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In this work, a class of two-dimensional fractional hyperbolic differential linear system (2D-FHDLS) with time delay is
investigated. By using generalized Gronwall’s inequality, sufficient conditions for the finite time stability (FTS) of two-
dimensional fractional hyperbolic differential system with time delay are given. Numerical examples are also given to illustrate
the stability result.

1. Introduction

Since twenty years, the area of fractional calculus has gained
much attentions by the researchers, and numerous works have
been published in this context. In fact, in [1], for a magnetic
resonance imaging, a robust corner detection is developed.
Authors have made a comparative experiment between the
proposed methods and integer-order one. Furthermore, for
the Hilfer stochastic delay fractional differential equations
with the Poisson jumps, authors in [2] have analyzed the aver-
aging principle. The author in [3] introduced a new approach
for solving diffusive systems governed by the Caputo operator.
Also, in [4], a hyperchaotic economic system was studied
using fractional differential operator. Bayrak et al. in [5] estab-
lished a novel approach for solving diffusive problems with
conformable derivative. A new extension of the Hermite-
Hadamard inequalities via generalized fractional integral has
been given in [6]. Nagy and Ben Makhlouf in [7] studied the
finite time stability of the linear Caputo-Katugampola frac-
tional time delay systems.

Fractional differential equations have recently proved to
be valuable tools in the modeling of many phenomena in
different domain applications, whether in control theory,

diffusion [5], viscoelasticity [8], or biology [9–11]. For exam-
ple, in regard to the biology field, the pandemic transmission
model of fractional-order COVID-19 type has been studied
numerically by Higazy et al. in [9]. Regarding control theory
field, a new adaptive surface control method based on frac-
tional calculus is developed by Zouari et al. in [12]. It was
found that all the variables, errors, and signals are practical
finite time stability with an asymptotic convergence to zero
of the tracking errors. Also, a regional observability for linear
fractional systems has been studied in [13]. In [14], Xu et al.
proved a global asymptotic stability for fractional neural net-
works with multiple time varying delay. A finite time stabil-
ity for a class of fractional fuzzy neural networks with delay
has been described and studied in [15]. In addition, authors
in [16] have studied the FTS for fractional-order time delay
systems.

For some basic results in the theory of fractional partial
differential equations, the reader is referred to many various
works. For example, for a perturbed partial fractional-order
differential equations with finite delay, the Darboux problem
is proposed by Abbas and Benchohra in [17]. A nonlinear
fractional optimal control problem has been solved by gen-
eralized Bernoulli polynomials [18]. Wang and Zhang in
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[19] studied a Lyapunov inequality for PDE with mixed
Caputo derivative. Also, Benchohra and Hellal in [20]
proved a global uniqueness results for fractional partial
hyperbolic differential equations with delay.

Motivated by the above interpretations, the main objective
of this paper is to study the FTS for the linear Darboux frac-
tional partial differential equations with delay or simply, as
mentioned above, the 2D-FHDLS with delay. In fact, we were
able to establish a new result for the FTS of Caputo 2D-
FHDLS with delay. Indeed, thanks to the generalized Gron-
wall’s inequality, we have determined sufficient conditions
for the FTS of the 2D-FHDLS with delay. Recall that in [21],
we have proved a similar result, but using a fixed point
approach. By comparing the two methods, we have shown
by numerical tests that the generalized Gronwall’s inequality
method gives a wider stability interval than that given by fixed
point method which proves that generalized Gronwall’s
inequality method gives very satisfactory stability results.

The paper is organized as follows. In Section 2, some
preliminaries are given. In Section 3, FTS results are pre-
sented. In Section 4, some numerical examples which show
the efficiency of the results were presented.

2. Basic Results

Definition 1 (see [22]). The Riemann-Liouville Fractional
(RLF) integral of order γ = ðγ1, γ2Þ of w is defined by

Iγcw ξ, ζð Þ = Γ γ1ð ÞΓ γ2ð Þ½ �−1
ðξ
c1

ðζ
c2

ξ − sð Þγ1−1 ζ − tð Þγ2−1w s, tð Þdtds,

ð1Þ

where c = ðc1, c2Þ ∈ℝ2, γ1, γ2 are strictly positive, and Γð·Þ is
the Euler gamma function.

Definition 2 (see [22]). The RLF derivative of order γ =
ðγ1, γ2Þ of w is defined by

Dγ
cw ξ, ζð Þ =D2

ξ,ζI
1−γ
c w ξ, ζð Þ, = Γ 1 − γ1ð ÞΓ 1 − γ2ð Þ½ �−1

� D2
ξ,ζ

ðξ
c1

ðζ
c2

ξ − sð Þ−γ1 ζ − tð Þ−γ2w s, tð Þ dtds,
ð2Þ

where c = ðc1, c2Þ ∈ℝ2, ðγ1, γ2Þ ∈ ð0, 1Þ2, and D2
ξ,ζ = ∂2/∂ξ∂ζ.

Definition 3 (see [22]). The Caputo fractional derivative
(CFD) of order γ = ðγ1, γ2Þ of w is defined by

CD
γ
cw ξ, ζð Þ =Dγ

c w ξ, ζð Þ −w ξ, c2ð Þ −w c1, ζð Þ +w c1, c2ð Þ½ �,

= Γ 1 − γ1ð ÞΓ 1 − γ2ð Þ½ �−1D2
ξ,ζ

ðξ
c1

ðζ
c2

ξ − sð Þ−γ1 ζ − tð Þ−γ2

× w s, tð Þ −w s, c2ð Þ −w c1, tð Þ +w c1, c2ð Þ½ �dtds,
ð3Þ

where c = ðc1, c2Þ ∈ℝ2, ðγ1, γ2Þ ∈ ð0, 1Þ2, and D2
ξ,ζ = ∂2/∂ξ∂ζ.

Definition 4 (see [23]). Let m ∈ℕ and m ≠ 0, αj, βj, z, ρ ∈ℂ,
such that Re ðαjÞ, Re ðβjÞ > 0 for j = 1, 2,⋯,m. The general-
ized Mittag-Leffler function (MLF) is defined by

Eρ αj, βj

� �
j=1,m

; zð Þ
� �

= 〠
+∞

k=0

ρð ÞkQm
j=1Γ kαj + βj

� � zk
k!
, ð4Þ

where

ρð Þk = ρ ρ + 1ð Þ⋯ ρ + k − 1ð Þ = Γ ρ + kð Þ
Γ ρð Þ : ð5Þ

If m = 2 and ρ = 1, we get

Eρ αj, βj

� �
j=1,2

; zð Þ
� �

= E αj, βj

� �
j=1,2

; zð Þ
� �

,

= 〠
+∞

k=0

zk

Γ kα1 + β1ð ÞΓ kα2 + β2ð Þ :
ð6Þ

Lemma 5 (see [24]). Let ~u, ~v be two integrable function and ~g
be a continuous function with domain J . Assume that

(1) ~u and ~v are nonnegative

(2) ~v is nondecreasing in each of its variables

(3) ~g is nonnegative and nondecreasing in each of its
variables

If

~u r, μð Þ ≤ ~v r, μð Þ + ~g r, μð Þ
ðr
a+1

ðμ
a+2

r − ζð Þα1−1 μ − ξð Þα2−1~u ζ, ξð Þdξdζ:

ð7Þ

Then

~u r, μð Þ ≤ ~v r, μð ÞE α1, 1ð Þ, α2, 1ð Þ ; ~g r, μð ÞΓ α1ð ÞΓ α2ð Þð
� r − a1ð Þα1 μ − a2ð Þα2Þ: ð8Þ

3. Main Result

In this paper, we are interested on the study of the initial
value fractional-order linear system defined on the bounded
domain Q = ½0,T � × ½0, T � as follows:
CD

ν
0ϑ ξ, ζð Þ =Gϑ ξ, ζð Þ + Kϑ ξ − e1 ξð Þ, ζ − e2 ζð Þð Þ + Lδ ξ, ζð Þ,

ð9Þ

for all ðξ, ζÞ ∈Q. The initial condition

ϑ ξ, ζð Þ = ψ ξ, ζð Þ, for all ξ, ζð Þ ∈U, ð10Þ

where CDν
0ð·Þ is the CFD of order ν = ðν1, ν2Þ, 0 < ν1, ν2 < 1.

The functions e1, e2 are positive and continuous on ½0,T �
and ½0, T �, respectively. The matrices G, K ∈ℝn×n and L ∈
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ℝn×p and the function ψ ∈ CðU,ℝnÞ. Here, the domain U is
given by

U = −m1,T½ � × −m2, T½ �ð Þ \ 0,Tð � × 0, Tð �ð Þ, ð11Þ

where the constants m1,m2 are given by

m1 = max
t∈ 0,T½ �

e1 tð Þð Þ,

m2 = max
t∈ 0,T½ �

e2 tð Þð Þ:
ð12Þ

The function δ is a perturbation. We assume that the
function δ ∈ Cðℝ2

+,ℝpÞ and satisfies

∃ρ > 0 : δT ξ, ζð Þδ ξ, ζð Þ ≤ ρ2: ð13Þ

Let us introduce the following constants a, b, c which are
defined by

a = Gk k,
b = Kk k,
c = Lk k:

ð14Þ

Definition 6. Let ε > 0 and γ > 0 such that ε < γ. System (9) is
robustly FTS with respect to fε, γ, ρ,T , Tg, if the following
relation is satisfied:

ψk k ≤ ε⇒ ϑ ξ, ζð Þk k ≤ γ,∀ ξ, ζð Þ ∈Q, ð15Þ

for all perturbation δ satisfying equation (9) and condition
(13).

Recall that the solution of system (9) is defined by

ϑ ξ, ζð Þ =
ψ ξ, ζð Þ,∀ ξ, ζð Þ ∈U,

ρ ξ, ζð Þ + 1
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1 ×Ψ u, vð Þ dvdu,∀ ξ, ζð Þ ∈Q,

8><
>:

ð16Þ

where the functions Ψ, ρ are defined by

ρ ξ, ζð Þ = ψ ξ, 0ð Þ + ψ 0, ζð Þ − ψ 0, 0ð Þ, ð17Þ

Ψ u, vð Þ = Gϑ u, vð Þ + Kϑ u − e1 uð Þ, v − e2 vð Þð Þ + Lδ u, vð Þ:
ð18Þ

The main result in this work is as follows.

Theorem 7. System (9) is FTS with respect to fε, γ, ρ,T , Tg,
ε < γ, if the following inequality holds:

3ε + cρ
T ν1Tν2

Γ ν1 + 1ð ÞΓ ν2 + 1ð Þ
� �

E ν1 ,1ð Þ; ν2 ,1ð Þ a + bð ÞT ν1Tν2ð Þ ≤ γ,

ð19Þ

where Eð·,·Þ;ð·,·Þ is the generalized MLF given in equation (9)
and the constants ρ, a, b, c are given in (13) and (14).

Proof. The solution of system (9) is given by relation
(16). Then, we can deduce the following estimation:
for all ðξ, ζÞ ∈Q

ϑ ξ, ζð Þk k ≤ ρ ξ, ζð Þk k + 1
Γ ν1ð ÞΓ ν2ð Þ

�
ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1 Ψ u, vð Þk k dvdu ≤ 3 ψk k

+ 1
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1

× a ϑ u, vð Þk k + b ϑ u − e1 uð Þ, v − e2 vð Þð Þk k½
+ c δ u, vð Þk k� dvdu ≤ 3 ψk k + cρ

T ν1Tν2

Γ ν1 + 1ð ÞΓ ν2 + 1ð Þ
� �

+ 1
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1

× a ϑ u, vð Þk k + b ϑ u − e1 uð Þ, v − e2 vð Þð Þk k½ � dvdu:
ð20Þ

Let us consider the function yðξ, ζÞ defined on the
extended bounded domain Jξζ = ½−m1, ξ� × ½−m2, ζ� as
follows:

y ξ, ζð Þ = sup
r,μð Þ∈Jξζ

ϑ r, μð Þk k: ð21Þ

We have, for all ðr, μÞ ∈ ½0, ξ� × ½0, ζ�, the following
estimations:

ϑ r, μð Þk k ≤ y r, μð Þ,
ϑ r − e1 rð Þ, μ − e2 μð Þð Þk k ≤ y r, μð Þ:

ð22Þ

Then, for all ðξ, ζÞ ∈Q, we obtain

ϑ ξ, ζð Þk k ≤M + a + b
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1y u, vð Þ dvdu,

ð23Þ

where the constant M is given by

M = 3 ψk k + cρ
T ν1Tν2

Γ ν1 + 1ð ÞΓ ν2 + 1ð Þ : ð24Þ

Let us notice that the function

ξ, ζð Þ↦
ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1y u, vð Þ dvdu ð25Þ

is nondecreasing with respect to each of its variables,
because yðu, vÞ is nondecreasing with respect to each
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of its variables. Then, for all ðr, μÞ ∈ ½0, ξ� × ½0, ζ�:

ϑ r, μð Þk k ≤M + a + b
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1y u, vð Þ dvdu:

ð26Þ

Then, we get

y ξ, ζð Þ = sup
r,μð Þ∈Jξζ

ϑ r, μð Þk k,

≤max sup
r,μð Þ∈Jξζ\ 0,ξð �× 0,ζð �

ϑ r, μð Þk k, sup
r,μð Þ∈ 0,ξ½ �× 0,ζ½ �

ϑ r, μð Þk k
( )

≤max ψk k,M + a + b
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1y u, vð Þ dvdu

( )

≤M + a + b
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1y u, vð Þ dvdu

)
:

ð27Þ

Now, using the generalized Gronwall inequality, we
get

y ξ, ζð Þ ≤ME ν1,1ð Þ; ν2,1ð Þ a + bð Þξν1ζν2� 	
≤ 3 ψk k + cρ

T ν1Tν2

Γ ν1 + 1ð ÞΓ ν2 + 1ð Þ
� �
� E ν1,1ð Þ; ν2,1ð Þ a + bð ÞT ν1Tν2ð Þ ≤ γ:

ð28Þ

for all ðξ, ζÞ ∈Q. The proof is completed.

Remark 8. Note that a similar result, to that given in Theo-
rem 7, has been proved in ([21], Theorem 2) by a fixed point
method.

4. Numerical Scheme

From relation (16), we have

ϑ ξ, ζð Þ = ρ ξ, ζð Þ + 1
Γ ν1ð ÞΓ ν2ð Þ

ðξ
0

ðζ
0
ξ − uð Þν1−1 ζ − vð Þν2−1Ψ u, vð Þ dvdu,

ð29Þ

for all ðξ, ζÞ ∈ ½0,T � × ½0, T �, where the state ϑ is the solu-
tion of system (9), and the functions Ψ, ρ are given by
relations (17) and (18). In this section, we study system
(9) where ϑ, ρ,Ψ ∈ℝ2. Then, let us assume that the solu-
tion ϑ is of the following form:

ϑ ξ, ζð Þ = ϑ1 ξ, ζð Þ, ϑ2 ξ, ζð Þð ÞT ∈ℝ2: ð30Þ

In this section, we use the same techniques of discre-
tization and approximations that we have already used
for the numerical resolution of the nonlinear problem
in [21]. Thus, we build an uniform grid on the domain
½−m1,T � × ½−m2, T �. Let r, h ∈ℝ and K , J , n,m ∈ℕ such
that

r = T

K
= m1

n
,

h = T

J
= m2

m
:

ð31Þ

Then, we introduce two sequences ðξiÞi and ðζjÞj
defined by

ξi = ir,∀i = −n,−n + 1,−n + 2:⋯,−1, 0,⋯,K ,
ζj = jh,∀j = −m,−m + 1,−m + 2:⋯,−1, 0,⋯, J :

ð32Þ

So, the state ϑ can be expressed at the point ðξi, ζjÞ as
follows:

ϑ ξi, ζj
� 	

= ρ ξi, ζj
� 	

+ 1
Γ ν1ð ÞΓ ν2ð Þ

�
ðξi
0

ðζ j
0
ξi − uð Þν1−1 ζj − v

� 	ν2−1Ψ u, vð Þ dvdu,

ð33Þ

where ρðξi, ζjÞ = ψð0, ζjÞ + ψðξi, 0Þ − ψð0, 0Þ. By consider-
ing the following approximations,

ϑ ξi, ζj
� 	

≈ ϑij, ρ ξi, ζj
� 	

≈ ρij,

ψ 0, ζj
� 	

≈ ψ0j, ψ ξi, 0ð Þ ≈ ψi0, ψ 0, 0ð Þ ≈ ψ00,
ð34Þ

we can rewrite equation (33) as follows:

ϑij = ρij +
1

Γ ν1ð ÞΓ ν2ð Þ
ðξi
0

ðζ j
0
ξi − uð Þν1−1 ζj − v

� 	ν2−1Ψ u, vð Þ dvdu:

ð35Þ

Then, we deduce that

ϑ0j = ρ0j = ψ0j,
ϑi0 = ρi0 = ψi0:

ð36Þ

By using the properties of integration, we can rewrite
equation (35) as follows:

ϑij = ρij +
1

Γ ν1ð ÞΓ ν2ð Þ〠
i−1

k=0
〠
j−1

l=0

ðξk+1
ξk

ðζl+1
ζl

ξi − uð Þν1−1 ζj − v
� 	ν2−1Ψ u, vð Þ dvdu:

ð37Þ

Now, using approximation proposed in [25], we
obtain

ϑij = ρij +
1

Γ ν1ð ÞΓ ν2ð Þ〠
i−1

k=0
〠
j−1

l=0

ðξk+1
ξk

ðζl+1
ζl

ξi − uð Þν1−1 ζj − v
� 	ν2−1Ψ ξk, ζlð Þ dvdu

= ρij +
1

Γ ν1ð ÞΓ ν2ð Þ〠
i−1

k=0
〠
j−1

l=0
Ψkl
ðξk+1
ξk

ðζl+1
ζl

ξi − uð Þν1−1 ζ j − v
� 	ν2−1 dvdu,

ð38Þ
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where we have the approximation Ψðξk, ζlÞ ≈Ψkl and

Ψ ξk, ζlð Þ = Gϑ ξk, ζlð Þ + Kϑ ξk −m1, ζl −m2ð Þ + Lδ ξk, ζlð Þ,
ð39Þ

and the term

ϑ ξk −m1, ζl −m2ð Þ = ϑ kr − nr, lh −mhð Þ,
= ϑ k − nð Þr, l −mð Þhð Þ,
= ϑ ξk−n, ζl−mð Þ ≈ ϑk−n,l−m:

ð40Þ

So, we deduce that

Ψkl = Gϑkl + Kϑk−n,l−m + Lδkl: ð41Þ

Calculating and simplifying the integral in equation
(38) gives the following expression:

ϑij = ρij +
rν1hν2

Γ ν1 + 1ð ÞΓ ν2 + 1ð Þ〠
i−1

k=0
〠
j−1

l=0
σikτl jΨ

kl , ð42Þ

where σik, τl j are given by

σik = i − k − 1ð Þν1 − i − kð Þν1 ,
τl j = j − l − 1ð Þν2 − j − lð Þν2 :

ð43Þ

Remark 9. More details about the convergence, the con-
sistency, and behavior of the error kϑðξi, ζjÞ − ϑijk with
respect to r, h, ν1, ν2 can be deduced from [25].

5. Numerical Simulation and Interpretation

In this section, we propose some numerical examples. With
the help of these examples, we show that the solution of sys-
tem (9) is consistent with Definition 6. Indeed, for any ε > 0,

0
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Figure 1: The solution ϑ = ðϑ1, ϑ2ÞT , T = 1:5, T = 0:9, and ν = ð0:9,0:7Þ. The curves of ϑ1 and ϑ2 are represented in (a) and (b), respectively.
The norm kϑk = 3:473.
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Figure 2: The solution ϑ = ðϑ1, ϑ2ÞT , T = 1:092, T = 1:3, and ν = ð0:9,0:9Þ. The curves of ϑ1 and ϑ2 are represented in (a) and (b),
respectively. The norm kϑk = 3:1271.
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γ > 0 such that ε < γ, we can verify that

if ψk k ≤ ε then ϑ ξ, ζð Þk k ≤ γ,∀ ξ, ζð Þ ∈ 0,T½ � × 0, T½ �: ð44Þ

System (9) is defined by

CD
ν
0ϑ ξ, ζð Þ =Gϑ ξ, ζð Þ + Kϑ ξ −m1, ζ −m2ð Þ + Lδ ξ, ζð Þ, ð45Þ

for all ðξ, ζÞ ∈ ½0,T � × ½0, T �, ν = ðν1, ν2Þ. The initial condi-
tion is given by

ϑ ξ, ζð Þ = ψ ξ, ζð Þ,∀ ξ, ζð Þ ∈ −m1, 0½ � × −m2, 0½ �: ð46Þ

Recall that we have denoted the solution ϑ of system (45)
as follows:

ϑ ξ, ζð Þ = ϑ1 ξ, ζð Þ, ϑ2 ξ, ζð Þð ÞT ,∀ ξ, ζð Þ ∈ 0,T½ � × 0, T½ �: ð47Þ

Remark 10. The following examples are established under

the condition where the parameters ε, γ, ρ,T , T satisfy esti-
mation (19).

We have chosen the following data:

G =
−0:3 −0:5
0:2 0:4

 !
,

K =
0:1 −0:5
−0:3 −0:1

 !
,

L =
0:3 1
2 −0:5

 !
,

δ t, sð Þ = 0:04,0:01ð ÞT :

ð48Þ

The initial condition

ψ ξ, ζð Þ = 0:002 sin 11πξζð Þ, 0ð ÞT ,∀ ξ, ζð Þ ∈ −0:1,0½ � × −0:2,0½ �,
ð49Þ
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Figure 3: The solution ϑ = ðϑ1, ϑ2ÞT , T = 0:81, T = 0:4, and ν = ð0:3,0:2Þ. The curves of ϑ1 and ϑ2 are represented in (a) and (b), respectively.
The norm kϑk = 3:8669.
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Figure 4: The solution ϑ = ðϑ1, ϑ2ÞT , T = 1:2, T = 0:7, and ν = ð0:9,0:2Þ. The curves of ϑ1 and ϑ2 are represented in (a) and (b), respectively.
The norm kϑk = 3:7642.
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where ðm1,m2Þ = ð0:1,0:2Þ and we have kψk ≈ 0:002 < ε.
We consider the data: K = 70, J = 60, ε = 0:1, γ = 10,
and ρ = 0:55. In the following, we have plotted the solution ϑ

ðξ, ζÞ = ðϑ1ðξ, ζÞ, ϑ2ðξ, ζÞÞT , ∀ðξ, ζÞ ∈ ½0,T � × ½0, T � for differ-
ent values of ν = ðν1, ν2Þ andT , T , (see Figures 1, 2, 3, and 4).
Also, in Table 1, we study the variation ofT , T , and kϑk versus
variation of ν = ðν1, ν2Þ. We conclude that the stability rela-
tion given in (44) is well satisfied kϑðξ, ζÞk < 10.

By using a fixed point method, we have proved in our
work in [21] that system (9) is FTS w.r.t. fε, γ, ρ,T , Tg if
there exists η1, η2 > 0 such that a + b < η1η2 and the follow-
ing inequality holds:

3 1 + a + bð ÞM0 η1, η2ð ÞEν1
η1T

ν1ð ÞEν2
η2T

ν2ð Þ
 �
� ε + cM0 η1, η2ð ÞEν1

η1T
ν1ð ÞEν2

η2T
ν2ð Þ
 �

ρ ≤ γ,
ð50Þ

where E·ð·Þ is the Mittag-Leffler function and M0ðη1, η2Þ is
given by

M0 η1, η2ð Þ = T ν1Tν2

1 − a + b/η1η2ð Þ½ �Γ ν1 + 1ð ÞΓ ν2 + 1ð Þ : ð51Þ

Now, we will compare the time interval ½0,T FP� × ½0,
T FP� obtained by the fixed point method relation (50) and
the time interval ½0,T GG� × ½0, TGG� obtained by the general-
ized Gronwall’s inequality relation (19). We consider the
same data taken at the beginning of this section to which
we add ðν1, ν2Þ = ð0:9,0:5Þ, η1 = 1:5, and η2 = 1. Then, we
fix T GG =T FP = 1:3. From Table 1, we deduce that TGG =
0:815. Now using relation (50), we can deduce by calculation
that T FP = 0:00615.

0,T GG½ � × 0, TGG½ � = 0,1:3½ � × 0,0:815½ �,
0,T FP½ � × 0, T FP½ � = 0,1:3½ � × 0,0:00615½ �:

ð52Þ

We conclude from this experiment that the generalized
Gronwall’s inequality gives a wider stability interval than
that given by fixed point method which proves that general-
ized Gronwall’s inequality method gives very satisfactory
stability results.

6. Conclusion

In this work, we have proved the FTS for a class of two-
dimensional fractional hyperbolic differential systems with
time delay by using generalized Gronwall’s inequality. Suffi-
cient conditions for the FTS of such systems are given.
Moreover, numerical examples are given to illustrate the sta-
bility result.

In the coming works, we aspire to generalize the FTS for
the 2D-FHDLS to several other types of well-known frac-
tional derivatives.
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