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This work applies a novel analytical technique to the fractional view analysis of coupled Burgers equations. The proposed
problems have been fractionally analyzed in the Caputo-Fabrizio sense. The Yang transformation was initially applied to the
specified problem in the current approach. The series form solution is then obtained using the Adomian decomposition
technique. The desired analytical solution is obtained after performing the inverse transform. Specific examples of fractional
Burgers couple systems are used to validate the proposed technique. The current strategy has been found to be a useful
methodology with a close match to actual solutions. The proposed method offers a lower computing cost and a faster
convergence rate. As a result, the suggested technique can be applied to a variety of fractional order problems.

1. Introduction

The branch of mathematics, which deals with the study of
derivatives and integrals of non-integer orders, is known as
fractional calculus (FC). It was born in 1695 on September
30 due to an important question asked by L’Hospital in a let-
ter to Leibniz. The answer of Leibniz [1] gives motivation to
a series of interesting results during the last 325 years [2–4].
In the last decades, FC has been used as a powerful tool by
many researchers in various fields of science and engineer-
ing, for example, the fractional control theory [2, 5], anom-
alous diffusion, fractional neutron point kinetic model,
fractional filters, soft matter mechanics, non-Fourier heat
conduction, notably control theory, Levy statistics, nonlocal
phenomena, fractional signal and image processing, porous
media, fractional Brownian motion, relaxation, groundwater
problems, rheology, acoustic dissipation, creep, fractional
phase-locked loops, and fluid dynamics [6–10].

In recent years, fractional partial differential equations
(FPDEs) have gained considerable interest because of their
applications in various fields such as finance, biological pro-
cesses and systems, fluid flow [11, 12], chaotic dynamics,
electrochemistry, diffusion processes, material science, elec-
tromagnetic, turbulent flow [13–18], elastoplastic indenta-
tion problems [19], dynamics of van der Pol equation [20],
and statistical mechanics model [21].

To find the solution of FPDEs is a hard task, however,
many mathematicians devoted their sincere work and devel-
oped numerical and analytical techniques to solve FPDEs.
Some of these techniques include homotopy analysis
method (HAM) [22], operational matrix [23], Adomian
decomposition method (ADM) [24], homotopy perturba-
tion method (HPM) [25], meshless method [26], variational
iteration method (VIM) [27], tau method [28], Bernstein
polynomials [29], the Haar wavelet method [30], the Laplace
transform method [31], the Legendre base method [32],
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Laplace variational iteration method [33], G’/G-expansion
method [34], Jacobi spectral collocation method [35],
Yang-Laplace transform [36], new spectral algorithm [37],
fractional complex transform method [38], cylindrical-
coordinate method [39], and spectral Legendre-Gauss-
Lobatto collocation method [40].

The Burgers equation was initially introduced by Harry
Bateman in the year 1915 [41]. They have many applications
in various fields, especially in equations having nonlinear
form. This equation describes many phenomena such as
acoustic waves, heat conduction, dispersive water, shock
waves [42], continuous stochastic processes [43], and model-
ing of dynamics [44–46]. The one-dimensional Burgers
equations have many applications in plasma physics, gas
dynamics, etc. [47]. Various techniques were developed by
mathematicians to find the numerical and analytical solu-
tions of Burgers equations. Some of these methods are a
direct variational iteration method by Ozis and Ozdes [48].
Jaiswal [49] solved the equations numerically by finite differ-
ence method. Group explicit method was used by Evans and
Abdullah [50]. Singhal and Mittal applied the Galerkin
method [51] to solve these equations numerically. A
weighted residue method was applied by Caldwell et al.
[52]. Fractional Riccati expansion method was applied by
Kurt et al. [53], and variational iteration method was applied
by Inc [54] to solve space-time fractional Burgers equation.
Esen et al. [55] used HAM to solve time-fractional Burgers
equation. The cubic B-spline finite elements method was
applied by Esen and Tasbozan to solve these equations [56].

Yang decomposition method (YDM) is one of the
straightforward and effective techniques to solve nonlinear
FPDEs. YDM possesses the combined behavior of Yang
transformation and Adomian decomposition method
(ADM). It is observed that the suggested method require
no predefined declaration size like RK4. Laplace Adomian
decomposition method required less number of parameters,
no discritization, and linerization as compared to other ana-
lytical technique. Laplace Adomian decomposition method
is also compared with ADM to analyze the solution of
FPDEs given in [57]. The solution of Kundu-Eckhaus equa-
tion is discussed in [58], via Laplace Adomian decomposi-
tion method. Multistep Laplace Adomian decomposition
method is implemented to solve FPDEs in [59]. Laplace
Adomian decomposition method is also used for the solu-
tion of fractional Navier-Stokes and smoke models [60–62].

In the current study, we implemented YDM for the solu-
tion of coupled Burgers equations. The desired degree of
accuracy is achieved. The procedure of the suggested tech-
nique is very simple and straightforward. The accuracy is
calculated in terms of absolute error. The results have shown
the present method has the desired accuracy as compared to
other analytical techniques.

2. Preliminary Concepts

We provide the fundamental definitions that will be used
throughout the article. For the purpose of simplification, we
write the exponential decay kernel as, KðΨ, ϱÞ = e½−℘ðΨ−ϱ/1−℘Þ�.

Definition 1. If the Caputo-Fabrizio derivative is given as fol-
lows [63]:

CFD℘
Ψ ℙ Ψð Þ½ � = N ℘ð Þ

1−℘

ðΨ
0
ℙ′ ϱð ÞK Ψ, ϱð Þdϱ, n − 1 < ℘ ≤ n:

ð1Þ

Nð℘Þ is the normalization function with Nð0Þ =Nð1Þ = 1.

CFD℘
Ψ ℙ Ψð Þ½ � = N ℘ð Þ

1−℘

ðΨ
0
ℙ Ψð Þ − ℙ ϱð Þ½ �K Ψ, ϱð Þdϱ: ð2Þ

Definition 2. The fractional integral Caputo-Fabrizio is given
as [63]

CFI℘Ψ ℙ Ψð Þ½ � = 1−℘
N ℘ð Þℙ Ψð Þ + ℘

N ℘ð Þ
ðΨ
0
ℙ ϱð Þdϱ, Ψ ≥ 0,℘ ∈ 0, 1ð �:

ð3Þ

Definition 3. For Nð℘Þ = 1, the following result shows the
Caputo-Fabrizio derivative of Laplace transformation [63]:

L CFD℘
Ψ ℙ Ψð Þ½ �� �

= vL ℙ Ψð Þ −ℙ 0ð Þ½ �
v+℘ 1 − vð Þ : ð4Þ

Definition 4. The Yang transformation of ℙðΨÞ is expressed
as [64].

Y ℙ Ψð Þ½ � = χ vð Þ =
ð∞
0
ℙ Ψð Þe−Ψ

v dΨ: Ψ > 0: ð5Þ

Remarks 5. Yang transformation of few useful functions is
defined as below.

Y 1½ � = v,
Y Ψ½ � = v2,
Y Ψi� �

= Γ i + 1ð Þvi+1:
ð6Þ

Lemma 6 (Laplace-Yang duality). Let the Laplace transfor-
mation of ℙðΨÞ is FðvÞ, then χðvÞ = Fð1/vÞ [65].

Proof. From equation (5), we can achieve another type of the
Yang transformation by putting Ψ/v = ζ as

L ℙ Ψð Þ½ � = χ vð Þ = v
ð∞
0
ℙ vζð Þeζdζ: ζ > 0, ð7Þ

Since L½ℙðΨÞ� = FðvÞ, this implies that

F vð Þ = L ℙ Ψð Þ½ � =
ð∞
0
ℙ Ψð Þe−vΨdΨ: ð8Þ

Put Ψ = ζ/v in (8), we have

F vð Þ = 1
v

ð∞
0
ℙ

ζ

v

� �
eζdζ: ð9Þ
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Thus, from equation (7), we achieve

F vð Þ = χ
1
v

� �
: ð10Þ

Also from equations. (5) and (8), we achieve

F
1
v

� �
= χ vð Þ: ð11Þ

The connections (10) and (11) represent the duality link
between the Laplace and Yang transformation.

Lemma 7. Let ℙðΨÞ be a continuous function; then, the
Caputo-Fabrizio derivative Yang transformation of ℙðΨÞ is
define by [65].

Y ℙ Ψð Þ½ � = Y ℙ Ψð Þ − vℙ 0ð Þ½ �
1+℘ v − 1ð Þ : ð12Þ

Proof. The Caputo-Fabrizio fractional Laplace transforma-
tion is given by

L ℙ Ψð Þ½ � = L vℙ Ψð Þ −ℙ 0ð Þ½ �
v+℘ 1 − vð Þ : ð13Þ

Also, we have that the connection among Laplace and
Yang property, i.e., χðvÞ = Fð1/vÞ. To achieve the necessary
result, we substitute v by 1/v in equation (13), and we get

Y ℙ Ψð Þ½ � = 1/vð ÞY ℙ Ψð Þ −ℙ 0ð Þ½ �
1/vð Þ+℘ 1 − 1/vð Þ ,

Y ℙ Ψð Þ½ � = Y ℙ Ψð Þ − vℙ 0ð Þ½ �
1+℘ v − 1ð Þ :

ð14Þ

The proof is completed.

3. Implementation of YDM with Caputo-
Fabrizio

To explain the fundamental concept of this technique, we
consider a particular fractional-order nonlinear partial dif-
ferential equation:

CFDδu ξ,Ψð Þ + Lu ξ,Ψð Þ +Nu ξ,Ψð Þ = q ξ,Ψð Þ,  ξ,Ψ ≥ 0, m − 1 < δ <m,
ð15Þ

where the fractional derivative in equation (15) is defined in
Caputo-Fabrizio. The operator R and N describe the linear
and nonlinear operators, respectively, and gðζ,ΨÞ is the
source term.

The initial condition is

u ξ, 0ð Þ = k ξð Þ, ð16Þ

Using Yang transformation to equation (15), we get

Y Dδu ξ,Ψð Þ
h i

+Y Lu ξ,Ψð Þ +Nu ξ,Ψð Þ½ � =Y q ξ,Ψð Þ½ �,
ð17Þ

with the help of fractional derivative Yang property, we have

1
1 + δ s − 1ð Þð ÞY u ξ, 0ð Þf g − su ξ, 0ð Þ

=Y q ξ,Ψð Þ½ � −Y Lu ξ,Ψð Þ +Nu ξ,Ψð Þ½ �,
ð18Þ

Y u ξ,Ψð Þ½ � = sk ξð Þ + 1 + δ s − 1ð Þð ÞY q ξ,Ψð Þ½ �
− 1 + δ s − 1ð Þð ÞY Lu ξ,Ψð Þ +Nu ξ,Ψð Þ½ �:

ð19Þ
Using YDM procedure, the solution is expressed as

u ξ,Ψð Þ = 〠
∞

j=0
uj ξ,Ψð Þ, ð20Þ

The nonlinear term can be decomposed as

Nu ξ,Ψð Þ = 〠
∞

j=0
Aj, ð21Þ

Aj =
1
j!

dj

dλj
N〠

∞

j=0
λjuj

� �" #" #
λ=0

, j = 0, 1, 2⋯, ð22Þ

substitution (20) and (21) in equation (18), we get

Y 〠
∞

j=0
u ξ,Ψð Þ

" #
= sk ξð Þ + 1 + δ s − 1ð Þð ÞY q ξ,Ψð Þ½ �

− 1 + δ s − 1ð Þð ÞY L〠
∞

j=0
uj ξ,Ψð Þ + 〠

∞

j=0
Aj

" #
:

ð23Þ

Y u0 ξ,Ψð Þ½ � = su ξ, 0ð Þ + 1 + δ s − 1ð Þð ÞY q ξ,Ψð Þ½ �, ð24Þ

Y u1 ξ,Ψð Þ½ � = − 1 + δ s − 1ð Þð ÞY Lu0 ξ,Ψð Þ + A0½ �: ð25Þ

Generally, we can write

Y uj+1 ξ,Ψð Þ� �
= − 1 + δ s − 1ð Þð ÞY Luj ξ,Ψð Þ + Aj

� �
, j ≥ 1:

ð26Þ

Taking the inverse Yang transformation of Eq. (26), we
get

u0 ξ,Ψð Þ = k ξ,Ψð Þ +Y−1 1 + δ s − 1ð Þð ÞY q ξ,Ψð Þ½ �½ �, ð27Þ
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uj+1 ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY Luj ξ,Ψð Þ + Aj

� �� �
:

ð28Þ

4. Example

Consider the following fractional-order coupled Burgers
equations:

CF∂δμ
∂Ψδ

+ ∂2μ
∂ζ2

− 2μ ∂μ
∂ζ

−
∂ μνð Þ
∂ζ

= 0,

CF∂δν
∂Ψδ

+ ∂2ν
∂ζ2

− 2ν ∂ν
∂ζ

−
∂ μνð Þ
∂ζ

= 0, 0 < δ ≤ 1,
ð29Þ

with initial conditions

μ ζ, 0ð Þ = sin ζð Þ, ν ζ, 0ð Þ = − sin ζð Þ: ð30Þ

Taking Yang transform of (29),

Y
∂δμ
∂Ψδ

" #
= −Y

∂2μ
∂ζ2

− 2μ ∂μ
∂ζ

−
∂ μνð Þ
∂ζ

" #
, ð31Þ

Y
∂δν
∂Ψδ

" #
= −Y

∂2ν
∂ζ2

− 2ν ∂ν
∂ζ

−
∂ μνð Þ
∂ζ

" #
, ð32Þ

1
1 + δ s − 1ð Þð ÞY μ ζ, 0ð Þf g − sμ ζ, 0ð Þ = −Y

∂2μ
∂ζ2

− 2μ ∂μ
∂ζ

−
∂ μνð Þ
∂ζ

" #
,

ð33Þ

1
1 + δ s − 1ð Þð ÞY ν ζ, 0ð Þf g − sν ζ, 0ð Þ = −Y

∂2ν
∂ζ2

− 2ν ∂ν
∂ζ

−
∂ μνð Þ
∂ζ

" #
:

ð34Þ
Applying inverse Yang transform

μ ζ,Ψð Þ =Y−1 sμ ζ, 0ð Þ − 1 + δ s − 1ð Þð ÞY ∂2μ
∂ζ2

− 2μ ∂μ
∂ζ

−
∂ μνð Þ
∂ζ

( )" #
,

ð35Þ

ν ζ,Ψð Þ =Y−1 sμ ζ, 0ð Þ − 1 + δ s − 1ð Þð ÞY ∂2ν
∂ζ2

− 2ν ∂ν
∂ζ

−
∂ μνð Þ
∂ζ

( )" #
,

ð36Þ

μ ζ,Ψð Þ = sin ζð Þ −Y−1 1 + δ s − 1ð Þð ÞY ∂2μ
∂ζ2

− 2μ ∂μ
∂ζ

−
∂ μνð Þ
∂ζ

( )" #
,

ð37Þ

ν ζ,Ψð Þ = − sin ζð Þ −Y−1 1 + δ s − 1ð Þð ÞY ∂2ν
∂ζ2

− 2ν ∂ν
∂ζ

−
∂ μνð Þ
∂ζ

( )" #
:

ð38Þ

Using ADM procedure, we get

〠
∞

j=0
μj ζ,Ψð Þ = sin ζð Þ −Y−1 1 + δ s − 1ð Þð ÞY 〠

∞

j=0
μζζ
� 	

j
− 2〠

∞

j=0
Aj μμζ
� 	

− 〠
∞

j=0
Bj μνð Þζ

( )" #
,

ð39Þ

〠
∞

j=0
νj ζ,Ψð Þ = − sin ζð Þ −Y−1 1 + δ s − 1ð Þð ÞY 〠

∞

j=0
νζζ
� 	

j
− 2〠

∞

j=0
Cj ννζ
� 	

− 〠
∞

j=0
Dj μνð Þζ

( )" #
,

ð40Þ

where AjðμμζÞ, BjðμνÞζ, CjðννζÞ, and DjðμνÞζ are Adomian
polynomials are given below,

A0 μμζ
� 	

= μ0
∂μ0
∂ζ

, B0 μνð Þζ =
∂μ0
∂ζ

∂ν0
∂ζ

,

A1 μμζ
� 	

= μ0
∂μ1
∂ζ

+ μ1
∂μ0
∂ζ

, B1 μνð Þζ =
∂μ0
∂ζ

∂ν1
∂ζ

+ ∂μ1
∂ζ

∂ν0
∂ζ

,

A2 μμζ
� 	

= μ0
∂μ2
∂ζ

+ μ1
∂μ1
∂ζ

+ μ2
∂μ0
∂ζ

: B2 μνð Þζ =
∂μ0
∂ζ

∂ν2
∂ζ

+ ∂μ1
∂ζ

∂ν1
∂ζ

+ ∂μ2
∂ζ

∂ν0
∂ζ

:

ð41Þ

C0 ννζ
� 	

= ν0
∂ν0
∂ζ

, D0 μνð Þζ =
∂μ0
∂ζ

∂ν0
∂ζ

,

C1 ννζ
� 	

= ν0
∂ν1
∂ζ

+ ν1
∂ν0
∂ζ

, D1 μνð Þζ =
∂μ0
∂ζ

∂ν1
∂ζ

+ ∂μ1
∂ζ

∂ν0
∂ζ

,

C2 ννζ
� 	

= ν0
∂ν2
∂ζ

+ ν1
∂ν1
∂ζ

+ ν2
∂ν0
∂ζ

: D2 μνð Þζ =
∂μ0
∂ζ

∂ν2
∂ζ

+ ∂μ1
∂ζ

∂ν1
∂ζ

+ ∂μ2
∂ζ

∂ν0
∂ζ

:

ð42Þ

μ0 ζ,Ψð Þ = sin ζ,
ν0 ζ,Ψð Þ = − sin ζð Þ,

ð43Þ

μj+1 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY 〠
∞

j=0
μζζ
� 	

j
− 2〠

∞

j=0
Aj μμζ
� 	

− 〠
∞

j=0
Bj μνð Þζ

( )" #
,

ð44Þ

νj+1 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY 〠
∞

j=0
νζζ
� 	

j
− 2〠

∞

j=0
Cj ννζ
� 	

− 〠
∞

j=0
Dj μνð Þζ

( )" #
,

ð45Þ

for j = 0, 1, 2⋯

μ1 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY ∂2μ0
∂ζ2

− 2μ0
∂μ0
∂ζ

−
∂μ0
∂ζ

∂ν0
∂ζ

( )" #
,

μ1 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð Þ × −sin ζ

s


 �
= sin ζð Þ δΨ + 1 − δð Þf g,

ν1 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY ∂2ν0
∂ζ2

− 2ν0
∂ν0
∂ζ

−
∂μ0
∂ζ

∂ν0
∂ζ

( )" #

ν1 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð Þ × sin ζð Þ
s


 �
= − sin ζð Þ δΨ + 1 − δð Þf g,

ð46Þ
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The subsequent terms are

μ2 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY ∂2μ1
∂ζ2

− 2μ0
∂μ1
∂ζ

− 2μ1
∂μ0
∂ζ

−
∂μ0
∂ζ

∂ν1
∂ζ

−
∂μ1
∂ζ

∂ν0
∂ζ

( )" #
,

μ2 ζ,Ψð Þ = sin ζð Þ 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
,

ν2 ζ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY ∂2ν1
∂ζ2

− 2ν0
∂ν1
∂ζ

− 2ν1
∂ν0
∂ζ

−
∂μ0
∂ζ

∂ν1
∂ζ

−
∂μ1
∂ζ

∂ν0
∂ζ

( )" #

ν2 ζ,Ψð Þ = − sin ζð Þ 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
,

ð47Þ

The YDM solution for example (4) is

μ ζ,Ψð Þ = μ0 ζ,Ψð Þ + μ1 ζ,Ψð Þ + μ2 ζ,Ψð Þ + μ3 ζ,Ψð Þ+⋯,
ð48Þ

ν ζ,Ψð Þ = ν0 ζ,Ψð Þ + ν1 ζ,Ψð Þ + ν2 ζ,Ψð Þ + ν3 ζ,Ψð Þ+⋯,
ð49Þ

μ ζ,Ψð Þ = sin ζð Þ + sin ζð Þ δΨ + 1 − δð Þf g

+ sin ζð Þ 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
+⋯,

ð50Þ

ν ζ,Ψð Þ = − sin ζð Þ − sin ζð Þ δΨ + 1 − δð Þf g

− sin ζð Þ 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
−⋯,

ð51Þ

when δ = 1, then YDM solution is

μ ζ,Ψð Þ = sin ζð Þ + sin ζð ÞΨ + sin ζð ÞΨ
2

2

+ sin ζð ÞΨ
3

6 + sin ζð ÞΨ
4

24 +⋯,
ð52Þ

ν ζ,Ψð Þ = − sin ζð Þ − sin ζð ÞΨ − sin ζð ÞΨ
2

2

− sin ζð ÞΨ
3

6 − sin ζð ÞΨ
4

24 −⋯:

ð53Þ

The exact solutions are

μ ζ,Ψð Þ = eΨ sin ζð Þ,
ν ζ,Ψð Þ = −eΨ sin ζð Þ:

ð54Þ

5. Example

Consider the following fractional-order couple Burgers
equations [17]:

CF∂δμ
∂Ψδ

+ μ
∂μ
∂ζ

+ ν
∂μ
∂ξ

−
∂2μ
∂ζ2

−
∂2μ
∂ξ2

= 0,

CF∂δν
∂Ψδ

+ μ
∂ν
∂ζ

+ ν
∂ν
∂ξ

−
∂2ν
∂ζ2

−
∂2ν
∂ξ2

= 0, 0 < δ ≤ 1,

ð55Þ

with initial condition

μ ζ, ξ, 0ð Þ = ζ + ξ, ν ζ, ξ, 0ð Þ = ζ − ξ: ð56Þ

Taking Yang transform of (55),

Y
∂δμ
∂Ψδ

" #
= −Y μ

∂μ
∂ζ

+ ν
∂μ
∂ξ

−
∂2μ
∂ζ2

−
∂2μ
∂ξ2

" #
, ð57Þ

Y
∂δν
∂Ψδ

" #
= −Y μ

∂ν
∂ζ

+ ν
∂ν
∂ξ

−
∂2ν
∂ζ2

−
∂2ν
∂ξ2

" #
, ð58Þ

1
1 + δ s − 1ð Þð ÞY μ ζ, ξ, 0ð Þf g − sμ ζ, ξ, 0ð Þ

= −Y μ
∂μ
∂ζ

+ ν
∂μ
∂ξ

−
∂2μ
∂ζ2

−
∂2μ
∂ξ2

" #
,

ð59Þ

1
1 + δ s − 1ð Þð ÞY ν ζ, ξ, 0ð Þf g − sν ζ, ξ, 0ð Þ

= −Y μ
∂ν
∂ζ

+ ν
∂ν
∂ξ

−
∂2ν
∂ζ2

−
∂2ν
∂ξ2

" #
:

ð60Þ

Applying inverse Yang transform

μ ζ, ξ,Ψð Þ =Y−1 sμ ζ, ξ, 0ð Þ − 1 + δ s − 1ð Þð ÞY μ
∂μ
∂ζ

+ ν
∂μ
∂ξ

−
∂2μ
∂ζ2

−
∂2μ
∂ξ2

( )" #
,

ð61Þ

ν ζ, ξ,Ψð Þ =Y−1 sν ζ, ξ, 0ð Þ − 1 + δ s − 1ð Þð ÞY μ
∂ν
∂ζ

+ ν
∂ν
∂ξ

−
∂2ν
∂ζ2

−
∂2ν
∂ξ2

( )" #
,

ð62Þ

μ ζ, ξ,Ψð Þ = ζ + ξ −Y−1 1 + δ s − 1ð Þð ÞY μ
∂μ
∂ζ

+ ν
∂μ
∂ξ

−
∂2μ
∂ζ2

−
∂2μ
∂ξ2

( )" #
,

ð63Þ

ν ζ, ξ,Ψð Þ = ζ − ξ −Y−1 1 + δ s − 1ð Þð ÞY μ
∂ν
∂ζ

+ ν
∂ν
∂ξ

−
∂2ν
∂ζ2

−
∂2ν
∂ξ2

( )" #
:

ð64Þ
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Figure 2: YDM solutions of μðζ,ΨÞ and νðζ,ΨÞ for example 1 at different value of δ.
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Figure 3: The YDM solution of example 1 of μðζ,ΨÞ at δ = 1, and 0:8.
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Figure 1: YDM solutions of μðζ,ΨÞ and νðζ,ΨÞ for example 1 at δ = 1.
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Using ADM procedure, we get

〠
∞

j=0
μj ζ, ξ,Ψð Þ = ζ + ξ −Y−1 1 + δ s − 1ð Þð ÞY 〠

∞

j=0
Aj μμζ
� 	

+ 〠
∞

j=0
Bj νμξ
� 	

− 〠
∞

j=0
μζζ − 〠

∞

j=0
μξξ

( )" #
,

ð65Þ

〠
∞

j=0
νj ζ, ξ,Ψð Þ = ζ − ξ −Y−1 1 + δ s − 1ð Þð ÞY 〠

∞

j=0
Cj μνζ
� 	

+ 〠
∞

j=0
Dj ννξ
� 	

− 〠
∞

j=0
νζζ − 〠

∞

j=0
νξξ

( )" #
,

ð66Þ

where AjðμμζÞ, BjðνμξÞ, CjðμνζÞ, and DjðννξÞ, the Adomian
polynomials are given below,

A0 μμζ
� 	

= μ0
∂μ0
∂ζ

, B0 νμξ
� 	

= ν0
∂μ0
∂ξ

,

A1 μμζ
� 	

= μ0
∂μ1
∂ζ

+ μ1
∂μ0
∂ζ

, B1 νμξ
� 	

= ν0
∂μ1
∂ξ

+ ν1
∂μ0
∂ξ

,

A2 μμζ
� 	

= μ0
∂μ2
∂ζ

+ μ1
∂μ1
∂ζ

+ μ2
∂μ0
∂ζ

: B2 νμξ
� 	

= ν0
∂μ2
∂ξ

+ ν1
∂μ1
∂ξ

+ ν2
∂μ0
∂ξ

:

ð67Þ

C0 μνζ
� 	

= μ0
∂ν0
∂ζ

, D0 ννξ
� 	

= ν0
∂ν0
∂ξ

,

C1 μνζ
� 	

= μ0
∂ν1
∂ζ

+ μ1
∂ν0
∂ζ

, D1 ννξ
� 	

= ν0
∂ν1
∂ξ

+ ν1
∂ν0
∂ξ

,

C2 μνζ
� 	

= μ0
∂ν2
∂ζ

+ μ1
∂ν1
∂ζ

+ μ2
∂ν0
∂ζ

: D2 ννξ
� 	

= ν0
∂ν2
∂ξ

+ ν1
∂ν1
∂ξ

+ ν2
∂ν0
∂ξ

:

ð68Þ
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Figure 5: The YDM solution of example 1 of μðζ,ΨÞ at δ = 1, and 0:8.
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Figure 4: The YDM solution of example 1 of μðζ,ΨÞ at δ = 0:6, and 0:4.
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Figure 6: The YDM solution of example 1 of νðζ,ΨÞ at δ = 1, and 0:8.

Table 1: YDM-solutions of example 1 μðζ,ΨÞ and νðζ,ΨÞ different fractional-order of δ.
Ψ ζ Absolute error (δ = 0:4) Absolute error (δ = 0:6) Absolute error (δ = 0:8) Absolute error (δ = 1)

0.1

1 1.6795833810 × 10−02 5.4134672620 × 10−03 7.0667992140 × 10−04 7.0683562720 × 10−09

2 1.8149655480 × 10−02 5.8498176890 × 10−03 7.6364158210 × 10−04 7.6380983850 × 10−09

3 2.8167675970 × 10−03 9.0787271070 × 10−04 1.1851469400 × 10−04 1.1854080680 × 10−09

4 1.5105843420 × 10−02 4.8687662520 × 10−03 6.3557405730 × 10−04 6.3571409610 × 10−09

5 1.9140211660 × 10−02 6.1690839760 × 10−03 8.0531895140 × 10−04 8.0549639070 × 10−09

0.2

1 2.2895909420 × 10−02 8.0513685670 × 10−03 2.3663474260 × 10−04 2.3207769760 × 10−07

2 2.4741425310 × 10−02 8.7003460040 × 10−03 2.5570859420 × 10−04 2.5078423030 × 10−07

3 3.8397888720 × 10−03 1.3502654490 × 10−03 3.9685143520 × 10−05 3.8920898230 × 10−08

4 2.0592131750 × 10−02 7.2412429330 × 10−03 2.1282464510 × 10−04 2.0872612820 × 10−07

5 2.6091741410 × 10−02 9.1751859580 × 10−03 2.6966443650 × 10−04 2.6447131500 × 10−07

0.3

1 2.7579918610 × 10−02 1.0158028710 × 10−02 3.1243332140 × 10−04 1.7930063740 × 10−06

2 2.9802987250 × 10−02 1.0976812670 × 10−02 3.3761688790 × 10−04 1.9375309570 × 10−06

3 4.6253268490 × 10−02 1.7035656840 × 10−03 5.2397044750 × 10−05 3.0069851330 × 10−07

4 2.4804837720 × 10−02 9.1359317340 × 10−02 2.8099639980 × 10−04 1.6125947570 × 10−06

5 3.1429548890 × 10−02 1.1575895650 × 10−02 3.5604305020 × 10−04 2.0432758450 × 10−06

0.4

1 3.1561849440 × 10−02 1.1987254260 × 10−02 3.7995256610 × 10−04 7.6880155060 × 10−06

2 3.4105880060 × 10−02 1.2953482240 × 10−02 4.1057849520 × 10−04 8.3077050100 × 10−06

3 5.2931218410 × 10−02 2.0103383830 × 10−03 6.3720449280 × 10−05 1.2893288420 × 10−06

4 2.8386108190 × 10−02 1.0781101310 × 10−02 3.4172188380 × 10−04 6.9144503180 × 10−06

5 3.5967281260 × 10−02 1.3660446180 × 10−02 4.3298669290 × 10−04 8.7611157430 × 10−06

0.5

1 3.5108679510 × 10−02 1.3639899070 × 10−02 4.4195033070 × 10−04 2.3878506280 × 10−06

2 3.7938600990 × 10−02 1.4739337840 × 10−02 4.7757356550 × 10−04 2.5803224010 × 10−06

3 5.8879476850 × 10−02 2.2874973730 × 10−03 7.4117866660 × 10−05 4.0045765820 × 10−06

4 3.1576057570 × 10−02 1.2267457630 × 10−02 3.9748145700 × 10−04 2.1475860090 × 10−05

5 4.0009181120 × 10−02 1.5543768660 × 10−02 5.0363816220 × 10−04 2.7211490040 × 10−05
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μ0 ζ, ξ,Ψð Þ = ζ + ξ,
ν0 ζ, ξ,Ψð Þ = ζ − ξ,

ð69Þ

μ j+1 ζ, ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY 〠
∞

j=0
Aj μμζ
� 	

+ 〠
∞

j=0
Bj νμξ
� 	

− 〠
∞

j=0
μζζ − 〠

∞

j=0
μξξ

( )" #
,

ð70Þ

νj+1 ζ, ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY 〠
∞

j=0
Cj μνζ
� 	

+ 〠
∞

j=0
Dj ννξ
� 	

− 〠
∞

j=0
νζζ − 〠

∞

j=0
νξξ

( )" #
,

ð71Þ

for j = 0, 1, 2⋯

μ1 ζ, ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY μ0
∂μ0
∂ζ

+ ν0
∂μ0
∂ξ

−
∂2μ0
∂ζ2

−
∂2μ0
∂ξ2

" #" #

= −2ζ δΨ + 1 − δð Þf g,

ν1 ζ, ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY μ0
∂ν0
∂ζ

+ ν0
∂ν0
∂ξ

−
∂2ν0
∂ζ2

−
∂2ν0
∂ξ2

" #" #

= −2ξ δΨ + 1 − δð Þf g:
ð72Þ

The subsequent terms are

μ2 ζ, ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY μ0
∂μ1
∂ζ

+ μ1
∂μ0
∂ζ





+ ν0
∂μ1
∂ξ

+ ν1
∂μ0
∂ξ

−
∂2μ1
∂ζ2

−
∂2μ1
∂ξ2

##
,

μ2 ζ, ξ,Ψð Þ = 2 ζ + ξð Þ 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
,

Table 2: YDM-solutions of example 1 at μðζ,ΨÞ different fractional-order of δ.
Ψ ζ Absolute error (δ = 0:4) Absolute error (δ = 0:6) Absolute error (δ = 0:8) Absolute error (δ = 1)

0.1

1 5.1388035000 × 10−03 8.5868730000 × 10−04 1.2436850000 × 10−05 1.4585000000 × 10−10

2 1.0422343800 × 10−02 1.7352281000 × 10−03 2.2053740000 × 10−05 2.1331000000 × 10−09

3 1.4825705100 × 10−02 2.4804600000 × 10−03 3.3501640000 × 10−05 2.6843000000 × 10−09

4 2.1340157300 × 10−02 3.3450207000 × 10−03 4.5130530000 × 10−05 3.3374000000 × 10−09

5 2.5732507500 × 10−02 4.2223515000 × 10−03 5.6568430000 × 10−05 4.1714000000 × 10−09

0.2

1 6.5526269000 × 10−03 1.2845443000 × 10−04 1.9524030000 × 10−05 8.9043500000 × 10−08

2 1.3585147000 × 10−02 2.5823037000 × 10−03 3.9081030000 × 10−05 1.2243480000 × 10−08

3 2.0617667100 × 10−03 3.8800631000 × 10−03 5.8638020000 × 10−05 1.5582620000 × 10−08

4 2.7650187200 × 10−02 5.1778225000 × 10−03 7.8195020000 × 10−05 1.8921750000 × 10−08

5 3.4682707200 × 10−02 6.4755819000 × 10−03 9.7752020000 × 10−05 2.2260880000 × 10−08

0.3

1 7.5239217000 × 10−03 1.6203247000 × 10−04 2.6503270000 × 10−05 9.9570730000 × 10−08

2 1.5715901300 × 10−02 3.2621458000 × 10−03 5.3069340000 × 10−05 1.2801951000 × 10−08

3 2.3907880800 × 10−02 4.9039669000 × 10−03 7.9635420000 × 10−05 1.5646829000 × 10−08

4 3.2099860300 × 10−02 6.5457880000 × 10−03 1.0620149000 × 10−05 1.8491707000 × 10−08

5 4.0291839800 × 10−02 8.1876092000 × 10−03 1.3276756000 × 10−05 2.1336585000 × 10−08

0.4

1 8.2762123000 × 10−03 1.9075950000 × 10−03 3.2874570000 × 10−05 5.7825882000 × 10−09

2 1.7398405800 × 10−02 3.8455493000 × 10−03 6.5848290000 × 10−05 6.7463529000 × 10−08

3 2.6520599300 × 10−02 5.7835036000 × 10−03 9.8822010000 × 10−05 7.7101176000 × 10−08

4 3.5642792800 × 10−02 7.7214580000 × 10−03 1.3179574000 × 10−05 8.6738823000 × 10−08

5 4.4764986200 × 10−02 9.6594122000 × 10−03 1.6476946000 × 10−05 9.6376470000 × 10−08

0.5

1 8.8947364000 × 10−03 2.1627817000 × 10−03 3.8817930000 × 10−04 2.3900000000 × 10−08

2 1.8806520800 × 10−02 4.3652454000 × 10−03 7.7777130000 × 10−04 3.5300000000 × 10−08

3 2.8718305200 × 10−02 6.5677091000 × 10−03 1.1673633000 × 10−05 4.6600000000 × 10−08

4 3.8630089800 × 10−02 8.7701729000 × 10−03 1.5569554000 × 10−04 5.8000000000 × 10−08

5 4.8541874400 × 10−02 1.0972636700 × 10−03 1.9465475000 × 10−04 6.9300000000 × 10−08
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ν2 ζ, ξ,Ψð Þ = −Y−1 1 + δ s − 1ð Þð ÞY μ0
∂ν1
∂ζ

+ μ1
∂ν0
∂ζ





+ ν0
∂ν1
∂ξ

+ ν1
∂ν0
∂ξ

−
∂2ν0
∂ζ2

−
∂2ν0
∂ξ2

##
,

ν2 ζ, ξ,Ψð Þ = 2 ζ − ξð Þ 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
:

ð73Þ

The YDM solution for example (5) is

μ ζ, ξ,Ψð Þ = μ0 ζ, ξ,Ψð Þ + μ1 ζ, ξ,Ψð Þ
+ μ2 ζ, ξ,Ψð Þ + μ3 ζ, ξ,Ψð Þ+⋯,

ð74Þ

ν ζ, ξ,Ψð Þ = ν0 ζ, ξ,Ψð Þ + ν1 ζ, ξ,Ψð Þ
+ ν2 ζ, ξ,Ψð Þ + ν3 ζ, ξ,Ψð Þ+⋯,

ð75Þ

μ ζ, ξ,Ψð Þ = ζ + ξ − 2ζ δΨ + 1 − δð Þf g + 2 ζ + ξð Þ

� 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
+⋯,

ð76Þ

ν ζ, ξ,Ψð Þ = ζ − ξ − 2ξ δΨ + 1 − δð Þf g + 2 ζ − ξð Þ

� 1 − δð Þ2 + 2δ 1 − δð ÞΨ + δ2Ψ2

2

( )
+⋯,

ð77Þ

when δ = 1, then YDM solution is

μ ζ, ξ,Ψð Þ = ζ + ξ − 2ζΨ + 2 ζ + ξð ÞΨ2

− 4Ψ3ζ + 4 ζ + ξð ÞΨ4+⋯,
ð78Þ

ν ζ, ξ,Ψð Þ = ζ − ξ − 2ξΨ + 2 ζ − ξð ÞΨ2

− 4Ψ3ξ + 4 ζ − ξð ÞΨ4+⋯:
ð79Þ

Table 3: YDM-solutions of example 2 at νðζ,ΨÞ different fractional-order of δ.
Ψ ζ Absolute error (δ = 0:4) Absolute error (δ = 0:6) Absolute error (δ = 0:8) Absolute error (δ = 1)

0.1

1 5.6770988000 × 10−04 8.7119340000 × 10−05 1.1548840000 × 10−07 1.6326000000 × 10−10

2 5.3834512000 × 10−03 8.4544080000 × 10−04 9.5379000000 × 10−07 2.0407510200 × 10−09

3 5.0898036000 × 10−03 8.1968820000 × 10−04 7.5269600000 × 10−07 4.0814857200 × 10−09

4 4.7961560000 × 10−03 7.9393560000 × 10−04 5.5160200000 × 10−07 6.1222204100 × 10−09

5 4.5025084000 × 10−03 7.6818300000 × 10−04 3.5050800000 × 10−07 8.1629551100 × 10−09

0.2

1 7.5124132000 × 10−04 1.3109744000 × 10−05 1.9589970000 × 10−07 2.2260880000 × 10−08

2 6.9925200000 × 10−03 1.2577593000 × 10−04 1.5557000000 × 10−07 4.3444869600 × 10−08

3 6.4726268000 × 10−03 1.2045442000 × 10−04 1.1524030000 × 10−07 8.6867478200 × 10−08

4 5.9527336000 × 10−03 1.1513291000 × 10−04 7.4910600000 × 10−06 1.3029008690 × 10−08

5 5.4328404000 × 10−03 1.0981140000 × 10−04 3.4580900000 × 10−06 1.7371269560 × 10−08

0.3

1 8.8600372900 × 10−04 1.6633175900 × 10−05 2.6628869000 × 10−06 4.2673170000 × 10−08

2 8.1319795000 × 10−03 1.5818212000 × 10−04 2.0566070000 × 10−06 7.2886243900 × 10−08

3 7.4039217000 × 10−03 1.5003248000 × 10−04 1.4503270000 × 10−06 1.4534575610 × 10−08

4 6.6758639000 × 10−03 1.4188284000 × 10−04 8.4404700000 × 10−06 2.1780526830 × 10−08

5 5.9478061000 × 10−03 1.3373320000 × 10−04 2.3776700000 × 10−06 2.9026478050 × 10−08

0.4

1 9.9681746700 × 10−04 1.9683136700 × 10−04 3.3072887000 × 10−06 3.8550588000 × 10−09

2 9.0421934000 × 10−03 1.8579543000 × 10−04 2.4973720000 × 10−06 1.1668329410 × 10−08

3 8.1162122000 × 10−03 1.7475950000 × 10−04 1.6874560000 × 10−06 2.2951152940 × 10−08

4 7.1902310000 × 10−03 1.6372357000 × 10−04 8.7754000000 × 10−06 3.4233976470 × 10−08

5 6.2642497000 × 10−03 1.5268763000 × 10−04 6.7623000000 × 10−06 4.5516800000 × 10−08

0.5

1 1.0928832650 × 10−04 2.2421458500 × 10−04 3.9100485000 × 10−06 1.2600000000 × 10−08

2 9.8117844000 × 10−03 2.1024637000 × 10−04 2.8959200000 × 10−06 1.0050239900 × 10−08

3 8.6947361000 × 10−03 1.9627815000 × 10−04 1.8817910000 × 10−06 2.0100478600 × 10−08

4 7.5776879000 × 10−03 1.8230994000 × 10−04 8.6766300000 × 10−06 3.0150717200 × 10−08

5 6.4606397000 × 10−03 1.6834173000 × 10−04 1.4646500000 × 10−06 4.0200955900 × 10−08
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The exact solutions are

μ ζ, ξ,Ψð Þ = ζ − 2ζΨ + ξ

1 − 2Ψ2 ,

ν ζ, ξ,Ψð Þ = ζ − 2ξΨ − ξ

1 − 2Ψ2 :

ð80Þ

6. Results and Discussion

In this section, we analyze the solution-figures of problem
which have been investigated by applying Yang decomposi-
tion method in the sense of Caputo-Fabrizio operator.
Figure 1 represents the two-dimensional solution-figures
for variables μðζ,ΨÞ and νðζ,ΨÞ of example 1 at fractional
order δ = 1, respectively, in Figure 2 at different fractional-
order of ℘. It is observed that Yang method solution-
figures are identical and close contact with each other. In a
similar way in Figures 3 and 4 represent the three-
dimensional solution-figures for variables μðζ,ΨÞ of exam-
ple 1 at fractional order δ = 1, 0:8, 0:6, and 0:4. Figure 5
shows that the three dimensional figure of μðζ,ΨÞ of frac-
tional order δ = 1 and 0:8 of example 2 and Figure 6,
approximate solution graphs of example 2 with respect to
νðζ,ΨÞ at δ = 1 and 0:8. Tables 1–3 show the absolute error
of different fractional order of δ with respect to μðζ,ΨÞ and
νðζ,ΨÞ of examples 1 and 2. The same graphs of the sug-
gested methods attained and confirmed the applicability of
the present technique. The convergence phenomenon of
the fractional-solutions towards integer-solution is observed.
The same accuracy is achieved by using the present
techniques.

7. Conclusion

In this paper, Yang Adomian decomposition method is
implemented for the solution of dynamic systems of frac-
tional Burger equations. The derived results have been
graphed and tables. The analytical solutions for some
numerical problems represent the validity of the suggested
technique. It is also analyzed that the fractional-order solu-
tion is convergence to the actual result for the problem as
fractional-order approach integer-order. The higher accu-
racy of the suggested procedure is clearly demonstrated by
this representation of the acquired results. The results for
fractional systems that are closely akin to their actual solu-
tions are obtained. It has been demonstrated that fractional
solutions converge to integer-order solutions. The present
method’s valuable themes include fewer calculations and
improved precision. The researchers modified it to solve
fractional partial differential equations in various systems.
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