1−1dx dr
r
+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1
r − xð Þα1−1dx dr

r

+ ln t2/að Þð Þβ1 − ln t1/að Þð Þβ1

ln T/að Þð Þβ1Γ α1ð ÞΓ β1ð Þ

" #ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1dx dr

r

!

⟶ 0 as t1 ⟶ t2:

ð34Þ

5Journal of Function Spaces



Similarly, we get

ϒ 2 ψ, φð Þ t2ð Þ −ϒ 2 ψ, φð Þ t1ð Þk k∞
≤ �lξ tð Þϑξ εð Þ� �

× 1
Γ α2ð ÞΓ β2ð Þ

ðt1
a

ðr
a

ln t2
r

� �β2−1
− ln t1

r

� �β2−1
" #

r − xð Þα2−1dx dr
r

 

+ 1
Γ α2ð ÞΓ β2ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β2−1
r − xð Þα2−1dx dr

r

+ ln t2/að Þð Þβ2 − ln t2/að Þð Þβ2

l n T/að Þð Þβ2Γ α2ð ÞΓ β2ð Þ

" #ðT
a

ðr
a

ln T
r

� �β2−1
r − xð Þα2−1dx dr

r

!
⟶ 0 as t1 ⟶ t2:

ð35Þ

Note that the R.H.S’s of the above inequalities of Equa-
tion (34) and Equation (35) are free of ðψ, φÞ ∈Θε, which
implies that ϒ is equicontinuous and bounded.

Fourth and finally, we need to satisfy Mönch’s hypothe-
sis, so we letU =U1 ∩U2,.

where U1,U2 ⊆Θε: Moreover, U1,U2 are assumed to be
bounded and equicontinuous, such that

U1 ⊂ conv ϒ 1 U1ð Þ ∪ 0f gð Þ, andU2 ⊂ conv ϒ 2 U2ð Þ ∪ 0f gð Þ:
ð36Þ

Thus, the functions I1ðtÞ = κðU1ðtÞÞ,I2ðtÞ = κðU2ðtÞÞ
are continuous on ½a, T�.

Based on lemma Equation(10), lemma Equation (11),
and (C3), we get

I1 tð Þ = κ U1 tð Þð Þ ≤ κ conv ϒ 1 U1ð Þ tð Þ ∪ 0f gð Þð Þ ≤ κ ϒ 1 U1ð Þ tð Þð Þ

≤ κ
1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #(

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

ln T/að Þ

 !

� 1
Γ α1ð ÞΓ β1ð Þ

ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r
: ψ, φð Þ ∈U1

)

≤
1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #

r − xð Þα1−1κ ς x,U1 xð Þð Þð Þdx dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1
r − xð Þα1−1κ ς x,U1 xð Þð Þð Þdx dr

r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

ln T/að Þ

 !
1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1

� r − xð Þα1−1κ ς x,U1 xð Þð Þð Þdx dr
r

≤
1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #

� r − xð Þα1−1lς xð Þκ U1 xð Þð Þdx dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1

� r − xð Þα1−1lς xð Þκ U1 xð Þð Þdx dr
r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

ln T/að Þ

 !
1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1lς xð Þκ U1 xð Þð Þdx dr

r
≤ Ξ1�lς I1k k∞:

ð37Þ

That is
kI1k ≤ Ξ1

�lςkI1k, but it is assumed that max fΞ1
�lς, Ξ2

�lξg < 1, which implies that kI1k∞ = 0, i.e.,

I1 tð Þ = 0,∀t ∈ a, T½ �: ð38Þ

In a like manner, we have I2ðtÞ = 0, ∀t ∈ ½a, T�: So κðU
ðtÞÞ ≤ κðU1ðtÞÞ = 0 and.

κðUðtÞÞ ≤ κðU2ðtÞÞ = 0, which implies that UðtÞ is rela-
tively compact in B × B: Now, Arzela-Ascoli is applicable,
which means that U is relatively compact in Θε:, and there-
fore, using theorem 9, we deduce that the operator ϒ has a
fixed point ðψ, φÞ (solution of the problem Equation (3))
on Θε: And that ends the proof.

4. Example

In this section, we provide an applied example that supports
the theoretical results reached through this study.

Define ψ0 = fψ = ðψ1, ψ2,⋯, ψn,⋯Þ: lim
n⟶∞

ψn = 0g, it is
obvious that z0 is a Banach space withkψk∞ = sup

n≥1
jψnj: For

this, we consider the following boundary value problem:

CD
0:5 CHD

0:75
ψ tð Þ

� �
= ς t, ψ tð Þ, φ tð Þð Þ, t ∈ 1, 3½ �,

CD
0:6 CHD

0:9
φ tð Þ

� �
= ξ t, ψ tð Þ, φ tð Þð Þ, t ∈ 1, 3½ �,

ψ 1ð Þ = ψ 3ð Þ = 0, 0, 0,⋯, 0,⋯ð Þ, φ 1ð Þ = φ 3ð Þ = 0, 0, 0,⋯, 0,⋯ð Þ:

8>>>><
>>>>:

ð39Þ

Here, α1 = 0:5, β1 = 0:75, α2 = 0:6, β2 = 0:9, a = 1, and T
= 3:

Now, let us take for example

ς t, ψ tð Þ, φ tð Þð Þ = 1
ln t + 10

1
4n + ln 1 + ψnj j + φnj jð Þ
� �� 	

, n ≥ 1,

ξ t, ψ tð Þ, φ tð Þð Þ = t
10

1
n4

+ tan−1 1 + ψnj j + φnj jð Þ
� �� 	

, n ≥ 1:

ð40Þ

∀t ∈ ½1, 3�, withfψngn≥1, fφngn≥1 ∈ ψ0, assumption (C1)
of theorem 11 is satisfied. Furthermore,

ς t, ψ, φð Þk k∞ ≤
1

ln t + 10
1
4n + ln 1 + ψnj j + φnj jð Þ
� �










∞

≤
1

ln t + 10 ψk k + 1ð Þ = lς tð Þϑς ψk kð Þ:
ð41Þ

Similarly,

ξ t, ψ, φð Þk k∞ ≤
t
10

1
n4

+ tan−1 1 + ψnj j + φnj jð Þ
� �










∞

≤
t
10 ψk k + 1ð Þ = lξ tð Þϑξ ψk kð Þ:

ð42Þ

That is (C2) of theorem 11 is satisfied as well.
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Next, if we consider the bounded subset S ⊂ ψ0 × ψ0, we
obtain

κ ς t, Sð Þð Þ ≤ lς tð Þκ Sð Þ,
κ ξ t, Sð Þð Þ ≤ lξ tð Þκ Sð Þ,

ð43Þ

where in our case, we have lςðtÞ = 1/ln t + 9, lξðtÞ = t/10; the
latter two inequalities show that the condition (C2) of the
theorem 11 is satisfied.

Finally, we calculate

�lς =
1
10 , Ξ1 ≤

2 T − að Þα1 ln T/að Þð Þα1
Γ α1 + 1ð ÞΓ β1 + 1ð Þ = 3:6411,

�lξ =
3
10 , Ξ2 ≤

2 T − að Þα2 ln T/að Þð Þα2
Γ α2 + 1ð ÞΓ β2 + 1ð Þ = 0:9376:

ð44Þ

Then, max fΞ1
�lς, Ξ2

�lξg =max f0:3611, 0:28128g =
0:3611 < 1: So all conditions of theorem 11 satisfied, that is
the problem Equation (39) has at least one
solutionðψ, φÞ ∈ Cð½1, 3�, ψ0Þ × Cð½1, 3�, ψ0Þ.

5. Conclusion

In the current paper, we studied the existence and unique-
ness of solution for a coupled system of a mixed fractional
differential equations. The main results are established by
the aid “Mönch’s fixed point theorem.” In addition, an
applied example that supports the theoretical results reached
through this study is included. For future work, more inves-
tigations can be performed for such a system by applying
another type of fractional derivatives to verify the existence
and uniqueness issue, stability via Ulam-Hyeres technique
is also possible to be verified.
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