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The most important objective of the current research is to establish some theoretical existence and attractivity results of solutions
for a novel nonlinear fractional functional evolution equations (FFEE) of Caputo type. In this respect, we use a familiar Schauder’s
fixed-point theorem (SFPT) related to the method of measure of noncompactness (MNC). Furthermore, we consider the operator
E and show that it is invariant and continuous. Moreover, we provide an application to show the capability of the achieved results.

1. Introduction

During the recent years, the study of fractional evolution
equations (FEE) has attracted a lot of attention. Such class
pulls out the interest of such countless creators toward itself,
inspired by their broad use in numerical analysis. Fractional
Calculus (FC), as much as classic analytics, has discovered
significant examples in the study of problem in a thermal
system and mechanical system. Also, in certain spaces of
sciences like control hypothesis, a fractional differential oper-
ator appears to be more reasonable to model than the old style
integer order operator. Because of this, FEE has been utilized
in models about organic chemistry and medication.

In the last few years, the hypothesis of FEE has been
scientifically explored by a major number of extremely fasci-
nating and novel papers (see [1–3]). The existence of global
attractivity solutions to theΨ-Hilfer Cauchy fractional prob-
lem is investigated by several researchers (see [4]). Chang
et al. [5] used fixed-point theorems to study the asymptotic
decay of various operators, as well as the existence and

uniqueness of a class of mild solutions of Sobolev fractional
differential equations. In [6, 7], the theory of fractional dif-
ferential equations was discussed. The Ψ-Hilfer fractional
derivative was used to investigate the existence, uniqueness,
and Ulam-Hyers stabilities of solutions of differential and
integro-differential equations.

The existence and attractivity of solutions to the following
coupled system of nonlinear fractional Riemann-Liouville-
Volterra-Stieltjes quadratic multidelay partial integral equa-
tions are investigated by many authors. The properties of
bounded variation functions are defined by them (see
[8–10]). The attractivity of solutions to the Hilfer fractional
stochastic evolution equations is discussed by Yang and
others. In circumstances where the semigroup associated
with the infinitesimal generator is compact, they establish
sufficient criteria for the global attractivity of mild solutions
(see [11]). Also, mild solutions for multiterm time-
fractional differential equations with nonlocal initial condi-
tions and fractional functional equations (FFE) have been
researched (see [12, 13]).
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A functional differential equation is a general name for a
number for more specific types of DE that are used in differ-
ent applications. There are delay differential equations
(DDE), integro-differential equations, and so on. FC has
been effectively applied in different applied zones like
computational science and financial aspects. In specific
circumstances, we need to solve FEE having more than one
differential operator, and this kind of FEE is known as multi-
term FEE. The researchers set up the existence of monotonic
solution for multiterm PDE in Banach spaces, utilizing the
RL-fractional derivative.

The greater part of the current work is concentrated on
the existence and uniqueness of the solution for FEE (see
[14–16]). The goal of this study is to investigate the existence
of solutions to a class of multiterm FFEE on an unbounded
interval in terms of bounded and consistent capacities. We
also look at several key aspects of the arrangement that are
relevant to the concept of attractivity of solution.

Consider IVP of the following FFEE:

CDβv tð Þ = Bv tð Þ + 〠
n

i=1

CDβi f i t, vtð Þ + f0 t, vtð Þ, t > t0, 1 < β < 2,

v tð Þ = ϕ tð Þ = ϕ0, v′ tð Þ = ϕ′ tð Þ = ϕ1, t0 − ϱ ≤ t ≤ t0,

8><
>:

ð1Þ

where CDβ is the Caputo fractional derivative (CFD) of
order β > 0, ρ = constant, ϕ ∈ Cð½t0 − ϱ, t0Þ, RÞ, and i = 1, 2,
⋯n,CDβi is the CFD of order 0 < βi < β and f : H × Cð½−ϱ,
0�, RÞ⟶ R, in such a way that H = ðt0,∞Þ is a predefined
function. We additionally consider for any x ∈H the func-
tion vt : ½−ϱ, 0�⟶ R given that vtðsÞ = vðt + sÞ for every s
∈ ½−ϱ, 0�. We show that (1) has an attractive solution under
the broad and favourable assumption using the SFPT and
the concept of measure of noncompactness. We believe that
by using classic SFPT and a control function, we can achieve
a different result.

The following is the outline for this paper. We review
some essential preliminaries in Section 2. In Section 3, we
give a few supposition and lemmas or theorems to introduce
the consequence of such section for (1) utilizing SFPT. In
Section 4, we first review some assistant realities about the
idea of MNC and related signs; at that point, we study the
existence of solution for (1) applying a well-known Derbo-
type fixed-point hypothesis along with the method of
MNC. Finally, in Section 5, we discuss a useful application
to represent our main result.

2. Preliminaries

In this section, we discuss some known definitions. Likewise,
we define a few ideas identified with (1) along with SFPT.

Definition 1 (see [17]). For a function f , the fractional inte-
gral of order β with t0 ∈ R is defined as

Iβ f tð Þ = 1
Γ βð Þ

ðt
t0

f sð Þ
t − sð Þ1−β

ds, t > t0, β > 0, ð2Þ

given that the R.H.S is pointwise characterized on ½t0,∞Þ
where Γð·Þ is the usual gamma function.

Definition 2 (see [17]). The RL-derivative of order m − 1 <
β <m with t0 ∈ R for a function f ∈ Cmð½x0,∞Þ, RÞ can be
composed as

Dβ f tð Þ = 1
Γ m − βð Þ

dm

dtm

ðt
t0

f sð Þ
t − sð Þβ+1−m

ds, t > t0,m ∈ℕ:

ð3Þ

Definition 3 (see [17]). Caputo derivative of order m − 1 <
β <m for a function f ∈ Cm+1ð½t0,∞Þ, RÞ can be composed as

CDβ f tð Þ =Dβ f sð Þ − 〠
m−1

h=1

f hð Þ t0ð Þ
Γ h − β + 1ð Þ s − t0ð Þh−β

 !
tð Þ, t > t0,m ∈ℕ:

ð4Þ

Definition 4 (see [18]). The solution vðxÞ of IVP (1) is sup-
posed to be attractive if ∃ a constant term c0ðt0Þ > 0 in such
a way that

ϕ sð Þj j ≤ c0 s ∈ t0 − ϱ, t0½ �ð Þ: ð5Þ

This means that vðtÞ⟶ 0 as like t⟶∞.

Definition 5 (see [19]). The solution vðtÞ of IVP (1) is sup-
posed to be attractive, if

lim
t⟶∞

v tð Þ −w tð Þð Þ = 0, ð6Þ

for some arrangement w =wðtÞ of IVP (1).

Theorem 6 (SFP theorem [20]. If V is nonempty, closed,
bounded convex subset of Banach space Y and K : V ⟶V
is totally continuous, at that point K has a fixed point in V .

3. Attractivity of Solutions with Schauder’s
Fixed-Point Principle

The Schauder fixed-point theorem states that any compact
convex nonempty subset of a normed space has the fixed-
point property, which is one of the most well-known conclu-
sions in fixed-point theory. It is also true in spaces that are
locally convex. The Schauder fixed-point theorem has
recently been extended to semilinear spaces. The Schauder
fixed-point theorem is an extension of the Brouwer fixed-
point theorem to topological vector spaces, which may be
of infinite dimension.

This section contains the following information: we
examine (1) utilizing the SFPT under the following
suppositions:

(H1) The function f iðt, vtÞ is Lebesgue measurable in
terms of t for every i = 1, 2,⋯n, on ½t0,∞Þ, and f iðt, ϕÞ is
continuous in terms of ϕ on Cð½−ρ, 0�, RÞ.
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(H2) There is a function that is strictly nonincreasing
J : R⟶ R which disappears at infinity in such a way that

ϕm t0ð Þ + 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þds
 !�����

�����
≤ J t − t0ð Þ, ∀t ∈H = t0,∞Þ½ ,m = 0, 1:

ð7Þ

(H3) ∃ a constant α in such a way that for every i = 1,
2, 3⋯ n, we have f i ∈ L

1/αðH, C½−ϱ, 0�, RÞ with

α ∈ 0, min
0≤i≤n

β − βi

� �
: ð8Þ

By condition (H1), IVP (1) is equal to the following
condition:

v xð Þ =
ϕm t0ð Þ + 〠

n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þds, t > t0,m = 0, 1,

ϕm tð Þ, t ∈ t0 − ϱ, t0½ �,

8><
>:

ð9Þ

where β0 = 0 and 0 < βi < β for i = 1, 2, 3⋯ n. We define
the operator E as

Ev½ � xð Þ =
ϕm t0ð Þ + 〠

n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þds, t > t0,m = 0, 1,

ϕm tð Þ, t ∈ t0 − σ, t0½ �,

8><
>:

ð10Þ

for each v ∈ Cð½t0 − ρ,∞Þ, RÞ.
Consider the IVP of the following FFEE:

CDβv tð Þ = Bv tð Þ + 〠
n

i=1

CDβi f i t, vtð Þ + f0 t, vtð Þ, t > t0, 1 < β < 2,

v tð Þ = ϕ tð Þ = ϕ0, v′ tð Þ = ϕ′ tð Þ = ϕ1, t0 − ϱ ≤ t ≤ t0:

8><
>:

ð11Þ

The above system is equal to the following integral:

v tð Þ = ϕ0 + ϕ1t + 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þds, t ∈ 0,∞½ Þ,

ð12Þ

provided that the integral (12) exists.

Theorem 7. If (12) holds, then

v tð Þ = Cβ tð Þϕ0 + Kβ tð Þϕ1 +
ðt
t0

t − sð Þβ−1Pβ t − sð Þf i s, vsð Þds, t ∈ 0,∞½ Þ,

ð13Þ

where

Cβ tð Þ =
ð∞
0
Mβ θð ÞC tβθ

� �
dθ, Kβ tð Þ =

ðt
0
Cβ sð Þds,

Pβ tð Þ =
ð∞
0
βθMβ θð ÞS tβθ

� �
dθ :

ð14Þ

Proof. Let λ > 0, then

ν λð Þ =
ð∞
0
e−λsv sð Þds, μ λð Þ =

ð∞
0
e−λs f i sð Þds: ð15Þ

Applying the Laplace transform to (12), we get

υ λð Þ = λβ−1 λβ − B
� �−1

ϕ0 + λβ−2 λβ − B
� �−1

ϕ1 + λβ − B
� �−1

μ λð Þ,
ð16Þ

for t ≥ 0.

ν λð Þ = λ β/2ð Þ−1
ð∞
0
e−λ

β/2tC tð Þϕ0dt + λ−1λ β/2ð Þ−1
ð∞
0
e−λ

β/2tC tð Þϕ1dt

+
ð∞
0
e−λ

β/2tS tð Þμ tð Þdt:

ð17Þ

Let

ϕβ θð Þ = β

θβ+1
Mβ θ−β
� �

, θ ∈ 0,∞ð Þ, ð18Þ

and its Laplace transform is given by

ð∞
0
e−λθϕβ θð Þdθ = e−λ

β , β ∈
1
2 , 1
� �

: ð19Þ

Using (19), we have

λβ−1
ð∞
0
e−λ

βtC tð Þϕ0dt =
ð∞
0
β λtð Þβ−1e− λtð ÞβC tβ

� �
ϕ0dt

=
ð∞
0

−
1
λ

d
dt

ð∞
0
e−λtθϕβ θð Þdθ

� �
C tβ
� �

ϕ0dt

=
ð∞
0

ð∞
0

−λθ
−λ

e−λtθϕβ θð ÞC tβ
� �

ϕ0dt

=
ð∞
0

ð∞
0
θϕβ θð Þe−λtθC tβ

� �
ϕ0dtdθ

=
ð∞
0

ð∞
0
ϕβ θð Þe−λtC tβ

θβ

� �
ϕ0dθdt

=
ð∞
0
e−λt

ð∞
0
ϕβ θð ÞC tβ

θβ

� �
ϕ0

� �
dθdt

=L

ð∞
0
Mβ θð ÞC tβθ

� �
ϕ0dθ

� �
λð Þ =L Cβ tð Þϕ0

	 

λð Þ:

ð20Þ

Since L½g1ðtÞ�ðλÞ = λ−1, according to the Laplace convo-
lution theorem, we have
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λ−1λβ−1
ð∞
0
e−λ

βtC tð Þϕ1dt =L g1 tð Þ½ � λð Þ ∗L Cβ tð Þϕ1
	 


λð Þ,

ð21Þ

λ−1λβ−1
ð∞
0
e−λ

βtC tð Þϕ1dt =L g1 ∗ Cβ

� �
tð Þϕ1

	 

λð Þ:

ð22Þ
Similarly,

ð∞
0
e−λ

βtS tð Þμ λð Þdt =
ð∞
0
βtβ−1e −λtð ÞβS tβ

� �
μ λð Þdt

=
ð∞
0

ð∞
0
βtβ−1ϕβ θð Þe−λtθS tβ

� �
μ λð Þdtdθ

=
ð∞
0

ð∞
0
β
tβ−1

θβ
ϕβ θð Þe−λtθS tβ

θβ

� �
μ λð Þdtdθ

=
ð∞
0
e−λt

ð∞
0
β
tβ−1

θβ
ϕβ θð ÞS tβ

θβ

� �
μ λð Þdθ

� �
dt

=L

ð∞
0
βtβ−1Mβ θð ÞS tβθ

� �
dθ

� �
λð Þ · L f i tð Þ½ � λð Þ

=L

ðt
t0

t − sð Þβ−1Pβ t − sð Þf i sð Þds
" #

λð Þ:

ð23Þ

Combining equations (20), (22), and (23), we have

v tð Þ = Cβ tð Þϕ0 +
ðt
t0

Cβ sð Þϕ1ds +
ðt
t0

t − sð Þβ−1Pβ t − sð Þf i s, vsð Þds:

ð24Þ

The above system can also be written as

v tð Þ = Cβ tð Þϕ0 +
ðt
t0

Cβ sð Þϕ1ds

+ 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þds, t > t0:

ð25Þ

Thus, the proof is complete.

Lemma 8. Assume that f iðt, vtÞ fulfills conditions (H1)-(H3). At
that point, (1) has minimum one solution in Cð½t0 − ρ,∞Þ, RÞ.

Proof. Define a set P ⊂ Cð½t0 − ϱ,∞Þ, RÞ by

P = v : v ∈ C t0 − ϱ,∞½ Þ, Rð Þ, v tð Þj j ≤ J t − t0ð Þ∀t ≥ t0f g:
ð26Þ

P is clearly a nonempty, convex, closed, and bounded
subset of Cð½t0 − ϱ,∞Þ, RÞ. To show that (1) has a solution,
it just necessities to prove that in P, the operator E has a

fixed point. To begin with, we prove that P is E-invariant.
This is without any problem acquired by condition (H2).
Now, we should explain that E is continuous. For this, sup-
pose that ðvmÞm∈ℕ is a sequence of a function to such an
extent that vm ∈ P∀m ∈ℕ and vm ⟶ v asm⟶∞. Clearly,
by the continuity f iðt, vtÞ, we get

lim
m⟶∞

f i t, vmtð Þ = f i t, vtð Þ∀t > t0, i = 1, 2,⋯n: ð27Þ

Assume that ε > 0 is given. After all, J is strongly
decreasing. At that point for some T > t0, we have

J t − t0ð Þ < ε

2 , ∀t > T: ð28Þ

For t0 < t ≤ T , we get

Evm½ � tð Þ − Ev½ � tð Þj j ≤ 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vmsð Þ − f s, vsð Þj jds

≤ 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þ β−βi−1ð Þ/ 1−αð Þ
 !1−α

�
ðt
t0

f i s, vmsð Þ − f s, vsð Þj j1/αds
 !α

≤ 〠
n

i=1

1 − αð Þ1−α
Γ β − βið Þ β − βi − αð Þ1−α

T − t0ð Þβ−βi−α

�
ðt
t0

f i s, vmsð Þ − f s, vsð Þj j1/αds
 !α

≤ 〠
n

i=1

1 − αð Þ1−α
Γ β − βið Þ β − βi − αð Þ1−α

T − t0ð Þβ−βi ,

sup
t0≤t≤T

f i s, vmsð Þ − f s, vsð Þj j, ð29Þ

which disappear when m⟶∞. Then again, since P in E
-invariant, at that point, (28) yields

Evm½ � tð Þ − Ev½ � tð Þj j ≤ 2J t − t0ð Þ < ε, ∀t > T: ð30Þ

Thus, for t > t0, this implies that

Evm½ � tð Þ − Ev½ � tð Þj j⟶ 0 asm⟶∞: ð31Þ

If x ∈ ½t0 − ρ, t0�, we clearly have j½Evm�ðtÞ − ½Ev�ðtÞj = 0.
Therefore, the continuity E has been proven. Then, we prove
that EðPÞ is equicontinuous. Assume that ε > 0 is given, t1,
t2 ∈ ðt0, T� where T > t0 is picked with the end of goal that
(28) holds. Applying (H3), we get
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Evð Þ t2ð Þ − Evð Þ t1ð Þj j ≤ 〠
n

i=1

1
Γ β − βið Þ

ðt2
t0

t2 − sð Þβ−βi−1 f i s, vsð Þds
�����

−
ðt1
t0

t1 − sð Þβ−βi−1 f i s, vsð Þdsj

≤ 〠
n

i=1

1
Γ β − βið Þ

ðt1
t0

t2 − sð Þβ−βi−1 − t1 − sð Þβ−βi−1
��� ��� f i s, vsð Þj jds

"

+
ðt2
t1

t2 − sð Þβ−βi−1 f i s, vsð Þj jds
#
≤ 〠

n

i=1

1
Γ β − βið Þ

�
ðt1
t0

t1 − sð Þβ−βi−1 − t2 − sð Þβ−βi−1
��� ���1/ 1−αð Þ

ds

 !1−α"

�
ðt1
t0

f i s, vsð Þj j1/αds
 !α

+
ðt2
t1

t2 − sð Þ β−βi−1ð Þ/ 1−αð Þds

 !1−α

�
ðt2
t1

f i s, vsð Þj j1/αds
 !α#

≤ 〠
n

i=1

1
Γ β − βið Þ

�
ðt1
t0

t1 − sð Þ β−βi−1ð Þ/ 1−αð Þ − t2 − sð Þ β−βi−1ð Þ/ 1−αð Þ
��� ���du

 !1−α"

�
ðt1
t0

f i s, vsð Þj j1/αds
 !α

+
ðt2
t1

t2 − sð Þ β−βi−1ð Þ/ 1−αð Þds

 !1−α

�
ðt2
t1

f i s, vsð Þj j1/αds
 !α#

≤ 〠
n

i=1

1 − αð Þ1−α
Γ β − βið Þ β − βi − αð Þ1−α

� t2 − t1j j β−βi−αð Þ/ 1−αð Þ + t1 − t0ð Þ β−βi−αð Þ/ 1−αð Þ
����h

− t2 − t0ð Þ β−βi−αð Þ/ 1−αð Þ
���Þ1−α × ðT

t0

f i s, vsð Þj j1/αds
 !α

+ t2 − t1ð Þβ−βi−α
ðT
t0

f i s, vsð Þj j1/αds
 !α#

⟶ 0ast1 ⟶ t2:

ð32Þ

If t1, t2 > T , at that point, since P is E-invariant and
using(28), we get

Evð Þ t2ð Þ − Evð Þ t1ð Þj j ≤ 〠
n

i=1

1
Γ β − βið Þ

�
ðt2
t0

t2 − sð Þβ−βi−1 f i s, vsð Þds −
ðt1
t0

t1 − sð Þβ−βi−1 f i s, vsð Þds
)�����
�����

≤ J t1 − t0ð Þ + J t2 − t0ð Þ < ε:

ð33Þ

If t0 < t1 < T < t2, it can be seen that t1 ⟶ t2 which
implies that ðt1 ⟶ TÞ∧ðt2 ⟶ TÞ; then, according to the
above discussion, we have got

Evð Þ t2ð Þ − Evð Þ t1ð Þj j ≤ Evð Þ t2ð Þ − Evð Þ Tð Þj j
+ Evð Þ Tð Þ − Evð Þ t1ð Þj j⟶ 0 as t2 ⟶ t1:

ð34Þ

Thus, we resolve that EðPÞ is equicontinuous on ½t0, T�
∀T > 0. Since EðPÞ ⊂ P and from the set P, it is clear that

lim
T⟶∞

sup
v∈E Pð Þ

sup v tð Þj j: t > Tf gð Þ = 0: ð35Þ

Hence, EðPÞ is a moderately smaller set in Cð½t0 − ρ,∞Þ
, RÞ and all requirements of SFPT are satisfied. In this set,
the operator E maps on P and has a fixed point. This reality
indicates that (1) has at least one solution in P.

Theorem 9. Assume that conditions (H1)-(H2) are fulfilled;
at that point, IVP (1) accepts at the minimum one attractive
solution by Definition 4.

Proof. The previous lemma states that there is at least one
solution of (1) that belongs to P in (Lemma 8). Then, use
the property of function J, to show attractivity. As a result,
at ∞, all of the functions in P vanish, and therefore, the
result of (1) is ⟶0 as x⟶∞.

So, the proof is complete.

Remark 10. The conclusion of Theorem 9 does not imply
that solutions are globally attractive in the sense of
Definition 5.

4. Uniform Local Attractivity of Solutions with
Measure of Noncompactness

The purpose of this section is to look at the solution of (1) in
the Banach space (BS), BCðRt0−ρÞ consisting of every single
real functions characterized, continuous as well as bounded
on Rt0−ρ = ½t0 − ρ,∞Þ by means of the strategy of MNC. It is
concentrated on an alternate method to develop some ade-
quate conditions solvability of (1). We assemble a few defini-
tions and assistant realities which will be required further on.

Let F be a BS and ConvY and �Y represent the convex
closure and closure of Y as a subset of F. Further, mF repre-
sents the group of all bounded subsets of E, and the nF rep-
resents its subfamily which contains all relatively compact
sets. Also, assume that the closed ball is Bðy, rÞ where
center = y, radius = r, and Br represents the ball Bðξ, rÞ with
the end of goal that ξ is the zero component of the BS of F.

Definition 11. ν : mF ⟶ R+ is supposed to be MNC in F if
it fulfills the following criteria:

(i) The family kerν = fY ∈mF : νðYÞ = 0g is non-
empty and kerν ∈ nF

(ii) Y ⊆ Z⇒ νðYÞ ≥ νðZÞ.
(iii) νðYÞ = νð�YÞ
(iv) νðConvYÞ = νðYÞ
(v) ∀λ ∈ ½0, 1�

ν λY + 1 − λð ÞZð Þ ≤ λν Yð Þ + 1 − λð Þν Zð Þ: ð36Þ

(vi) If ðYmÞm∈ℕ is a closed sequence set frommF in such
a way that

Ym+1 ⊂ Ym∀m = 1, 2,⋯, lim
m⟶∞

ν Ymð Þ = 0, ð37Þ
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then

Y∞ =
\∞
m=1

Yn is non‐empty: ð38Þ

As a result, the kerðνÞ family is referred to as the kernel
of MNC of ν.

Definition 12. In F, let ν be an MNC. So the mapping S : C
⊆ F ⟶ F is supposed to be a νF-contraction if ∃ a constant
term 0 < b < 1 in such way

ν S Dð Þð Þ ≤ bν Dð Þ: ð39Þ

D ⊆ C is a bounded closed subset.

Remark 13. As pointed out in [21], global attractivity of solu-
tions implies local attractivity, while the converse is not true.

Theorem 14 (see [22]). Suppose that C is a nonempty,
bounded, convex, and closed subset of BS of F, and assume
that S : C⟶ C is a continuous function which fulfills

ν S Dð Þð Þ ≤ ϕ ν Dð Þð Þ, ð40Þ

for every D ⊆ C, where ν represents an arbitrary MNC and
ϕ : R+ ⟶ R+ represents a monotone nondecreasing function
with limm⟶∞ϕmðtÞ = 0∀t ∈ R+. At that point, S has mini-
mum one fixed point in C.

We will work in BS, BCðRt0−ρÞ where t0 and ρ are given
in (1). The functional space is furnished with the standard
norm which is kvk = sup fvðtÞ: t ≥ t0 − ρg. For this reason,
we present a MNC in the space BCðRt0−ρÞ which is built like
the one in the space BCðR+Þ. Suppose that B is a bounded
subset in BS of BCðRt0−ρÞ and T > t0 − ρ is given. For v ∈ B
and ε > 0, we denote by ωT

t0−ρ
ðv, εÞ the modulus of continuity

of the function v on ½t0 − ρ, T�, i.e.,

ωT
t0−ρ

v, εð Þ = sup v tð Þ − v sð Þj j: t, s ∈ t0 − ρ, T½ �, t − sj j ≤ εf g:
ð41Þ

Now, suppose that we take

ωT
t0−ρ

B, εð Þ = sup ωT
t0−ρ

v, εð Þ: v ∈ B
n o

,

ωT
t0−ρ

Bð Þ = lim
ε⟶0

ωT
t0−ρ

Bð Þ,

ωt0−ρ Bð Þ = lim
T⟶∞

ωT
t0−ρ

Bð Þ:

ð42Þ

If t > t0 − ρ is a fixed number, we use the term

B tð Þ = v tð Þ: v ∈ Bf g, ð43Þ

as well as

diamB tð Þ = sup v tð Þ −w tð Þj j: v,w ∈ Bf g: ð44Þ

Consider ν defined on the family mBCðRt0−ρÞ by formula

ν Bð Þ = ωt0−ρ Bð Þ + lim
t⟶∞

supdiamB tð Þ: ð45Þ

(H4) For all i = 1, 2,⋯n, f i : Rt0−ρ × Cð½t0 − ρ, t0�, RÞ
⟶ R is continuous and there is a continuous function
ei : Rt0−ρ ⟶ R in such a way that

f i t, vð Þ − f i t,wð Þj j ≤ ei tð ÞJ v −wk kð Þ, ð46Þ

where J : R+ ⟶ R+ is a function that is superadditive, i.e,
JðbÞ + JðcÞ ≤ Jðb + cÞ, ∀b, c ≥ 0:

(H5) Assume that ∀i = 1, 2⋯ n such that the following
constant exists:

Bi = sup
t∈H

ðt
t0

t − sð Þβ−βi−1ei sð Þds <∞,Ci

= sup
t∈H

ðt
t0

t − sð Þβ−βi−1 f i s, 0ð Þj jds <∞,

lim
m⟶∞

λmB J
m tð Þ = 0∀t > 0, ð47Þ

where

λB = 〠
n

i=1

Bi

Γ β − βið Þ < 1: ð48Þ

(H6) ∃ a nonnegative result r0 of the following inequality

sup
t∈ t0−ρ,t0½ �

ϕ tð Þj j + λBJ rð Þ + λC ≤ r, ð49Þ

where

λB = 〠
n

i=1

Ci

Γ β − βið Þ : ð50Þ

Theorem 15. Under the supposition (H4)-(H6), equation (1)
has minimum one solution in BCðRt0−ρÞ. In addition, solu-
tion of (1) is uniformly locally attractive.

Proof. To begin, we will look at the operator E, which was
defined by the formula in the previous section:

Ev½ � tð Þ =
ϕm t0ð Þ + 〠

n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þds, t > t0,m = 0, 1,

ϕm tð Þ, t ∈ t0 − σ, t0½ �:

8><
>:

ð51Þ
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∀v ∈ BCðRt0−ρÞ. From the condition (H4)-(H6), the func-
tion Ev is continuous on ðRt0−ρÞ. We note that BCðRt0−ρÞ in
E-invariant. For any v ∈ BCðRt0−ρÞ and t > t0, we have

Ev½ � tð Þj j ≤ ϕ0 t0ð Þj j + ϕ1 t0ð Þj j + 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þj jds

≤ ϕ0 t0ð Þj j + ϕ1 t0ð Þj j + 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þjð

− f i s, 0ð Þj + f i s, 0ð Þj jÞds

≤ ϕ0 t0ð Þj j + ϕ1 t0ð Þj j + 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1ei sð ÞJ vsk kð Þds

+ 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, 0ð Þj jds

≤ ϕ0 t0ð Þj j + ϕ1 t0ð Þj j + λBJ vk kð Þ + λC:

ð52Þ

The above expression shows that Ev is bounded on the interval
½t0,∞Þ, and connecting with the fact that ϕ ∈ Cð½t0 − ρ, t0�, RÞ
, we infer that Ev ∈ BCðRt0−ρÞ; thus, E changes BCðRt0−ρÞ into
itself. Then again, utilize condition (H6)∃ a number r0 > 0
which appreciates in (49). For such digit, the operator E
changes the ball Br0

of BCðRt0−ρÞ into itself. Consider a non-
empty subset Y of the ball Br0

as well as fix x, y ∈ Y in whatever
way you want. At that point, for fixed t > t0, we get

Ev½ � tð Þ − Ew½ � tð Þj j ≤ 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1 f i s, vsð Þ − f i s,wsð Þj jdsð

≤ 〠
n

i=1

1
Γ β − βið Þ

ðt
t0

t − sð Þβ−βi−1ei sð ÞJ vs −wsk kð Þds,

Ev½ � tð Þ − Ew½ � tð Þj j ≤ λBJ v −wk kð Þ, ð53Þ

which implies that

lim
t⟶∞

diam E Yð Þð Þ tð Þ ≤ λBJ lim
t⟶∞

diamY tð Þ
� �

: ð54Þ

Additionally, let us take T > t0 as a fixed and ε > 0. Assume
that v ∈ Y is chosen and suppose that t1, t2 ∈ ðt0, T� to such an
extent that jt1 − t2j ≤ ε. Without loss of consensus, we may
suppose that t1 < t2. At that point, thinking about our hypoth-
esis, we obtain

Ev½ � t2ð Þ − Ew½ � t1ð Þj j ≤ 〠
n

i=1

1
Γ β − βið Þ

ðt2
t0

t2 − sð Þβ−βi−1 f i s, vsð Þds
�����

−
ðt1
t0

t1 − sð Þβ−βi−1 f i s, vsð Þds
����� ≤ 〠

n

i=1

1
Γ β − βið Þ

�
ðt1
t0

t1 − sð Þβ−βi−1 − t2 − sð Þβ−βi−1
��� ��� f i s, vsð Þj jds

 

+
ðt2
t1

t2 − sð Þβ−βi−1 f i s, vsð Þj jdsÞ ≤ 〠
n

i=1

1
Γ β − βið Þ

�
ðt1
t0

t1 − sð Þβ−βi−1 − t2 − sð Þβ−βi−1
��� ��� f i s, vsð Þj jds

"

+
ðt2
t1

t2 − sð Þβ−βi−1 ei sð ÞJ vsk kð Þ + f i s, 0ð Þj jð Þds
#

≤ 〠
n

i=1

ωT
1 f i, βi, εð Þ + ωT

2 f i, βi, εð Þ
Γ β − βið Þ + λBJ ωT

t0−ρ
v, εð Þ

� �
,

ð55Þ

for v ∈ Y ⊆ Br0
, where the symbols used in above term are

given by

Now, consider that the function f iðs, vsÞ is uniformly
continuous on ½t0 − ρ, T� × Br0

∀i = 1, 2,⋯n; we simply get
the following expression:

ωT
t0−ρ

E Yð Þð Þ ≤ λBJ ωT
t0−ρ

Yð Þ
� �

, ð57Þ

which along with (54) and superadditive of J implies that

ν E Yð Þð Þ = ωt0−ρ E Yð Þð Þ + lim
t⟶∞

supdiam E Yð Þð Þ tð Þ
≤ λBJ ωt0

Yð Þ� �
+ λBJ lim

t⟶∞
supdiam Yð Þ tð Þ

� �
≤ λBJ ν Yð Þð Þ:

ð58Þ

Now, ν as given by (45) defines a MNC on BCðRt0−ρÞ; at
that point, the inequality along with Theorem 14 shows that
(1) has a solution in BS.

To show that all solutions of (1) are consistently locally
attractive, let us put B1

r0
= ConvEðBr0

Þ and B2
r0
= ConvEðB1

r0
Þ

and so on, where Br0
= ball and r0 = radius and center = 0

in the space BCðRt0−ρÞ. We basically see that B1
r0
⊂ Br0

and

Bm+1
r0

⊂ Bm
r0

for m = 1, 2,⋯, and furthermore, the set of this
sequence is convex, closed, and nonempty. Moreover, in the
light of the current inequality, we get

ν Bm+1
r0

� �
≤ λmB J

m ν Br0

� �� �
for n = 1, 2,⋯: ð59Þ

Combining all the facts that νðBr0
Þ ≥ 0 as well as

ωT
2 f i, βi, εð Þ = sup

ðt2
t1

t2 − sð Þβ−βi−1 ei sð ÞJ r0ð Þ + f i s, 0ð Þj jð Þds : t1, t2 ∈ t0 − ρ, T½ �, t1 − t2j j ≤ ε

( )
: ð56Þ
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condition (H5) with the recent above inequality, we have

lim
m⟶∞

ν Bm
r0

� �
= 0: ð60Þ

We can derive from the definition of MNC that B =T∞
m=1 B

m
r0

is convex, nonempty, closed, and bounded. B is
an E-invariant set, and the operator E is continuous on it.
In addition, remembering the reality that B ∈ kerν and the

set belongs to kerν, we infer that all solutions of (1) are
consistently locally attractive.

Remark 16. Note that (1) has at least one attractive solution
in the sense of Definition 4.

5. Example

Example 17. Consider the FFEE:

We can clearly see that condition (H1) holds. To show that
condition (H2) is fulfilled, since vð0Þ = 0 and v′ð0Þ = 0, we
have the following expression ∀t > 0 :

1
Γ 3/2ð Þ

ðt
0
t − sð Þ−1/2 sin v s − 1ð Þ

3 v s − 1ð Þj j + s + 1ð Þ−4/5ds
����

+ 1
Γ 3/6ð Þ

ðt
0
t − sð Þ−5/6 s + 1ð Þ−1/2e−sin v s−1ð Þds

����
≤

1
Γ 3/2ð Þ

ðt
0
t − sð Þ−1/2s−4/5ds + 1

Γ 3/6ð Þ
ðt
0
t − sð Þ−5/6s−1/2ds

= t−3/10

Γ 3/2ð Þ
ð1
0
s−4/5 1 − sð Þ−1/2ds + t−1/3

Γ 3/6ð Þ
ð1
0
s−1/2 1 − sð Þ−5/6ds:

ð62Þ

For any β, γ ∈ R, the following identity is obtained:

ð1
0
sβ−1 1 − sð Þγ−1ds = Γ βð ÞΓ γð Þ

Γ β + γð Þ : ð63Þ

So (62) implies that

1
Γ 3/2ð Þ

ðt
0
t − sð Þ−1/2 sin v s − 1ð Þ

3 v s − 1ð Þj j + s + 1ð Þ−4/5ds
����

+ 1
Γ 3/6ð Þ

ðt
0
t − sð Þ−5/6 s + 1ð Þ−1/2e−sin v s−1ð Þds

���� ≤ J tð Þ,

ð64Þ

where

J tð Þ = Γ 1/5ð Þ
Γ 7/10ð Þ t

−3/10 +
ffiffiffi
π

p
Γ 2/3ð Þ t

−1/3, t > 0: ð65Þ

Clearly, this is a nonincreasing function on ℝ and demon-
strates that condition (H2) is true. Finally, it is necessary to
show that condition (H3) is valid. Assume for a moment

that γ = 1/10 ∈ ð0, min f1/2, 1/6gÞ; at that point, we have
ð∞
0

sin v s − 1ð Þ
3 v s − 1ð Þj j + s + 1ð Þ−4/5

� �1/γ
ds ≤

ð∞
0

s + 1ð Þ−8ds = 1
7 ,

ð66Þ

which proves that f0ðs, vsÞ = sin ðvðs − 1Þ/3Þðjvðs − 1Þj + s +
1Þ−4/5 ∈ L1/γðH, Cð½−1, 0�, RÞÞ. Likewise, for f1ðs, vsÞ =
ðs + 1Þ−1/2e−sin vðs−1Þ, we deduce that

ð∞
0

s + 1ð Þ−1/2e−sin v s−1ð Þ
h i1/γ

ds ≤
ð∞
0

s + 1ð Þ−5ds = 1
4 : ð67Þ

This shows that f1ðs, vsÞ ∈ L1/γðH, Cð½−1, 0�, RÞÞ. Hence,
all conditions are satisfied, so the solution of (1) is existent
and also attractive.

6. Conclusion

The main conclusion of this study is that the multiterm frac-
tional functional evolution equation belongs to a specific
class of attractivity. The goal of this study is to investigate
the existence of solutions to a class of multiterm FFEE on
an unbounded interval in terms of bounded and consistent
capacities. We look at some key aspects of the arrangement
that are connected to the concept of solution attractivity.
We use a familiar Schauder fixed-point theorem (SFPT)
related to the method of measure of noncompactness
(MNC). We go over some of the auxiliary realities surround-
ing the concept of MNC and related signs. Using a well-
known Derbo-type fixed-point hypothesis and the MNC
technique, we investigate the existence of a solution for (1).
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� �
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8><
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