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We propose a novel generalized quartic functional equation and investigate its Hyers–Ulam stability in modular spaces using a
fixed point technique and the Fatou property in this paper.

1. Introduction

The idea of functional equation stability occurs when a func-
tional equation is replaced by an inequality that acts as a per-
turbation on the equation. Take into account that the topic of
functional equation stability was prompted by a query posed
by Ulam in 1940 [1], and Hyers response was published in
[2]. By considering an unbounded Cauchy difference, Aoki
[3] and Rassias [4] extended Hyers’ theorem for additive map-
pings and linear mappings, respectively.

In [5–8], the authors examined the Hyers–Ulam-Rassias
stability findings for functional equations involving many
variables. They discussed the approximate solution of the
septic functional equation in [9]. They established that this
equation is stable in quasi-β-Banach spaces and in ðβ, pÞ-
Banach spaces. Additionally, they established the instability
of the preceding radical functional equation in a pertinent
example. Khamsi investigated the notion of quasicontraction
mappings in modular function spaces in the absence of the
Δ2-condition, establishing the presence of fixed points and
thoroughly analysing their uniqueness in [10].

Kim and Tamilvanan [11] introduced a novel class of
quartic functional equations and examined their Hyers–
Ulam stability in fuzzy normed spaces using both the direct
and fixed point methods. They demonstrated how sums and
products of powers of norms may be used to manage the sta-
bility of this quartic functional equation. Wongkum et al.
[12] studied the extended Ulam–Hyers–Rassias stability of
quadratic functional equations extensively using fixed point
theory. Their conclusions are achieved in the context of
modular spaces whose modulars are lower semicontinuous
but do not meet any Δ2-related requirements.

Nakano established the theory of modulars on linear spaces
and the accompanying theory of modular linear spaces, which
was further refined by Koshi and Shimogaki [13] and Yama-
muro [14] and others. Luxemburg [15], Musielak [16], and
Turpin [17] and their collaborators contributed the most com-
prehensive elaboration of these ideas. At the moment, modu-
lars and modular spaces theory is widely employed, most
notably in the study of different Orlicz spaces [18] and interpo-
lation theory [19, 20], both of which have several applications
[16]. The significance for applications stems from the complex

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 5965628, 9 pages
https://doi.org/10.1155/2022/5965628

https://orcid.org/0000-0002-4395-6657
https://orcid.org/0000-0002-4900-7604
https://orcid.org/0000-0002-0250-9172
https://orcid.org/0000-0003-2314-0412
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5965628


structure of modular function spaces, which, in addition to
being Banach spaces (or F-spaces in a more generic setting),
contain modular equivalents of norm or metric concepts.

Notably, Nakano pioneered modular spaces with rela-
tion to order spaces in 1950 [21]. The spaces were produced
using the Orlicz spaces theory, which substitutes a particu-
lar, integrated nonlinear functionality for the abstract func-
tional that regulates the expansion of space members. They
established several features of modular space in [22] and
shown that every uniformly limited composition operator
mapping this space onto itself must satisfy the so-called
Matkowski’s requirements. In 2014, Sadeghi [23] explored
the stability of functional equations in modular space using
a fixed point technique.

In [24], the existence and Hyers-Ulam stability of the
nearly periodic solution to the fractional differential equa-
tion with impulse and fractional Brownian motion were
studied under nonlocal circumstances. The research was
conducted using the semigroups of operators and MÃ¶nch
fixed point technique, as well as the basic theory of Hyers-
Ulam stability. In [25], the authors examined at the existence
and Hyers-Ulam stability of random impulsive stochastic
functional differential equations with finite delays. They
demonstrated that moderate solutions to the equations exist
using Krasnoselskii’s fixed point approach. They then exam-
ined the Hyers-Ulam stability results under the Lipschitz
condition on a bounded and closed interval. Finally, they
demonstrated their findings with an example. The reader is
recommended to see [26–28] and the references therein for
further information on fixed point theory in modular spaces.

Definition 1 (see [29]). Let V be a vector space over K

ðℂ orℝÞ. A generalized functional ρ : V ⟶ ½0,∞� is called
a modular if for arbitrary u, v ∈ V , ρ satisfies

(a) ρðuÞ = 0 if and only if u = 0
(b) ρðβuÞ = ρðuÞ for every scalar β with jβj = 1
(c) ρðβu + γvÞ ≤ ρðuÞ + ρðvÞ, whenever β, γ ≥ 0 and β

+ γ = 1

If we replace (c) by.
(c’) ρðβu + γvÞ ≤ βρðuÞ + γρðvÞ, whenever β, γ ≥ 0 and

β + γ = 1, then, the modular ρ is called convex. A modular
ρ defines a corresponding modular space, i.e., the vector
space Vρ given by:

Vρ = u ∈ V ∣ ρ cuð Þ⟶ 0 as c⟶ 0f g: ð1Þ

Definition 2 (see [29]). If Vρ is a modular space and the
sequence fvng in Vρ, then

(i) vn ⟶
ρ

v if ρðvn − vÞ⟶ 0 as n⟶∞

(ii) fvng is known as ρ-Cauchy if ρðvl − vnÞ⟶ 0 as l,
n⟶∞

(iii) A subset A ⊆Vρ is known as ρ-complete iff every ρ-
Cauchy sequence is ρ-convergent in A

Definition 3 (see [29]). Let Vρ be a modular space and a non-
empty subset A ⊆Vρ. The mapping J : A⟶ A is referred to
as a quasicontraction, if there is k < 1 satisfies

ρ Jl − Jmð Þ ≤ k max ρ l −mð Þ, ρ l − Jmð Þ, ρ m − Jlð Þ, ρ l − Jlð Þ, ρ m − Jmð Þf g,
ð2Þ

for any l,m ∈ A.

Definition 4 (see [29]). Let Vρ be a modular space, a non-
empty subset A ⊆Vρ, and a function J : A⟶ A, the J orbit
around a point v is

O Jð Þ≔ u, Ju, J2u,⋯
� �

, ð3Þ

the quantity

Yρ Jð Þ≔ sup ρ p − qð Þ ∣ p, q ∈O Jð Þf g, ð4Þ

is then related to J and is referred to as the orbital diameter
of J at v. If YρðJÞ <∞, in particular, one says that J has an
orbit of v that is limited to v.

Fatou property: the ρ-modular will have the Fatou prop-

erty iff ρðvÞ ≤ limm⟶∞ inf ρðvmÞ whenever fvmg⟶
ρ

v. A
modular function is stated to fulfil the conditions Δ3 if there
is k > 0 which satisfies ρð3vÞ ≤ kρðvÞ, for every v ∈ Vρ.

In this work, we introduce new generalized quartic func-
tional equation

〠
1≤i≤n

ϕ −vi + 〠
n

j=1;i≠j
vj

 !
= n − 8ð Þ 〠

1≤i<j<k<l≤n
ϕ vi + vj + vk + vl
� �

− n2 − 12n + 28
� �

〠
1≤i<j<k≤n

ϕ vi + vj + vk
� �

+ n3 − 15n2 + 60n − 68
2

� �
〠

1≤i<j≤n
ϕ vi + vj
� �

+ 2 〠
1≤i<j≤n

ϕ vi − vj
� �

+ 〠
n

i=1
ϕ 3við Þ

−
n4 − 17n3 + 86n2 − 148n + 558

6

� �
〠
n

i=1
ϕ við Þ,

ð5Þ

where n ≥ 5, and investigate Hyers-Ulam stability of this
quartic functional equation in modular space by using the
fixed point method with the help of Fatou property.

2. Solution

We denote V and W as two real vector spaces.

Theorem 5. If an even mapping ϕ : V ⟶W satisfies the
functional equation (5) for all v1, v2,⋯, vn ∈ V , then, the
function ϕ is quartic.
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Proof. In the view of evenness, we obtain ϕð−vÞ = ϕðvÞ for all
v in V . Now, setting v1 = v2 =⋯ = vn = 0 in equation (5), we
have ϕð0Þ = 0. Replacing ðv1, v2,⋯,vnÞ by ðv, 0,⋯,0Þ in equa-
tion (5), we get

ϕ 3vð Þ = 34ϕ vð Þ, ð6Þ

for all v ∈ V . Replacing v by 3v in equation (6), we have

ϕ 32v
� �

= 34 2ð Þϕ vð Þ, ð7Þ

for all v ∈ V . Again, replacing v by 3v in equation (7), we
obtain

ϕ 33v
� �

= 34 3ð Þϕ vð Þ, ð8Þ

for all v ∈ V . For any nonnegative integer n ≥ 0, we can gen-
eralize the result that

ϕ 3nvð Þ = 34 nð Þϕ vð Þ, ð9Þ

for all v ∈ V . Similarly, we have

ϕ 3−nvð Þ = 3−4nϕ vð Þ, ð10Þ

for all v ∈ V . Next, replacing ðv1, v2,⋯,vnÞ by ðv1, v1, v2, 0,
⋯,0Þ, we obtain

ϕ 2v1 + v2ð Þ + ϕ 2v1 − v2ð Þ = 4ϕ v1 − v2ð Þ + 4ϕ v1 + v2ð Þ + 24ϕ v1ð Þ − 6ϕ v2ð Þ,
ð11Þ

for all v1, v2 ∈ V . Hence, the function ϕ is quartic.

3. Hyers-Ulam Stability

We assume that ρ is a convex modular on ρ-complete mod-
ular spaces Wρ with the Fatou property that meets the Δ3
-condition with 0 < k ≤ 3 in this section. Let V be a linear
space as well. For convenience, we call a function ϕ : V
⟶Wρ by the shorthand ϕ : V ⟶Wρ:

Dϕ v1, v2,⋯,vnð Þ = 〠
1≤i≤n

ϕ −vi + 〠
n

j=1;i≠j
vj

 !

− n − 8ð Þ 〠
1≤i<j<k<l≤n

ϕ vi + vj + vk + vl
� �

+ n2 − 12n + 28
� �

〠
1≤i<j<k≤n

ϕ vi + vj + vk
� �

−
n3 − 15n2 + 60n − 68

2

� �
,

ð12Þ

〠
1≤i<j≤n

ϕ vi + vj
� �

− 2 〠
1≤i<j≤n

ϕ vi − vj
� �

− 〠
n

i=1
ϕ 3við Þ

+ n4 − 17n3 + 86n2 − 148n + 558
6

� �
〠
n

i=1
ϕ við Þ,

ð13Þ
for all v1, v2,⋯, vn ∈ V .

Theorem 6. Let ψ : Vn ⟶ ½0,+∞Þ be a function such that

lim
m⟶∞

1

34m
ψ 3mv1, 3mv2,⋯,3mvnð Þ = 0, ð14Þ

ψ 3v1, 3v2,⋯,3vnð Þ ≤ 34Lψ v1, v2,⋯,vnð Þ, ð15Þ
for all v1, v2,⋯, vn ∈ V , with L < 1. If an even mapping ϕ

: V ⟶Wρ with ϕð0Þ = 0 and such that

ρ Dϕ v1, v2,⋯,vnð Þð Þ ≤ ψ v1, v2,⋯,vnð Þ, ð16Þ

for all v1, v2,⋯, vn ∈ V , then, there exists a unique quartic
mapping Q4 : V ⟶Wρ satisfying

ρ Q4 vð Þ − ϕ vð Þð Þ ≤ 1

34 1 − Lð Þψ v, 0,⋯,0ð Þ, ð17Þ

for all v ∈ V .

Proof. We consider the set

Λ = p : V ⟶Wρ

� �
, ð18Þ

and define the function �ρ on Λ as follows:

�ρ pð Þ≕ inf θ > 0 : ρ p vð Þð Þ ≤ θψ v, 0,⋯,0ð Þ,∀v ∈ Vf g: ð19Þ

Now, we show that �ρ is a convex modular on Λ. It is easy
to verify that �ρ satisfies the axioms (a) and (b) of a modular.
Next, we will show that �ρ is convex, and hence, ðc′Þ is satis-
fied. Let ε > 0 be given, then, there exist real constants θ1 > 0
and θ2 > 0 such that

�ρ pð Þ ≤ θ1 ≤ �ρ pð Þ + ε and �ρ qð Þ ≤ θ2 ≤ �ρ qð Þ + ε: ð20Þ

Also

ρ p vð Þð Þ ≤ θ1ψ v, 0,⋯,0ð Þ, ρ q vð Þð Þ ≤ θ2ψ v, 0,⋯,0ð Þ, ð21Þ

for all v ∈ V . If β + γ = 1 and β, γ ≥ 0, then, we get

ρ βp vð Þ + γq vð Þð Þ ≤ βρ p vð Þð Þ + γρ q vð Þð Þ ≤ θ1β + θ2γð Þψ v, 0,⋯,0ð Þ, ð22Þ

so we get

�ρ βp + γqð Þ ≤ β�ρ pð Þ + γ�ρ qð Þ + β + γð Þε: ð23Þ
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This concludes that �ρ is convex modular on Λ. Now, we
show that Λ�ρ is �ρ-complete.

Let fpng is a �ρ-Cauchy sequence in Λ�ρ and let ε > 0.
Then, there exists a positive integer n0 ∈ℕ such that

�ρ pn − pmð Þ < ε, ð24Þ

for all n,m ≥ n0. Then

ρ pn vð Þ − pm vð Þð Þ ≤ εψ v, 0,⋯,0ð Þ, ð25Þ

for all v ∈ V and all n,m ≥ n0. Therefore, fpnðvÞg is a ρ-Cau-
chy sequence in Wρ. Since Wρ is ρ-complete, so fpnðvÞg is
convergent in Wρ, for each v ∈ V . Hence, we can define a
function p : V ⟶Wρ by

p vð Þ≔ lim
n⟶∞

pn vð Þ, ð26Þ

for all v ∈ V . Since ρ satisfies the Fatou property, it follows
from (25) that

ρ pn vð Þ − p vð Þð Þ ≤ lim inf
m⟶∞

ρ pn vð Þ − pm vð Þð Þ ≤ εψ v, 0,⋯,0ð Þ,
ð27Þ

so

�ρ pn − pð Þ ≤ ε, ð28Þ

for all n ≥ n0. Thus, fpng is �ρ-converges. Hence, Λ�ρ is �ρ

-complete.
Next, we show that �ρ satisfies the Fatou property. Sup-

pose that fpng is a sequence in Λ�ρ which is �ρ-convergent

to an element p ∈Λ�ρ.

Let ε > 0 be given. For each n ∈ℕ, let θn be a real con-
stant such that

�ρ pnð Þ ≤ θn ≤ �ρ pnð Þ + ε: ð29Þ

So

ρ pn vð Þð Þ ≤ θnψ v, 0,⋯,0ð Þ, ð30Þ

for all v ∈ V . Since ρ satisfies the Fatou property, we get

ρ p vð Þð Þ ≤ lim
n⟶∞

inf ρ pn vð Þð Þ ≤ lim
n⟶∞

inf θnψ v, 0,⋯,0ð Þ
≤ lim

n⟶∞
inf �ρ pnð Þ + ε

h i
ψ v, 0,⋯,0ð Þ:

ð31Þ

Thus, we obtain

�ρ pð Þ ≤ lim
n⟶∞

inf �ρ pnð Þ + ε: ð32Þ

Hence, �ρ satisfies the Fatou property. Consider the func-
tion Ψ : Λ�ρ ⟶Λ�ρ by

Ψp vð Þ = 1
34 p 3vð Þ, ð33Þ

for all v ∈ V and all p ∈Λ�ρ. Let p, q ∈Λ�ρ and let θ ∈ ½0, 1� be
an arbitrary constant with �ρðp − qÞ < θ. From the definition
of �ρ, we obtain

ρ p vð Þ − q vð Þð Þ ≤ θψ v, 0,⋯,0ð Þ, ð34Þ

for all v ∈ V . By inequality (15) and the above inequality, we
get

ρ
p 3vð Þ
34 −

q 3vð Þ
34

� �
≤

1
34 ρ p 3vð Þ − q 3vð Þð Þ ≤ 1

34 θψ 3v, 0,⋯,0ð Þ ≤ θLψ v, 0,⋯,0ð Þ,

ð35Þ

for all v ∈ V . Hence,

�ρ Ψp −Ψqð Þ ≤ L�ρ p − qð Þ,∀p, q ∈Λ�ρ, ð36Þ

i.e., Ψ is a �ρ-contraction. Next, we show that Ψ has a
bounded orbit at ϕ. Replacing ðv1, v2,⋯,vnÞ by ðv, 0,⋯,0Þ
in (16), we get

ρ ϕ 3vð Þ − 34ϕ vð Þ� �
≤ ψ v, 0,⋯,0ð Þ⇒ ρ

ϕ 3vð Þ
34 − ϕ vð Þ

� �
≤

1
34 ψ v, 0,⋯,0ð Þ,

ð37Þ

for all v ∈ V . Replacing v with 3v in (37), we get

ρ
ϕ 32v
� �
34 2ð Þ −

ϕ 3vð Þ
34

� �
≤

1
34 2ð Þ ψ 3v, 0,⋯,0ð Þ, ð38Þ

for all v ∈ V . By using (37) and (38), we get

ρ
ϕ 32v
� �
34 2ð Þ − ϕ vð Þ

� �
≤ ρ

ϕ 32v
� �
34 2ð Þ −

ϕ 3vð Þ
34 + ϕ 3vð Þ

34 − ϕ vð Þ
� �

≤ ρ
ϕ 32v
� �
34 2ð Þ −

ϕ 3vð Þ
34

� �
+ ρ

ϕ 3vð Þ
34 − ϕ vð Þ

� �

≤
1

34 2ð Þ ψ 3v, 0,⋯,0ð Þ + 1
34 ψ v, 0,⋯,0ð Þ,

ð39Þ

for all v ∈ V . By induction, we can easily see that

ρ
ϕ 3nvð Þ
34n − ϕ vð Þ

� �
≤ 〠

n

i=1

1
34i ψ 3i−1v, 0,⋯,0

� �

≤
1
L34 ψ v, 0,⋯,0ð Þ〠

n

i=1
Li

≤
1

34 1 − Lð Þψ v, 0,⋯,0ð Þ,

ð40Þ
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for all v ∈ V . It follows from inequality (40) that

ρ
ϕ 3nvð Þ
34n −

ϕ 3mvð Þ
34m

� �
≤
1
2 ρ 2 ϕ 3nvð Þ

34n − 2ϕ vð Þ
� �

+ 1
2 ρ 2 ϕ 3mvð Þ

34m − 2ϕ vð Þ
� �

≤
k
2 ρ

ϕ 3nvð Þ
34n − ϕ vð Þ

� �
+ k
2 ρ

ϕ 3mvð Þ
34m − ϕ vð Þ

� �

≤
k
2

1
34 1 − Lð Þψ v, 0,⋯,0ð Þ + k

2
1

34 1 − Lð Þψ v, 0,⋯,0ð Þ

≤
k

34 1 − Lð Þψ v, 0,⋯,0ð Þ,

ð41Þ

for all v ∈ V and all n,m ∈ℕ. By the definition of �ρ, we con-
clude that

�ρ Ψnϕ −Ψmϕð Þ ≤ k

34 1 − Lð Þ , ð42Þ

which implies the boundedness of an orbit of Ψ at ϕ. It fol-
lows from Theorem 1.5 [29] that the sequence fΨnϕg�ρ
-converges to Q4 ∈Λ�ρ. Now, by the �ρ-contractivity of Ψ,
we have

�ρ Ψnϕ −ΨQ4ð Þ ≤ L�ρ Ψn−1ϕ −Q4
� �

: ð43Þ

Passing to the limit n⟶∞ and applying the Fatou
property of �ρ, we obtain that

�ρ ΨQ4 −Q4ð Þ ≤ lim inf
n⟶∞

�ρ ΨQ4 −Ψnϕð Þ ≤ Llim inf
n⟶∞

�ρ Q4 −Ψn−1ϕ
� �

= 0:

ð44Þ

Therefore, Q4 is a fixed point of Ψ. Replacing ðv1, v2,⋯
,vnÞ by ð3lv1, 3lv2,⋯,3lvnÞ in (16), we get

ρ Dϕ 3lv1, 3lv2,⋯,3lvn
� 	� 	

≤ ψ 3lv1, 3lv2,⋯,3lvn
� 	

, ð45Þ

for all v1, v2,⋯, vn ∈ V . Therefore

ρ
1
34l

Dϕ 3lv1, 3lv2,⋯,3lvn
� 	� �

≤
1
34l

ψ 3lv1, 3lv2,⋯,3lvn
� 	

:

ð46Þ

Employing the limit l⟶∞, we get

DQ4 v1, v2,⋯,vnð Þ = 0, ð47Þ

for all v1, v2,⋯, vn ∈ V . It follows from Theorem 2 that Q4 is
quartic. By using (40), we get (17).

To prove the uniqueness of Q4, let Q4′ : V ⟶Wρ be

another quartic mapping satisfying (17). Then, Q4′ is a fixed
point of Ψ.

�ρ Q4 −Q4′
� 	

= �ρ ΨQ4 −ΨQ4′
� 	

≤ L�ρ Q4 −Q4′
� 	

, ð48Þ

which implies that �ρðQ4 −Q4′Þ = 0. This proves that Q4 =Q4′.

Therefore, the function Q4 is unique. This completes the
proof.

Corollary 7. Let a mapping ψ : Vn ⟶ ½0,+∞Þ such that

lim
l⟶∞

1

34l
ψ 3lv1, 3lv2,⋯,3lvn
� 	

= 0, ð49Þ

ψ 3v1, 3v2,⋯,3vnð Þ ≤ L34ψ v1, v2,⋯,vnð Þ, ð50Þ

for all v1, v2,⋯, vn ∈ V with L < 1. Suppose that a mapping
ϕ : V ⟶W with ϕð0Þ = 0 and such that

Dϕ v1, v2,⋯,vnð Þk k ≤ ψ v1, v2,⋯,vnð Þ, ð51Þ

for all v1, v2,⋯, vn ∈ V , then, there exists a unique quartic
mapping Q4 : V ⟶W satisfying

Q4 vð Þ − ϕ vð Þk k ≤ 1

34 1 − Lð Þψ v, 0,⋯,0ð Þ, ð52Þ

for all v ∈ V .

Proof. It is known that every normed space is modular space
with the modular ρðvÞ = ∥v∥ and satisfies the Δ3-condition
with k = 3.

Remark 8. If we replace ψðv1, v2,⋯,vnÞ by αð∑n
i=1∥vi∥

pÞ and
letting L = 3p−4 in Corollary 7, we obtain the stability results
for the sum of norms that

Q4 vð Þ − ϕ vð Þk k ≤ α vk kp
34 − 3p
� � , ð53Þ

for all v ∈ V , where α and p are constants with p < 4.

Remark 9. If we replace ψðv1, v2,⋯,vnÞ by αð∑n
i=1∥vi∥

np +Qn
i=1∥vi∥

pÞ and letting L = 3np−4 in Corollary 7, we obtain
the stability results for the sum of product of norms that

Q4 vð Þ − ϕ vð Þk k ≤ α vk knp
34 − 3np
� � , ð54Þ

for all v ∈ V , where α and p are constants with np < 4.

Theorem 10. Let ψ : Vn ⟶ ½0,+∞Þ be a function such that

lim
m⟶∞

34mψ
v1
3m

, v2
3m

,⋯, vn
3m

� 	
= 0, ð55Þ

ψ
v1
3
, v2
3
,⋯, vn

3

� 	
≤

L

34
ψ v1, v2,⋯,vnð Þ, ð56Þ

for all v1, v2,⋯, vn ∈ V with L < 1. Suppose that ϕ : V ⟶

Wρ with ϕð0Þ = 0 and satisfies (16), then, there exists a
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unique quartic mapping Q4 : V ⟶Wρ satisfying

ρ Q4 vð Þ − ϕ vð Þð Þ ≤ L

34 1 − Lð Þψ v, 0,⋯,0ð Þ, ð57Þ

for all v ∈ V .

Proof. We consider the set

Λ = p : V ⟶Wρ

� �
, ð58Þ

and define the function �ρ on Λ as follows:

�ρ pð Þ≕ inf θ > 0 : ρ p vð Þð Þ ≤ θψ v, 0,⋯,0ð Þ,∀v ∈ Vf g: ð59Þ

Similar to the proof of Theorem 6, we have

(1) �ρ is a convex modular on Λ

(2) Λ�ρ is �ρ-complete

(3) �ρ satisfies the Fatou property

Now, we consider the function Ψ : Λ�ρ ⟶Λ�ρ defined

by

Ψp vð Þ = 34p v
3
� 	

, ð60Þ

for all v ∈ V and all p ∈Λ�ρ. Let p, q ∈Λ�ρ and let θ ∈ ½0, 1� be
an arbitrary constant with �ρðp − qÞ < θ. From the definition
of �ρ, we have

ρ p vð Þ − q vð Þð Þ ≤ θψ v, 0,⋯,0ð Þ, ð61Þ

for all v ∈ V . By the assumption and the last inequality, we
get

ρ 34p v
3
� 	

− 34q v
3
� 	� 	

≤ k4ρ p
v
3
� 	

− q
v
3
� 	� 	

≤ k4θψ
v
3 , 0,⋯,0
� 	

≤ θLψ v, 0,⋯,0ð Þ, v ∈V :

ð62Þ

Hence,

�ρ Ψp −Ψqð Þ ≤ L�ρ p − qð Þ, p, q ∈Λ�ρ, ð63Þ

i.e., Ψ is a �ρ-contraction.
Next, we prove then that Ψ has a bounded orbit at ϕ.

Replacing ðv1, v2,⋯,vnÞ by ðv, 0,⋯,0Þ in (16), we get

ρ 34ϕ vð Þ − ϕ 3vð Þ� �
≤ ψ v, 0,⋯,0ð Þ, ð64Þ

for all v ∈ V . Replacing v with v/3 in (64), we get

ρ 34ϕ v
3
� 	

− ϕ vð Þ
� 	

≤ ψ
v
3 , 0,⋯,0
� 	

, ð65Þ

for all v ∈ V . Replacing v with v/3 in (65), we get

ρ 34ϕ v

32
� 	

− ϕ
v
3
� 	� 	

≤ ψ
v

32 , 0,⋯,0
� 	

, ð66Þ

for all v ∈ V . By using (64), (65), and (66), we get

ρ 34 2ð Þϕ
v

32
� 	

− ϕ vð Þ
� 	

≤ ρ 34 2ð Þϕ
v

32
� 	

− 34ϕ v
3
� 	� 	

+ ρ 34ϕ v
3
� 	

− ϕ vð Þ
� 	

≤ k4ρ 34ϕ v

32
� 	

− ϕ
v
3
� 	� 	

+ ρ 34ϕ v
3
� 	

− ϕ vð Þ
� 	

≤ 34ψ v

32 , 0,⋯,0
� 	

+ ψ
v
3 , 0,⋯,0
� 	

,

ð67Þ

for all v ∈ V . By induction, we can easily see that

ρ 34nϕ v
3n
� 	

− ϕ vð Þ
� 	

≤
1
34 〠

n

i=1
34iψ v

3i , 0,⋯,0
� 	

≤
1
34 ψ v, 0,⋯,0ð Þ〠

n

i=1
Li

≤
L

34 1 − Lð Þψ v, 0,⋯,0ð Þ,

ð68Þ

for all v ∈ V . It follows from inequality (68) that

ρ 34nϕ v
3n
� 	

− 34mϕ v
3m
� 	� 	

≤
1
2 ρ 2 34n

� �
ϕ

v
3n
� 	

− 2ϕ vð Þ
� 	

+ 1
2 ρ 2 34m

� �
ϕ

v
3m
� 	

− 2ϕ vð Þ
� 	

≤
kL

34 1 − Lð Þψ v, 0,⋯,0ð Þ,

ð69Þ

for all v ∈ V and all n,m ∈ℕ. By the definition of �ρ, we
conclude that

�ρ Ψnϕ −Ψmϕð Þ ≤ kL

34 1 − Lð Þ , ð70Þ

which implies the boundedness of an orbit of Ψ at ϕ. It fol-
lows from Theorem 1.5 [29] that the sequence fΨnϕg�ρ
-converges to Q4 ∈Λ�ρ.

Now, by the �ρ-contractivity of Ψ, we have

�ρ Ψnϕ −ΨQ4ð Þ ≤ L�ρ Ψn−1ϕ −Q4
� �

: ð71Þ

Employing the limit n⟶∞ and applying the Fatou
property of �ρ, we obtain that

�ρ ΨQ4 −Q4ð Þ ≤ lim inf
n⟶∞

�ρ ΨQ4 −Ψnϕð Þ
≤ Llim inf

n⟶∞
�ρ Q4 −Ψn−1ϕ
� �

= 0:
ð72Þ

Therefore, Q4 is a fixed point of Ψ. Replacing ðv1, v2,⋯,vnÞ
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by ðv1/3l, v2/3l,⋯,vn/3lÞ in (16), we get

ρ Dϕ 3−lv1, 3−lv2,⋯,3−lvn
� 	� 	

≤ ψ 3−lv1, 3−lv2,⋯,3−lvn
� 	

,

ð73Þ

for all v1, v2,⋯, vn ∈ V. Therefore

ρ 34lDϕ v1
3l
, v2
3l
,⋯, vn

3l
� �� �

≤ k4lψ
v1
3l
, v2
3l
,⋯, vn

3l
� �

: ð74Þ

Passing to the limit l⟶∞, we get

DQ4 v1, v2,⋯,vnð Þ = 0, ð75Þ

for all v1, v2,⋯, vn ∈ V. It follows from Theorem 2 that Q4 is
quartic. By using (68), we get (57).

In order to prove the uniqueness of Q4, consider another
quartic solution Q4′ : V ⟶Wρ that satisfy the inequality

(17). Then, Q4′ is a fixed point of Ψ.

�ρ Q4 −Q4′
� 	

= �ρ ΨQ4 −ΨQ4′
� 	

≤ L�ρ Q4 −Q4′
� 	

, ð76Þ

which implies that �ρðQ4 −Q4′Þ = 0 or Q4 =Q4′. Hence, the
proof is now completed.

Corollary 11. Let a mapping ψ : Vn ⟶ ½0,+∞Þ such that

lim
l⟶∞

34lψ
v1
3l
, v2
3l
,⋯, vn

3l

� �
= 0, ð77Þ

ψ
v1
3
, v2
3
,⋯, vn

3

� 	
≤

L

34
ψ v1, v2,⋯,vnð Þ, ð78Þ

for all v1, v2,⋯, vn ∈ V , with L < 1. Suppose that ϕ : V ⟶
W with ϕð0Þ = 0 and satisfies (51), then there exists a unique
quartic mapping Q4 : V ⟶W satisfying

Q4 vð Þ − ϕ vð Þk k ≤ L

34 1 − Lð Þψ v, 0,⋯,0ð Þ, ð79Þ

for all v ∈ V .

Proof. It is known that every normed space is modular space
with the modular ρðvÞ = ∥v∥ and satisfies the Δ3-condition
with k = 3.

Remark 12. If we replace ψðv1, v2,⋯,vnÞ by αð∑n
i=1∥vi∥

pÞ and
letting L = 34−p in Corollary 11, we obtain the stability results
for the sum of norms that

Q4 vð Þ − ϕ vð Þk k ≤ α vk kp
3p − 34
� � , ð80Þ

for all v ∈ V , where α and p are constants with p > 4.

Remark 13. If we replace ψðv1, v2,⋯,vnÞ by αð∑n
i=1∥vi∥

np +Qn
i=1∥vi∥

pÞ and letting L = 34−np in Corollary 11, we obtain
the stability results for the sum of product of norms that

Q4 vð Þ − ϕ vð Þk k ≤ α vk knp
3np − 34
� � , ð81Þ

for all v ∈ V , where α and p are constants with np > 4.

4. Counterexample

We present a counterexample to show instability of a partic-
ular condition of the equality (5) using modified example of
Gajda [7].

Remark 14. If a function ϕ : ℝ⟶V satisfies the functional
equation (5), then, the following assertions hold:

(1) ϕðqk/4vÞ = qkϕðvÞ, q ∈ℚ, k ∈ℤ and v ∈ℝ

(2) ϕðvÞ = v4ϕð1Þ, v ∈ℝ if the function ϕ is continuous

Example 15. Let a mapping ϕ : ℝ⟶ℝ be defined as
follows:

ϕ vð Þ = 〠
∞

n=0

χ 3nvð Þ
34n , ð82Þ

where

χ vð Þ = θv4,−1 < v < 1,
θ, else,

(
ð83Þ

then, the mapping ϕ : ℝ⟶ℝ satisfies

Dϕ v1, v2,⋯,vnð Þj j ≤ n4 − 20n3 + 47n2 − 40n + 540
6

� � 312
80

� �
θ 〠

n

j=1
vj


 

4 !

,

ð84Þ

for all v1, v2,⋯, vn ∈ℝ, but a quartic mapping Q4 : ℝ⟶ℝ
does not exist satisfies

ϕ vð Þ −Q4 vð Þj j ≤ ε vj j4, ð85Þ

for all v ∈ℝ, where θ and ε are a constant.

Proof. It is easy to show that ϕ is bounded by 81/80θ on ℝ. If
∑n

j=1jvjj4 ≥ 1/34 or 0, then

Dϕ v1, v2,⋯,vnð Þj j < n4 − 20n3 + 47n2 − 40n + 540
6

� � 81
80 θ:

ð86Þ
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Thus, (84) is valid. Next, suppose that

0 < 〠
n

j=1
vj


 

4 < 1

34 , ð87Þ

then, there exists an integer m > 0 satisfies

1
34 m+2ð Þ ≤ 〠

n

j=1
vj


 

4 < 1

34 m+1ð Þ : ð88Þ

So that34mjv1j < 1/34, 34mjv2j < 1/34,⋯, 34mjvnj < 1/34 and

Also, for a = 0, 1,⋯,m − 1,

Dχ v1, v2,⋯,vnð Þ = 0: ð90Þ

Next, by inequality (88), we obtain that

It follows from (88) that

Dϕ v1, v2,⋯,vnð Þj j ≤ n4 − 20n3 + 47n2 − 40n + 540
6

� � 312
80 θ 〠

n

j=1
vj


 

4 !

:

ð92Þ

Thus, the function ϕ satisfies the inequality (84). Assume
on a contrary that there exist a quartic solution Q4 : ℝ
⟶ℝ satisfying (85). For every v in ℝ, since ϕ is continu-
ous and bounded, Q4 is limited to an open interval of origin
and continuous origin.

In the view of Remark 14, Q4 must be Q4ðvÞ = cv4, v ∈ℝ.
So we obtain

ϕ vð Þj j ≤ ε + cj jð Þ vj j4, v ∈ℝ: ð93Þ

Suppose, we can choose m > 0 with mθ > ε + jcj. If v
∈ ð0, 1/3m−1Þ, then, 3av ∈ ð0, 1Þ for all a = 0, 1,⋯,m − 1,
we obtain

ϕ vð Þ = 〠
∞

a=0

χ 3avð Þ
34a ≥ 〠

m−1

a=0

θ 3avð Þ4
34a =mθv4 > ε + cj jð Þ v4

 

,

ð94Þ

which contradicts.

Data Availability

No data were used to support this study.

3av1, 3av2,⋯, 3avn

〠
n

i=1
−3avi + 〠

n

j=1
3avj

 !

〠
1≤i<j<k<l≤n

3a vi + vj + vk + vl
� �� �

〠
1≤i<j<k≤n

3a vi + vj + vk
� �� �

〠
1≤i<j≤n

3a vi + vj
� �� �

〠
1≤i<j≤n

3a vi − vj
� �� �

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

∈� − 1, 1 , a = 0, 1,⋯,m − 1½ : ð89Þ

Dϕ v1, v2,⋯,vnð Þj j ≤ 〠
∞

a=0

1
34a Dχ 3av1, 3av2,⋯,3avnð Þj j ≤ 〠

∞

a=0

1
34a


〠n
i=1

χ −3avi + 〠
n

j=1
3avj

 !
− n − 8ð Þ 〠

1≤i<j<k<l≤n
χ 3a vi + vj + vk + vl

� �� �

+ n2 − 12n + 28
� �

〠
1≤i<j<k≤n

χ 3a vi + vj + vk
� �� �

−
n3 − 15n2 + 60n − 68

2

� �
〠

1≤i<j≤n
χ 3a vi + vj

� �� �
− 2 〠

1≤i<j≤n
χ 3a vi − vj

� �� �
− 〠

n

i=1
χ 3a 3við Þð Þ

+ n4 − 17n3 + 86n2 − 148n + 558
6

� �
〠
n

i=1
χ 3a við Þð Þj ≤ 〠

∞

a=m

1
34a

n4 − 20n3 + 47n2 − 40n + 540
6

� �
θ:

ð91Þ
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