Some New Generalized Fractional Newton's Type Inequalities for Convex Functions

Jarunee Soontharanon, ${ }^{1}$ Muhammad Aamir Ali $\cdot{ }^{[}{ }^{2}$ Hüseyin Budak © ${ }^{3}$, Pinar Kösem, ${ }^{3}$ Kamsing Nonlaopon (D), ${ }^{4}$ and Thanin Sitthiwirattham (${ }^{5}$
${ }^{1}$ Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
${ }^{2}$ Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
${ }^{3}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
${ }^{4}$ Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
${ }^{5}$ Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand

Correspondence should be addressed to Kamsing Nonlaopon; nkamsi@kku.ac.th
Received 21 April 2022; Revised 1 July 2022; Accepted 1 August 2022; Published 2 September 2022
Academic Editor: Behrouz Parsa Moghaddam
Copyright © 2022 Jarunee Soontharanon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we establish some new Newton's type inequalities for differentiable convex functions using the generalized Riemann-Liouville fractional integrals. The main edge of the newly established inequalities is that these can be turned into several new and existing inequalities for different fractional integrals like Riemann-Liouville fractional integrals, k-fractional integrals, Katugampola fractional operators, conformable fractional operators, Hadamard fractional operators, and fractional operators with the exponential kernel without proving one by one. It is also shown that the newly established inequalities are the refinements of the previously established inequalities inside the literature.

1. Introduction

The fascinating idea of inequalities has long been a topic of discussion in various mathematical disciplines. Fractional calculus, quantum calculus, operator theory, numerical analysis, operator equations, network theory, and quantum information theory are just a few fascinating applications. This is a very active study topic right now, and the interplay between different areas has enriched it. Numerical integration and definite integral estimation are important aspects of applied sciences. Among the numerical techniques, Simpson's rules are crucial that can be stated as follows:
(1) Simpson's $1 / 3$ rule:

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \mathfrak{G}(x) d \varkappa \approx \frac{\theta_{2}-\theta_{1}}{6}\left[\mathfrak{G}\left(\theta_{1}\right)+\mathfrak{G}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \tag{1}
\end{equation*}
$$

(2) Simpson's $3 / 8$ rule (Newton rule):

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \mathfrak{G}(x) d x \approx \frac{\theta_{2}-\theta_{1}}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \tag{2}
\end{equation*}
$$

Researchers have used fractional calculus to develop different fractional integral inequalities that are beneficial in approximation theory due to their importance. Inequalities like Hermite-Hadamard, Simpson's, midpoint, Ostrowski's, and trapezoidal inequalities are examples of inequalities that may be used to find the boundaries of numerical integration formulas. The bounds of trapezoidal formula and inequality of Hermite-Hadamard type using the Riemann-Liouville fractional integrals were established in [1]. Set [2] used differentiable convexity and established fractional Ostrowski's type
inequalities. İscan and Wu [3] proved some bounds of numerical integration and inequality of the Hermite-Hadamard type for reciprocal convex functions via Riemann-Liouville fractional integrals. The bounds of midpoint and a new version of fractional inequality of Hermite-Hadamard type were established by Sarikaya and Yildrim in [4]. The bounds for Simpson's $1 / 3$ formula were obtained by Sarikaya et al. [5] using the general convexity and Riemann-Liouville fractional integral operators. In [6], the authors found some new bounds for Simpson's $1 / 3$ formula using the Riemann-Liouville fractional integrals. The authors of [7] used s-convexity and found some bounds for Simpson's $1 / 3$ formula. In 2020, Sarikaya and Ertugral [8] gave a new class of fractional integrals called generalized fractional integrals and established Hermite-Hadamard-type inequalities connected to the newly defined class of integrals. The main advantage of the newly defined class of fractional integral operators is that it can be converted into the classical integral, Riemann-Liouville fractional integrals, k -fractional integrals, Hadamard fractional integrals, etc. In [9], Zhao et al. obtained some bounds for a trapezoidal formula using the reciprocal convex functions and generalized fractional integral operators. Budak et al. [10] established some bounds for Simpson's $1 / 3$ formula for differentiable convex functions using the generalized fractional integrals. Some bounds for the q Simpson's and Newton's type inequalities were proved by Budak et al. in [11]. Siricharuanun et al. proved some inequalities of Simpson and Newton type by using quantum numbers in [12]. Until recent years, Newton-type inequalities for fractional integrals had not been proven. Recently, Sitthiwirattham et al. [13] used the Riemann-Liouville fractional integrals operators and obtained some bounds for Newton formula.

Motivated by the ongoing studies, we obtain some new bounds/inequalities for Newton formula using the convexity and generalized fractional integrals. The main edge of newly established inequalities is that these can be converted into classical Newton inequalities, Riemann-Liouville fractional Newton inequalities and new Newton inequalities for k-fractional integrals without establishing one by one. These results can be helpful in finding the error bounds of Newton formulas in fractional calculus, which is the main motivation of this paper. Moreover, the main difference between the results proved in [11-13] and the results of this paper is that while the papers $[11,12]$ are derived on Newton type inequalities for quantum integrals and the paper [13] focus on Newton type inequalities for RiemannLiouville fractional integrals operators, we prove some inequalities of Newton type by using the generalized fractional integrals. These inequalities generalize the results of the paper [13] and give some new inequalities for k-fractional integrals, Hadamard fractional integrals, conformable fractional integrals, etc.

On the other hand, there are many other papers related to our topic. One can consult [14-25] and references therein for more inequalities via fractional integrals. Moreover, several papers focused on the functions of bounded variation to prove some important inequalities such as the Ostrowski type [26], Simpson type [27, 28], trapezoid type [29, 30], and midpoint type [31]. For more applications of fractional calculus in other areas of mathematical sciences, one can consult [32-41].

A description of the paper is as follows: In Section 2, the fundamentals of fractional calculus, as well as other perti-
nent research in this field, are briefly discussed. In Section 3, we develop an essential identity that is vital in identifying the key outcomes of the paper. In Section 4, we use generalized fractional integrals to derive some new Newton's type inequalities for differentiable convex functions. For functions of bounded variation, Section 5 contains certain fractional Newton-type inequalities. Section 6 concludes with some future study ideas.

2. Fractional Integrals and Related Inequalities

Several fundamental fractional integral notations and concepts are reviewed in this section. Different fractional integrals are also used to recall various inequalities.

Definition 1. A function $\mathfrak{G}: I \longrightarrow \mathbb{R}$, where I is an interval in \mathbb{R}, is called convex, if it satisfies the inequality

$$
\begin{equation*}
\mathfrak{G}(t \varkappa+(1-t) y) \leq t \mathfrak{G}(\varkappa)+(1-t) \mathfrak{G}(y) \tag{3}
\end{equation*}
$$

where $x, y \in I$ and $t \in[0,1]$.
Definition 2 ([42, 43]). Let $\mathfrak{G} \in L_{1}\left[\theta_{1}, \theta_{2}\right]$. The RiemannLiouville fractional integrals (RLFIs) $J_{\theta_{1}+}^{\alpha}\left(\mathfrak{S}\right.$ and $J_{\theta_{2}-}^{\alpha}(\mathfrak{S}$ of order $\alpha>0$ with $\theta_{1} \geq 0$ are defined as follows:

$$
\begin{align*}
J_{\theta_{1}+}^{\alpha} \mathfrak{G}(\varkappa) & =\frac{1}{\Gamma\left(\theta_{1}\right)} \int_{\theta_{1}}^{\varkappa}(\varkappa-t)^{\alpha-1} \mathfrak{G}(t) d t, \varkappa>\theta_{1}, \tag{4}\\
J_{\theta_{2}-}^{\alpha} \mathscr{G}(\varkappa) & =\frac{1}{\Gamma(\alpha)} \int_{\varkappa}^{\theta_{2}}(t-\varkappa)^{\alpha-1} \mathfrak{G}(t) d t, \varkappa<\theta_{2},
\end{align*}
$$

respectively, where the well-known Gamma function is represented by Γ.

Definition 3 ([44]). Let $\mathfrak{G} \in L_{1}\left[\theta_{1}, \theta_{2}\right]$. The k-Riemann-Liouville fractional integrals (KRLFIs) $\mathscr{J}_{\theta_{1}+}^{\alpha, k}\left(\mathfrak{S}\right.$ and $\mathscr{J}_{\theta_{2}-, k}^{\alpha, k}(\mathfrak{S}$ of order $\alpha, k>0$ with $\theta_{1} \geq 0$ are defined as follows:

$$
\begin{align*}
\mathscr{J}_{\theta_{1}+}^{\alpha, k}(\mathfrak{S}(\varkappa) & =\frac{1}{k \Gamma_{k}(\alpha)} \int_{\theta_{1}}^{\varkappa}(\varkappa-t)^{(\alpha / k)-1}\left(\mathfrak{S}(t) d t, \varkappa>\theta_{1},\right. \\
\mathscr{J}_{\theta_{2}-, k}^{\alpha, k}(\mathfrak{S}(\varkappa) & =\frac{1}{k \Gamma_{k}(\alpha)} \int_{\varkappa}^{\theta_{2}}(t-\varkappa)^{(\alpha / k)-1} \mathfrak{G}(t) d t, \varkappa<\theta_{2}, \tag{5}
\end{align*}
$$

respectively, where Γ_{k} is the well-known k-Gamma function.
Definition 4 ([8]). Let $\mathfrak{G} \in L_{1}\left[\theta_{1}, \theta_{2}\right]$. The generalized fractional integrals (GRLFIs) ${ }_{\theta_{1}+} I_{\varphi}\left(\mathscr{G}\right.$ and ${ }_{\theta_{2}-I_{\varphi}}\left(\mathscr{G}\right.$ with $\theta_{1} \geq 0$ are defined as follows:

$$
\begin{align*}
& \theta_{1}+I_{\varphi} \mathfrak{G}(\varkappa)=\int_{\theta_{1}}^{\varkappa} \frac{\varphi(\varkappa-t)}{\varkappa-t} \mathfrak{G}(t) d t, \varkappa>\theta_{1}, \tag{6}\\
& \theta_{2}-I_{\varphi} \mathfrak{G}(\varkappa)=\int_{\varkappa}^{\theta_{2}} \frac{\varphi(t-\varkappa)}{t-\varkappa} \mathfrak{G}(t) d t, \varkappa<\theta_{2},
\end{align*}
$$

respectively, where the mapping is $\varphi:[0, \infty) \longrightarrow[0, \infty)$. One can consult [8] for further information of function φ.

Remark 5. The GRLFIs are significant because they can be converted into classical Riemann integrals, RLFIs, and KFIs for φ ($\lambda)=\lambda, \varphi(\lambda)=\lambda^{\alpha} / \Gamma(\alpha)$ and $\varphi(\lambda)=\lambda^{\alpha / k} / k \Gamma_{k}(\alpha)$, respectively. For more choices of the function φ, one can recapture the different fractional integrals like Katugampola fractional operators, conformable fractional integrals, Hadamard fractional operators, and fractional operators with the exponential kernel (see [8]).

In [45], Ertuğral and Sarikaya used GRLFIs and proved the following Simpson's type inequalities for differentiable convex functions.

Theorem 6. Let $\mathfrak{G}: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function over I° and $\mathfrak{G S}^{\prime} \in L_{1}\left[\theta_{1}, \theta_{2}\right]$. If $\left|\mathfrak{G}^{\prime}\right|$ is convex over $\left[\theta_{1}, \theta_{2}\right]$, then the following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{1}{6}\right. & {\left[\mathscr{G}\left(\theta_{1}\right)+4 \mathfrak{G}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] } \\
& \left.-\frac{1}{2 \Theta(1)}\left[\theta_{1}+I_{\varphi} \mathfrak{G S}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+{ }_{\theta_{2}-} I_{\varphi} \mathfrak{G S}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)\right] \right\rvert\, \tag{7}\\
& \leq \frac{\theta_{2}-\theta_{1}}{2 \Theta(1)} \Omega(t)\left[\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|+\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|\right],
\end{align*}
$$

where

$$
\begin{align*}
& \Omega(t)=\int_{0}^{1}\left|\frac{\Theta(t)}{2}-\frac{\Theta(1)}{3}\right| d t \\
& \Theta(\varkappa)=\int_{0}^{\varkappa} \frac{\varphi\left(\left(\theta_{2}-\theta_{1}\right) / 2 t\right)}{t} d t \tag{8}
\end{align*}
$$

It is worth mentioning here that the inequality (7) can be turned into classical Simpson's inequality, RLFIs Simpson's inequality, and KRLFIs inequality as follows:
(i) For $\varphi(t)=t$, the following Simpson's inequality for classical Riemann-integral holds (see [5]):

$$
\begin{align*}
& \left|\frac{1}{6}\left[\mathfrak{G}\left(\theta_{1}\right)+4 \mathfrak{G}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+\mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{\theta_{2}-\theta_{1}} \int_{\theta_{1}}^{\theta_{2}} \mathfrak{G}(\varkappa) d x\right| \\
& \quad \leq \frac{5\left(\theta_{2}-\theta_{1}\right)}{72}\left[\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|+\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|\right] \tag{9}
\end{align*}
$$

(ii) For $\varphi(t)=t^{\alpha} / \Gamma(\alpha)$, the following Simpson's inequality for RLFIs holds (see [45]):

$$
\begin{align*}
\left\lvert\, \frac{1}{6}\right. & {\left[\mathscr{G}\left(\theta_{1}\right)+4 \mathscr{G}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+\mathscr{G}\left(\theta_{2}\right)\right] } \\
& -\frac{\Gamma(\alpha+1)}{2^{1-\alpha}\left(\theta_{2}-\theta_{1}\right)^{\alpha}}\left[J _ { \theta _ { 1 } + } ^ { \alpha } \left(\left.\mathfrak{G}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+J_{\theta_{2^{-}}}^{\alpha}\left(\mathscr{S}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)\right] \right\rvert\,\right.\right. \\
& \leq \frac{\theta_{2}-\theta_{1}}{2} F(\alpha)\left[\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|+\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|\right], \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
F(\alpha)=\left(\frac{2}{3}\right)^{(1 / a)+1}\left(\frac{\alpha}{\alpha+1}\right)+\frac{1}{2(\alpha+1)}-\frac{1}{3} \tag{11}
\end{equation*}
$$

(iii) For $\varphi(t)=t^{\alpha / k} / k \Gamma_{k}(\alpha)$, the following Simpson's inequality for KRLFIs holds (see [45]):

$$
\begin{align*}
& \left\lvert\, \frac{1}{6}\left[\mathfrak{G}\left(\theta_{1}\right)+4 \mathfrak{G}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+\mathfrak{G}\left(\theta_{2}\right)\right]\right. \\
& -\frac{\Gamma_{k}(\alpha+k)}{2^{1-\alpha / k}\left(\theta_{2}-\theta_{1}\right)^{\alpha / k}}\left[\mathscr { g } _ { \theta _ { 1 } + } ^ { \alpha , k } \left(\left.\frac{G}{}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)+\mathcal{F}_{\theta_{2}-}^{\alpha, k}\left(\mathbb{S}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)\right] \right\rvert\,\right.\right. \\
& \leq \frac{\theta_{2}-\theta_{1}}{2} F(\alpha, k)\left[\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|+\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|\right], \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
F(\alpha, k)=\left(\frac{2}{3}\right)^{k / \alpha+1}\left(\frac{\alpha}{\alpha+k}\right)+\frac{k}{2(\alpha+k)}-\frac{1}{3} \tag{13}
\end{equation*}
$$

Remark 7. If we set $\alpha=k=1$ in (10) and (12), then we obtain the classical Simpson's inequality (9).

3. An Identity

In this section, we prove an integral equality in order to demonstrate the primary findings of the paper. For brevity, we shall use the following notation throughout the paper:

$$
\begin{equation*}
Y(\varkappa)=\int_{0}^{\varkappa} \frac{\varphi\left(\left(\left(\theta_{2}-\theta_{1}\right) / 3\right) u\right)}{u} d u<+\infty . \tag{14}
\end{equation*}
$$

Lemma 8. If $(\mathfrak{G}: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function such that $\mathfrak{G s}$ is differentiable over I° and $\mathfrak{G S}^{\prime} \in L_{1}\left[\theta_{1}, \theta_{2}\right]$, then the following identity holds for GRLFIs:

$$
\begin{align*}
\frac{1}{3 Y(1)} & {\left[\theta_{1}+{ }_{\varphi}{ }_{\varphi} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi} \mathscr{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.} \\
+ & \left.(\theta 1+2 \theta 2) / 3+I_{\varphi} I_{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathscr{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right]=\frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[I_{1}+I_{2}+I_{3}\right], \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}=\int_{0}^{1}\left(Y(t)-\frac{5 Y(1)}{8}\right) \mathfrak{G S}^{\prime}\left(t \theta_{1}+(1-t) \frac{2 \theta_{1}+\theta_{2}}{3}\right) d t \\
& I_{2}=\int_{0}^{1}\left(Y(t)-\frac{Y(1)}{2}\right) \mathscr{G}^{\prime}\left(t \frac{2 \theta_{1}+\theta_{2}}{3}+(1-t) \frac{\theta_{1}+2 \theta_{2}}{3}\right) d t
\end{aligned}
$$

$$
\begin{equation*}
I_{3}=\int_{0}^{1}\left(Y(t)-\frac{3 Y(1)}{8}\right) \mathfrak{G s}^{\prime}\left(t \frac{\theta_{1}+2 \theta_{2}}{3}+(1-t) \theta_{2}\right) d t \tag{16}
\end{equation*}
$$

Proof. Using the laws of integration by parts and variables change, we have

$$
\begin{align*}
I_{1}= & \int_{0}^{1}\left(Y(t)-\frac{5 Y(1)}{8}\right) \mathfrak{G s}^{\prime}\left(t \theta_{1}+(1-t) \frac{2 \theta_{1}+\theta_{2}}{3}\right) d t \\
= & \frac{3}{\left(\theta_{2}-\theta_{1}\right)} \int_{0}^{1} \frac{\varphi\left(\left(\left(\theta_{2}-\theta_{1}\right) / 3\right) t\right)}{t} \mathfrak{G}\left(t \theta_{1}+(1-t) \frac{2 \theta_{1}+\theta_{2}}{3}\right) d t \\
& -\frac{Y(1)}{\theta_{2}-\theta_{1}}\left[\frac{15}{8} \mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\frac{9}{8} \mathfrak{G}\left(\theta_{1}\right)\right] \\
= & \frac{3}{\theta_{2}-\theta_{1}} \theta_{1}+I_{\varphi} \mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)-\frac{Y(1)}{\theta_{2}-\theta_{1}}\left[\frac{15}{8} \mathfrak{S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\frac{9}{8} \mathfrak{G}\left(\theta_{1}\right)\right] . \tag{17}
\end{align*}
$$

Also, we have

$$
\begin{align*}
I_{2}= & \int_{0}^{1}\left(Y(t)-\frac{Y(1)}{2}\right) \mathfrak{G}^{\prime}\left(t \frac{2 \theta_{1}+\theta_{2}}{3}+(1-t) \frac{\theta_{1}+2 \theta_{2}}{3}\right) d t \\
= & \frac{3}{\theta_{2}-\theta_{1}}(2 \theta 1+\theta 2) / 3+I_{\varphi}\left(\mathscr{S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right. \\
& -\frac{Y(1)}{\theta_{2}-\theta_{1}}\left[\frac{3}{2} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\frac{3}{2} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right], \tag{18}
\end{align*}
$$

$$
I_{3}=\int_{0}^{1}\left(Y(t)-\frac{3 Y(1)}{8}\right) \mathfrak{G}^{\prime}\left(t \frac{\theta_{1}+2 \theta_{2}}{3}+(1-t) \theta_{2}\right) d t
$$

$$
=\frac{3}{\theta_{2}-\theta_{1}}(\theta 1+2 \theta 2) / 3+I_{\varphi} \mathfrak{G}\left(\theta_{2}\right)-\frac{Y(1)}{\theta_{2}-\theta_{1}}\left[\frac{9}{8} \mathfrak{G}\left(\theta_{2}\right)\right.
$$

$$
\begin{equation*}
\left.+\frac{15}{8} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right] . \tag{19}
\end{equation*}
$$

As a consequence, we may get the resultant equality by adding (17)-(19) and multiplying the resultant one by $\left(\theta_{2}\right.$ $\left.-\theta_{1}\right) / 9 Y(1)$.

4. Newton's Inequalities for Convex Functions

We will utilize GRLFIs to demonstrate some new Newton's inequalities for differentiable convex functions in this section. We use the following notations for sake of brevity:

$$
\begin{aligned}
& A_{1}(\alpha)=\int_{0}^{1} t\left|Y(t)-\frac{3 Y(1)}{8}\right| d t \\
& A_{2}(\alpha)=\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right| d t \\
& A_{3}(\alpha)=\int_{0}^{1} t\left|Y(t)-\frac{Y(1)}{2}\right| d t
\end{aligned}
$$

$$
\begin{align*}
& A_{4}(\alpha)=\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right| d t \\
& A_{5}(\alpha)=\int_{0}^{1} t\left|Y(t)-\frac{5 Y(1)}{8}\right| d t \\
& A_{6}(\alpha)=\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t \tag{20}
\end{align*}
$$

Theorem 9. If $\left|\mathfrak{G}^{\prime}\right|$ is a convex function and assumptions of Lemma 8 hold, then we obtain the following Newton's type inequality:

$$
\begin{align*}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \quad+{ }_{(\theta 1+2 \theta 2) / 3+I_{\varphi}\left(\mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right.}^{\left.\quad+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid} \\
& \leq \frac{\theta_{2}-\theta_{1}}{27 Y(1)}\left[| \mathfrak { G } ^ { \prime } (\theta _ { 2 }) | \left(3 A_{2}(\alpha)-A_{1}(\alpha)+2 A_{4}(\alpha)\right.\right. \\
& \left.\quad-A_{3}(\alpha)+A_{6}(\alpha)-A_{5}(\alpha)\right)+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|\left(A_{1}(\alpha)\right. \\
& \left.\left.\quad+A_{4}(\alpha)+A_{3}(\alpha)+2 A_{6}(\alpha)+A_{5}(\alpha)\right)\right] .
\end{align*}
$$

Proof. Using the convexity of $\left|\mathscr{S}^{\prime}\right|$ and the modulus in (15), we get

$$
\begin{aligned}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi}\left(\mathscr{S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi}\left(\mathfrak{G S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right.\right.\right. \\
& +{ }_{(\theta 1+2 \theta 2) / 3+} I_{\varphi}\left(\mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{9}\left[\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right|\left|\mathfrak{G}^{\prime}\left(t \frac{\theta_{1}+2 \theta_{2}}{3}+(1-t) \theta_{2}\right)\right| d t\right. \\
& +\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|\left|\mathscr{G}^{\prime}\left(t \frac{2 \theta_{1}+\theta_{2}}{3}+(1-t) \frac{\theta_{1}+2 \theta_{2}}{3}\right)\right| d t \\
& \left.+\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8} \| \mathfrak{G}^{\prime}\left(t \theta_{1}+(1-t) \frac{2 \theta_{1}+\theta_{2}}{3}\right)\right| d t\right] \\
& =\frac{\theta_{2}-\theta_{1}}{9}\left[\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right|\left|\mathfrak{G}^{\prime}\left(\frac{3-t}{3} \theta_{2}+\frac{t}{3} \theta_{1}\right)\right| d t\right. \\
& +\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|\left|\mathfrak{G}^{\prime}\left(\frac{2-t}{3} \theta_{2}+\frac{1+t}{3} \theta_{1}\right)\right| d t \\
& \left.+\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right|\left|\mathfrak{G}^{\prime}\left(\frac{1-t}{3} \theta_{2}+\frac{2+t}{3} \theta_{1}\right)\right| d t\right] \\
& \leq \frac{\theta_{2}-\theta_{1}}{9}\left[\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right| \int_{0}^{1} \frac{3-t}{3}\left|Y(t)-\frac{3 Y(1)}{8}\right| d t\right. \\
& \left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right| \int_{0}^{1} \frac{t}{3}\left|Y(t)-\frac{3 Y(1)}{8}\right| d t+\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right| \int_{0}^{1} \frac{2-t}{3} \right\rvert\, Y(t)
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{Y(1)}{2}\left|d t+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right| \int_{0}^{1} \frac{1+t}{3}\right| Y(t)-\frac{Y(1)}{2} \right\rvert\, d t \\
& +\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right| \int_{0}^{1} \frac{1-t}{3}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t \\
& \left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right| \int_{0}^{1} \frac{2+t}{3}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t\right] \tag{22}\\
= & \frac{\theta_{2}-\theta_{1}}{27 Y(1)}\left[| \mathfrak { G } ^ { \prime } (\theta _ { 2 }) | \left(3 A_{2}(\alpha)-A_{1}(\alpha)+2 A_{4}(\alpha)\right.\right. \\
& \left.-A_{3}(\alpha)+A_{6}(\alpha)-A_{5}(\alpha)\right)+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|\left(A_{1}(\alpha)\right. \\
& \left.\left.+A_{4}(\alpha)+A_{3}(\alpha)+2 A_{6}(\alpha)+A_{5}(\alpha)\right)\right] .
\end{align*}
$$

The proof is now completed.
Remark 10. In Theorem 9, we have the following:
(i) By setting $\varphi(t)=t$, we reclaim the inequality established in ([13], Remark 3)
(ii) By setting $\varphi(t)=t^{\alpha} / \Gamma(\alpha)$, we reclaim the inequality established in ([13], Theorem 4)

Corollary 11. By setting $\varphi(t)=t^{\alpha / k} / k \Gamma_{k}(\alpha)$ in Theorem 9, we get the following new Newton's inequality for KRLFIs:

$$
\begin{align*}
& \left\lvert\, \frac{3^{\alpha / k-1} \Gamma_{k}(\alpha+1)}{\left(\theta_{2}-\theta_{1}\right)^{\alpha / k}}\left[\mathscr{J}_{\theta_{1}+}^{\alpha, k} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\mathscr{J}_{\left(2 \theta_{1}+\theta_{2}\right) / 3+}^{\alpha, \mathfrak{G}}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \left.\quad+\mathscr{J}_{\left(\theta_{1}+2 \theta_{2}\right) / 3+}^{\alpha, k} \mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathscr{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.\quad+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{27}\left[| \mathfrak { G } ^ { \prime } (\theta _ { 2 }) | \left(3 A_{2}(\alpha, k)-A_{1}(\alpha, k)+2 A_{4}(\alpha, k)\right.\right. \\
& \left.\quad-A_{3}(\alpha, k)+A_{6}(\alpha, k)-A_{5}(\alpha, k)\right)+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|\left(A_{1}(\alpha, k)\right. \\
& \left.\left.\quad+A_{4}(\alpha, k)+A_{3}(\alpha, k)+2 A_{6}(\alpha, k)+A_{5}(\alpha, k)\right)\right], \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{1}(\alpha, k)=\int_{0}^{1} t\left|t^{\alpha / k}-\frac{3}{8}\right| d t=\frac{\alpha}{\alpha+2 k}\left(\frac{3}{8}\right)^{(\alpha+2 k) / \alpha}+\frac{k}{\alpha+2 k}-\frac{3}{16}, \\
& A_{2}(\alpha, k)=\int_{0}^{1}\left|t^{\alpha / k}-\frac{3}{8}\right| d t=\frac{2 \alpha}{\alpha+k}\left(\frac{3}{8}\right)^{(\alpha+k) / \alpha}+\frac{k}{\alpha+k}-\frac{3}{8}, \\
& A_{3}(\alpha, k)=\int_{0}^{1} t\left|t^{\alpha / k}-\frac{1}{2}\right| d t=\frac{\alpha}{\alpha+2 k}\left(\frac{1}{2}\right)^{(\alpha+2 k) / \alpha}+\frac{k}{\alpha+2 k}-\frac{1}{4}, \\
& A_{4}(\alpha, k)=\int_{0}^{1}\left|t^{\alpha / k}-\frac{1}{2}\right| d t=\frac{2 \alpha}{\alpha+k}\left(\frac{1}{2}\right)^{(\alpha+k) / \alpha}+\frac{1}{\alpha+k}-\frac{1}{2},
\end{aligned}
$$

$$
\begin{align*}
& A_{5}(\alpha, k)=\int_{0}^{1} t\left|t^{\alpha / k}-\frac{5}{8}\right| d t=\frac{\alpha}{\alpha+2 k}\left(\frac{5}{8}\right)^{(\alpha+2 k) / a}+\frac{k}{\alpha+2 k}-\frac{5}{16}, \\
& A_{6}(\alpha, k)=\int_{0}^{1}\left|t^{\alpha / k}-\frac{5}{8}\right| d t=\frac{2 \alpha}{\alpha+k}\left(\frac{5}{8}\right)^{(\alpha+k) / a}+\frac{k}{\alpha+k}-\frac{5}{8} \tag{24}
\end{align*}
$$

Theorem 12. If $\left|\mathfrak{S}^{\prime}\right|^{q}, q \geq 1$ is a convex function and assumptions of Lemma 8 hold, then we get the following Newton's type inequality:

$$
\begin{align*}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi}\left(\mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi}\left(\mathfrak{G S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right.\right.\right. \\
& +{ }_{(\theta 1+2 \theta 2) / 3+} I_{\varphi}\left(\mathscr{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathscr{G}\left(\theta_{1}\right)+3 \mathscr{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathscr{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[A _ { 2 } ^ { 1 - (1 / q) } (\alpha) \left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \frac{3 A_{2}(\alpha)-A_{1}(\alpha)}{3}\right.\right. \\
& \left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{A_{1}(\alpha)}{3}\right)^{1 / q}+A_{4}^{1-(1 / q)}(\alpha) \\
& \cdot\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \frac{2 A_{4}(\alpha)-A_{3}(\alpha)}{3}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{A_{4}(\alpha)+A_{3}(\alpha)}{3}\right)^{1 / q} \\
& +A_{6}^{1-(1 / q)}(\alpha)\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right| \frac{A_{6}(\alpha)-A_{5}(\alpha)}{3}\right. \\
& \left.\left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{2 A_{6}(\alpha)+A_{5}(\alpha)}{3}\right)^{1 / q}\right] \text {. } \tag{25}
\end{align*}
$$

Proof. Applying power mean inequality in (15) after taking the modulus, we have

$$
\begin{align*}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi}\left(\mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi}\left(\mathfrak{G S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right.\right.\right. \\
& +{ }_{(\theta 1+2 \theta 2)+} I_{\varphi}\left(\mathfrak{S}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{S}\left(\theta_{1}\right)+3 \mathscr{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \left\lvert\, \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[\left.\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right| \right\rvert\, \mathfrak{G}^{\prime}\right.\right. \\
& \cdot\left(\frac{3-t}{3} \theta_{2}+\frac{t}{3} \theta_{1}\right)\left|d t+\int_{0}^{1}\right| Y(t)-\frac{Y(1)}{2}| | \mathfrak{G}^{\prime} \\
& \cdot\left(\frac{2-t}{3} \theta_{2}+\frac{1+t}{3} \theta_{1}\right)\left|d t+\int_{0}^{1}\right| Y(t)-\frac{5 Y(1)}{8}| | \mathfrak{G}^{\prime} \\
& \left.\left.\cdot\left(\frac{1-t}{3} \theta_{2}+\frac{2+t}{3} \theta_{1}\right) \right\rvert\, d t\right] \\
& \leq \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[(\int _ { 0 } ^ { 1 } | Y (t) - \frac { 3 Y (1) } { 8 } | d t) ^ { 1 - (1 / q) } \left(\left.\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right| \right\rvert\, \mathfrak{G}^{\prime}\right.\right. \\
& \left.\left.\cdot\left(\frac{3-t}{3} \theta_{2}+\frac{t}{3} \theta_{1}\right)\right|^{q} d t\right)^{(1 / q)}+\left(\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right| d t\right)^{1-(1 / q)} \\
& \cdot\left(\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|\left|\mathfrak{G}^{\prime}\left(\frac{2-t}{3} \theta_{2}+\frac{1+t}{3} \theta_{1}\right)\right|^{q} d t\right)^{(1 / q)} \\
& +\left(\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t\right)^{1-(1 / q)}\left(\left.\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right| \right\rvert\, \mathfrak{G}^{\prime}\right. \\
& \left.\left.\left.\cdot\left(\frac{1-t}{3} \theta_{2}+\frac{2+t}{3} \theta_{1}\right)\right|^{q} d t\right)^{1 / q}\right] \text {. } \tag{26}
\end{align*}
$$

Using the convexity of $\left|\mathfrak{G}^{\prime}\right|^{q}$, we have

$$
\begin{align*}
& \left\lvert\, \frac{\theta_{2}-\theta_{1}}{3 Y(1)}\left[\theta_{1}+I_{\varphi} \mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi} \mathfrak{G S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \left.+{ }_{(\theta 1+2 \theta 2) / 3+} I_{\varphi} \mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\boldsymbol{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[\left(\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right| d t\right)^{1-(1 / q)}\right. \\
& \times\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \int_{0}^{1} \frac{3-t}{3}\left|Y(t)-\frac{3 Y(1)}{8}\right| d t+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}\right. \\
& \left.\cdot \int_{0}^{1} \frac{t}{3}\left|Y(t)-\frac{3 Y(1)}{8}\right| d t\right)^{(1 / q)}+\left(\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right| d t\right)^{1-(1 / q)} \\
& \times\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \int_{0}^{1} \frac{2-t}{3}\left|Y(t)-\frac{Y(1)}{2}\right| d t+\left|\mathfrak{G s}^{\prime}\left(\theta_{1}\right)\right|^{q}\right. \\
& \left.\cdot \int_{0}^{1} \frac{1+t}{3}\left|Y(t)-\frac{Y(1)}{2}\right| d t\right)^{(1 / q)}+\left(\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t\right)^{1-(1 / q)} \\
& \times\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \int_{0}^{1} \frac{1-t}{3}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t\right. \\
& \left.\left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \int_{0}^{1} \frac{2+t}{3}\left|Y(t)-\frac{5 Y(1)}{8}\right| d t\right)^{(1 / q)}\right] \\
& =\frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[A _ { 2 } ^ { 1 - (1 / q) } (\alpha) \left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \frac{3 A_{2}(\alpha)-A_{1}(\alpha)}{3}\right.\right. \\
& \left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{A_{1}(\alpha)}{3}\right)^{(1 / q)}+A_{4}^{1-(1 / q)}(\alpha) \\
& \left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \frac{2 A_{4}(\alpha)-A_{3}(\alpha)}{3}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{A_{4}(\alpha)+A_{3}(\alpha)}{3}\right)^{1 / q} \\
& +A_{6}^{1-(1 / q)}(\alpha)\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right| \frac{A_{6}(\alpha)-A_{5}(\alpha)}{3}\right. \\
& \left.\left.+\left|\mathscr{S}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{2 A_{6}(\alpha)+A_{5}(\alpha)}{3}\right)^{(1 / q)}\right] \text {. } \tag{27}
\end{align*}
$$

Thus, the proof is completed.
Remark 13. In Theorem 12, we have the following:
(i) By setting $\varphi(t)=t$, we reclaim the inequality established in ([13], Remark 4)
(ii) By setting $\varphi(t)=t^{\alpha} / \Gamma(\alpha)$, we reclaim the inequality established in ([13], Theorem 5)

Corollary 14. By setting $\varphi(t)=t^{\alpha / k} / k \Gamma_{k}(\alpha)$ in Theorem 12, we obtain the following new Newton's inequality for KRLFIs:

$$
\begin{aligned}
& \left\lvert\, \frac{3^{(\alpha / k)-1} \Gamma_{k}(\alpha+1)}{\left(\theta_{2}-\theta_{1}\right)^{\alpha / k}}\left[\mathscr { J } _ { \theta _ { 1 } + } ^ { \alpha , k } \left(\mathfrak{S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\mathscr{J}_{\left(2 \theta_{1}+\theta_{2}\right) / 3+}^{\alpha, k}\left(\mathfrak{S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right.\right.\right. \\
& +\mathscr{F}_{\left(\theta_{1}+2 \theta_{2}\right) / 3+}^{\alpha, k}\left(\mathscr{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\left(\mathscr{G}\left(\theta_{1}\right)\right.\right. \\
& \left.+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{9}\left[A _ { 2 } ^ { 1 - (1 / q) } (\alpha , k) \left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \frac{3 A_{2}(\alpha, k)-A_{1}(\alpha, k)}{3}\right.\right. \\
& \left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{A_{1}(\alpha, k)}{3}\right)^{(1 / q)}+A_{4}^{1-(1 / q)}(\alpha, k)
\end{aligned}
$$

$$
\begin{align*}
& \left(\left|\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \frac{2 A_{4}(\alpha, k)-A_{3}(\alpha, k)}{3}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{A_{4}(\alpha, k)+A_{3}(\alpha, k)}{3}\right)^{(1 / q)}\right. \\
& +A_{6}^{1-(1 / q)}(\alpha, k)\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right| \frac{A_{6}(\alpha, k)-A_{5}\left(\alpha, k^{2}\right.}{3}\right. \\
& \left.\left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \frac{2 A_{6}(\alpha, k)+A_{5}(\alpha, k)}{3}\right)^{(1 / q)}\right] . \tag{28}
\end{align*}
$$

Theorem 15. If $\left|\mathfrak{S}^{\prime}\right|^{q}, q>1$ is a convex function and assumptions of Lemma 8 hold, then we have the following Newton's type inequality:

$$
\begin{align*}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi} I_{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \quad+{ }_{(\theta 1+2 \theta 2) / 3+I_{\varphi} I_{\varphi}\left(\mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)\right.} \\
& \left.\quad+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[A_{7}^{(1 / p)}(\alpha, p)\left(\frac{5\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{6}\right)^{(1 / q)}\right. \\
& \quad+A_{8}^{(1 / p)}(\alpha, p)\left(\frac{\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{2}\right)^{(1 / q)} \\
& \left.\quad+A_{9}^{(1 / p)}(\alpha, p)\left(\frac{\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+5\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{6}\right)^{(1 / q)}\right], \tag{29}
\end{align*}
$$

where $q^{-1}+p^{-1}=1$ and

$$
\begin{align*}
& A_{7}(\alpha, p)=\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right|^{p} d t \\
& A_{8}(\alpha, p)=\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|^{p} d t \tag{30}\\
& A_{9}(\alpha, p)=\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right|^{p} d t
\end{align*}
$$

Proof. Applying Hölder's inequality in (15) after taking the modulus, we have

$$
\begin{align*}
& \frac{1}{3 Y(1)}\left[\theta_{1}+{ }_{\varphi}\left(\mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi}\left(\mathfrak{G S}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right.\right. \\
& +{ }_{(\theta 1+2 \theta 2) / 3+} I_{\varphi}\left(\mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathscr{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathscr{S}\left(\theta_{2}\right)\right] \mid \\
& =\frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right|\left|\mathfrak{G}^{\prime}\left(\frac{3-t}{3} \theta_{2}+\frac{t}{3} \theta_{1}\right)\right| d t\right. \\
& +\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|\left|\mathfrak{G}^{\prime}\left(\frac{2-t}{3} \theta_{2}+\frac{1+t}{3} \theta_{1}\right)\right| d t \\
& \left.+\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right|\left|\mathscr{G}^{\prime}\left(\frac{1-t}{3} \theta_{2}+\frac{2+t}{3} \theta_{1}\right)\right| d t\right] \\
& \leq \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[\left(\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right|^{p} d t\right)^{(1 / p)}\right. \\
& \cdot\left(\int_{0}^{1}\left|\mathscr{G}^{\prime}\left(\frac{3-t}{3} \theta_{2}+\frac{t}{3} \theta_{1}\right)\right|^{q} d t\right)^{(1 / q)}+\left(\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|^{p} d t\right)^{(1 / p)} \\
& \cdot\left(\int_{0}^{1}\left|G^{\prime}\left(\frac{2-t}{3} \theta_{2}+\frac{1+t}{3} \theta_{1}\right)\right|^{q} d t\right)^{(1 / q)}+\left(\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right|^{p} d t\right)^{(1 / p)} \\
& \left.\cdot\left(\int_{0}^{1}\left|\mathfrak{G}^{\prime}\left(\frac{1-t}{3} \theta_{2}+\frac{2+t}{3} \theta_{1}\right)\right|^{q} d t\right)^{(1 / q)}\right] \text {. } \tag{31}
\end{align*}
$$

From convexity of $\left|\mathfrak{G}^{\prime}\right|^{q}, q>1$, we obtain

$$
\begin{align*}
& \left\lvert\, \frac{\theta_{2}-\theta_{1}}{3 Y(1)}\left[\theta_{1}+I_{\varphi} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \left.+{ }_{(\theta 1+2 \theta 2) / 3+} I_{\varphi} \mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid \\
& \leq \frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[\left(\int_{0}^{1}\left|Y(t)-\frac{3 Y(1)}{8}\right|^{p} d t\right)^{(1 / p)}\right. \\
& \cdot\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \int_{0}^{1} \frac{3-t}{3} d t+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \int_{0}^{1} \frac{t}{3} d t\right)^{(1 / q)} \\
& +\left(\int_{0}^{1}\left|Y(t)-\frac{Y(1)}{2}\right|^{p} d t\right)^{(1 / p)}\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \int_{0}^{1} \frac{2-t}{3} d t\right. \\
& \left.+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \int_{0}^{1} \frac{1+t}{3} d t\right)^{(1 / q)}+\left(\int_{0}^{1}\left|Y(t)-\frac{5 Y(1)}{8}\right|^{p} d t\right)^{(1 / p)} \\
& \left.\cdot\left(\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q} \int_{0}^{1} \frac{1-t}{3} d t+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q} \int_{0}^{1} \frac{2+t}{3} d t\right)^{(1 / q)}\right] \\
& =\frac{\theta_{2}-\theta_{1}}{9 Y(1)}\left[A_{7}^{(1 / p)}(\alpha, p)\left(\frac{5\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{6}\right)^{(1 / q)}\right. \\
& +A_{8}^{(1 / p)}(\alpha, p)\left(\frac{\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{2}\right)^{(1 / q)} \\
& \left.+A_{9}^{(1 / p)}(\alpha, p)\left(\frac{\left|\mathfrak{G s}^{\prime}\left(\theta_{2}\right)\right|^{q}+5\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{6}\right)^{(1 / q)}\right] . \tag{32}
\end{align*}
$$

Thus, the proof is completed.
Remark 16. In Theorem 15, we have the following:
(i) By setting $\varphi(t)=t$, we reclaim the inequality established in ([13], Remark 5)
(ii) By setting $\varphi(t)=t^{\alpha} / \Gamma(\alpha)$, we reclaim the inequality established in ([13], Theorem 6)

Corollary 17. By setting $\varphi(t)=t^{\alpha / k} k \Gamma_{k}(\alpha)$ in Theorem 15, we obtain the following new Newton's inequality for KRLFIs:

$$
\left\lvert\, \begin{aligned}
& \frac{3^{(a / k)-1} \Gamma_{k}(\alpha+1)}{\left(\theta_{2}-\theta_{1}\right)^{\alpha / k}}\left[\mathscr{J}_{\theta_{1}+}^{\alpha, k} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\mathscr{\mathscr { g }}_{\left(2 \theta_{1}+\theta_{2}\right) / 3+}^{\alpha, k} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right. \\
& \quad+\mathscr{J}_{\left(\theta_{1}+2 \theta_{2}\right) / 3+}^{\alpha, k} \\
& \left.\mathscr{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right.
\end{aligned}\right.
$$

$$
\begin{align*}
& \left.+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \left\lvert\, \leq \frac{\theta_{2}-\theta_{1}}{9}\right. \\
& \cdot\left[A_{7}^{(1 / p)}(\alpha, p, k)\left(\frac{5\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{6}\right)^{(1 / q)}\right. \\
& +A_{8}^{(1 / p)}(\alpha, k, p)\left(\frac{\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{2}\right)^{(1 / q)} \\
& \left.+A_{9}^{(1 / p)}(\alpha, k, p)\left(\frac{\left|\mathfrak{G}^{\prime}\left(\theta_{2}\right)\right|^{q}+5\left|\mathfrak{G}^{\prime}\left(\theta_{1}\right)\right|^{q}}{6}\right)^{(1 / q)}\right] \tag{33}
\end{align*}
$$

where $q^{-1}+p^{-1}=1$ and

$$
\begin{align*}
& A_{7}(\alpha, k, p)=\int_{0}^{1}\left|t^{\alpha / k}-\frac{3}{8}\right|^{p} d t \\
& A_{8}(\alpha, k, p)=\int_{0}^{1}\left|t^{\alpha / k}-\frac{1}{2}\right|^{p} d t \tag{34}\\
& A_{9}(\alpha, k, p)=\int_{0}^{1}\left|t^{\alpha / k}-\frac{5}{8}\right|^{p} d t
\end{align*}
$$

5. Fractional Newton-Type Inequality for Functions of Bounded Variation

In this section, we prove a Newton-type inequality for function of bounded variation via generalized fractional integrals.

Theorem 18. Let $\mathfrak{G}:\left[\theta_{1}, \theta_{2}\right] \longrightarrow \mathbb{R}$ be a function of bounded variation on $\left[\theta_{1}, \theta_{2}\right]$. Then we have the following Newton-type inequality for generalized fractional integrals:

$$
\begin{align*}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+{ }_{(2 \theta 1+\theta 2) / 3+} I_{\varphi} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \quad+{ }_{(\theta 1+2 \theta 2) / 3+} I_{\varphi}\left(\mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.\quad+3 \mathscr{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \left\lvert\, \leq \frac{5}{24}{\stackrel{\theta}{\theta_{1}}}^{\theta_{2}}(\mathfrak{G})\right., \tag{35}
\end{align*}
$$

Proof. Define the mapping $\Psi_{\varphi}(\varkappa)$ by

$$
\Psi_{\varphi}(\varkappa)= \begin{cases}Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{2 \theta_{1}+\theta_{2}}{3}-\varkappa\right)\right)-\frac{5 Y(1)}{8}, & \text { for } \theta_{1} \leq \varkappa \leq \frac{2 \theta_{1}+\theta_{2}}{3} \tag{36}\\ Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{\theta_{1}+2 \theta_{2}}{3}-\varkappa\right)\right)-\frac{Y(1)}{2}, & \text { for } \frac{2 \theta_{1}+\theta_{2}}{3}<\varkappa \leq \frac{\theta_{1}+2 \theta_{2}}{3} \\ Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\theta_{2}-\varkappa\right)\right)-\frac{3 Y(1)}{8}, & \text { for } \frac{\theta_{1}+2 \theta_{2}}{3}<\varkappa \leq \theta_{2}\end{cases}
$$

It follows from that

$$
\begin{align*}
\int_{\theta_{1}}^{\theta_{2}} \Psi_{\varphi}(\varkappa) d(\mathscr{G}(\varkappa)= & \int_{\theta_{1}}^{\left(2 \theta_{1}+\theta_{2}\right) / 3}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{2 \theta_{1}+\theta_{2}}{3}-\varkappa\right)\right)-\frac{5 Y(1)}{8}\right) d(\mathscr{S}(\varkappa) \\
& +\int_{\left(2 \theta_{1}+\theta_{2}\right) / 3}^{\left(\theta_{1}+2 \theta_{2}\right) / 3}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{\theta_{1}+2 \theta_{2}}{3}-\varkappa\right)\right)-\frac{Y(1)}{2}\right) d(\mathfrak{G}(\varkappa) \\
& +\int_{\left(\theta_{1}+\theta_{2}\right) / 3}^{\theta_{2}}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\theta_{2}-\varkappa\right)\right)-\frac{3 Y(1)}{8}\right) d \mathscr{G}(\varkappa) . \tag{37}
\end{align*}
$$

Integrating by parts, we get

$$
\begin{align*}
& \int_{\theta_{1}}^{\left(2 \theta_{1}+\theta_{2}\right) / 3}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{2 \theta_{1}+\theta_{2}}{3}-\varkappa\right)\right)-\frac{5 Y(1)}{8}\right) d \mathfrak{S}(\varkappa) \\
&= \left.\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{2 \theta_{1}+\theta_{2}}{3}-\varkappa\right)\right)-\frac{5 Y(1)}{8}\right) \mathscr{S}(\varkappa) \right\rvert\, \\
& \cdot \theta_{1_{1}}^{\left(2 \theta_{1}+\theta_{2}\right) / 3}+\int_{\theta_{1}}^{\left(2 \theta_{1}+\theta_{2}\right) / 3} \frac{\varphi\left(\left(\left(2 \theta_{1}+\theta_{2}\right) / 3\right)-\varkappa\right)}{\left(\left(2 \theta_{1}+\theta_{2}\right) / 3\right)-\varkappa} \mathfrak{G S}(\varkappa) d \varkappa \\
&=-\frac{5 Y(1)}{8} \mathfrak{G S}\left(\frac{2 \theta_{1}+\theta_{2}}{2}\right)-\frac{3 Y(1)}{8} \mathfrak{G}\left(\theta_{1}\right)+\theta_{\theta_{1}+} I_{\varphi}\left(\mathfrak{S}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right) .\right. \tag{38}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \int_{\left(2 \theta_{1}+\theta_{2}\right) / 3}^{\left(\theta_{1}+2 \theta_{2}\right) / 3}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{\theta_{1}+2 \theta_{2}}{3}-\varkappa\right)\right)-\frac{Y(1)}{2}\right) d \mathfrak{G}(\varkappa) \\
& \quad=-\frac{Y(1)}{2} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{2}\right)-\frac{Y(1)}{2} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{2}\right) \\
& \quad+\frac{2 \theta_{1}+\theta_{2}}{3}+I_{\varphi}\left(\mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \tag{39}
\end{align*}
$$

$$
\begin{align*}
& \int_{\left(\theta_{1}+2 \theta_{2}\right) / 3}^{\theta_{2}}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\theta_{2}-\varkappa\right)\right)-\frac{3 Y(1)}{8}\right) d \mathfrak{G}(\varkappa) \\
& \quad=-\frac{3 Y(1)}{8} \mathfrak{G S}\left(\theta_{2}\right)-\frac{5 Y(1)}{8} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{2}\right) \tag{40}\\
& \quad+\frac{\theta_{1}+2 \theta_{2}}{3}+I_{\varphi}\left(\mathfrak{S}\left(\theta_{2}\right) .\right.
\end{align*}
$$

By putting the equalities (38)-(40) in (37), we have

$$
\begin{align*}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi} \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\frac{2 \theta_{1}+\theta_{2}}{3}+I_{\varphi} \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right. \\
& \left.\quad+\frac{\theta_{1}+2 \theta_{2}}{3}+I_{\varphi} \mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.\quad+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \mid=\int_{\theta_{1}}^{\theta_{2}} \Psi_{\varphi}(\varkappa) d \mathfrak{G}(\varkappa) . \tag{41}
\end{align*}
$$

It is well known that if $g, \mathfrak{G S}:\left[\theta_{1}, \theta_{2}\right] \longrightarrow \mathbb{R}$ are such that g is continuous on $\left[\theta_{1}, \theta_{2}\right]$ and \mathscr{G} is of bounded variation on $\left[\theta_{1}, \theta_{2}\right]$, then $\int_{\theta_{1}}^{\theta_{2}} g(t) d(\mathscr{G}(t)$ exist and

$$
\begin{equation*}
\left|\int_{\theta_{1}}^{\theta_{2}} g(t) d \mathfrak{G}(t)\right| \leq \sup _{t \in\left[\theta_{1}, \theta_{2}\right]}|g(t)|{\stackrel{\vartheta}{\theta_{1}}}_{\ominus_{2}}^{\theta_{1}}(\mathfrak{G}) . \tag{42}
\end{equation*}
$$

On the other hand, using (42), we get

$$
\begin{aligned}
& \left\lvert\, \frac{1}{3 Y(1)}\left[\theta_{1}+I_{\varphi}\left(\mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\frac{2 \theta_{1}+\theta_{2}}{3}+I_{\varphi}\left(\mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)\right.\right.\right.\right. \\
& \left.+\frac{\theta_{1}+2 \theta_{2}}{3}+I_{\varphi} \mathfrak{G}\left(\theta_{2}\right)\right]-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.+3 \mathscr{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathscr{G}\left(\theta_{2}\right)\right] \left.\left|=\frac{1}{3 Y(1)}\right| \int_{\theta_{1}}^{\theta_{2}} \Psi_{\varphi}(\varkappa) d \mathfrak{G}(\varkappa) \right\rvert\, \\
& \leq \frac{1}{3 Y(1)}\left[\left\lvert\, \int_{\theta_{1}}^{\left(2 \theta_{1}+\theta_{2}\right) / 3}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{2 \theta_{1}+\theta_{2}}{3}-\varkappa\right)\right)\right.\right.\right. \\
& \left.-\frac{5 Y(1)}{8}\right) d\left(\mathscr{G}(\varkappa)|+| \int_{\left(2 \theta_{1}+\theta_{2}\right) / 3}^{\left(\theta_{1}+2 \theta_{2}\right) / 3}\right. \\
& \left.\cdot\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{\theta_{1}+2 \theta_{2}}{3}-\varkappa\right)\right)-\frac{Y(1)}{2}\right) d \mathfrak{G}(\varkappa) \right\rvert\, \\
& \left.+\left|\int_{\left(\theta_{1}+2 \theta_{2}\right) / 3}^{\theta_{2}}\left(Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\theta_{2}-\varkappa\right)\right)-\frac{3 Y(1)}{8}\right) d \mathfrak{G}(\varkappa)\right|\right] \\
& \leq \frac{1}{3 Y(1)}\left[\sup _{\varkappa \in\left[\theta_{1},\left(2 \theta_{1}+\theta_{2}\right) / 3\right]} \left\lvert\, Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{2 \theta_{1}+\theta_{2}}{3}-\varkappa\right)\right)\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\cdot\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\frac{\theta_{1}+2 \theta_{2}}{3}-\varkappa\right)\right)-\frac{Y(1)}{2} \right\rvert\, \stackrel{\left(\theta_{1}+2 \theta_{2}\right) / 3}{\substack{\left(2 \theta_{1}+\theta_{2}\right) / 3}}(\mathbb{G}) \\
& +\sup _{x \in\left[\left(\theta_{1}+2 \theta_{2}\right) / 3, \theta_{2}\right]} \left\lvert\, Y\left(\frac{3}{\theta_{2}-\theta_{1}}\left(\theta_{2}-\varkappa\right)\right)\right. \\
& \left.\left.-\frac{3 Y(1)}{8} \right\rvert\, \underset{\left(\theta_{1}+2 \theta_{2}\right) / 3}{\stackrel{\theta_{2}}{2}}(\mathfrak{G})\right]=\frac{1}{3 Y(1)}\left[\frac{5 Y(1)}{8} \stackrel{\left(2 \theta_{1}+2 \theta_{2}\right) / 3}{\theta_{1}}(\mathfrak{G})\right. \\
& \left.+\frac{Y(1)}{2} \underset{\left(2 \theta_{1}+2 \theta_{2}\right) / 3}{\left(\theta_{1}+2 \theta_{2}\right) / 3}(\mathbb{G})+\frac{5 Y(1)}{8} \underset{\left(\theta_{1}+2 \theta_{2}\right) / 3}{\theta_{2}}(\mathbb{G})\right] \leq \frac{5}{24} \stackrel{\theta_{2}}{\theta_{1}}(\mathbb{G}) . \tag{43}
\end{align*}
$$

This completes the proof.
Remark 19. In Theorem 18, we have the following:
(i) If we take $\varphi(t)=t$, then we recapture the inequality proved in ([46], Corollary 3)
(ii) If we set $\varphi(t)=t^{\alpha} / \Gamma(\alpha)$, then we recapture the inequality established in ([13], Theorem 7)

Corollary 20. If we choose $\varphi(t)=\left(t^{(\alpha / k)} / k \Gamma_{k}(\alpha)\right)$, then we obtain the following new Newton's inequality for KRLFIs:

$$
\begin{align*}
& \left\lvert\, \frac{3^{(\alpha / k)-1} \Gamma_{k}(\alpha+1)}{\left(\theta_{2}-\theta_{1}\right)^{\alpha / k}}\left[\mathscr{J}_{\theta_{1}}^{\alpha, k}+\mathfrak{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)+\mathscr{J}_{\left(2 \theta_{1}+\theta_{2}\right) / 3}^{\alpha, k}\right.\right. \\
& \left.\quad+\mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathscr{J}_{\left(\theta_{1}+2 \theta_{2}\right) / 3}^{\alpha, k}+\mathfrak{G}\left(\theta_{2}\right)\right] \tag{44}\\
& \quad-\frac{1}{8}\left[\mathfrak{G}\left(\theta_{1}\right)+3 \mathscr{G}\left(\frac{2 \theta_{1}+\theta_{2}}{3}\right)\right. \\
& \left.\quad+3 \mathfrak{G}\left(\frac{\theta_{1}+2 \theta_{2}}{3}\right)+\mathfrak{G}\left(\theta_{2}\right)\right] \left\lvert\, \leq \frac{5}{24} \stackrel{\theta}{\theta}_{\theta_{1}}^{(\mathscr{S}) .}\right.
\end{align*}
$$

6. Conclusion

We demonstrated some new Simpson's second-type inequalities for differentiable convex functions using Riemann-Liouville fractional integrals. Furthermore, we established fractional Newton-type inequalities for bounded variation functions. It is also shown that the newly established inequalities are an extension of the previously obtained inequalities. It is worth to mentioning here that we can obtain similar inequalities via Katugampola fractional operators, conformable fractional operators, Hadamard fractional operators, and fractional operators with the exponential kernel for different choices of the function φ. In their future work, future researchers can get similar inequalities for various types of convexity and coordinated convexity on fractals, which is an exciting and new problem.

Data Availability

Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

This research was funded by the National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with contract no. KMUTNB-FF-65-49.

References

[1] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Başak, "HermiteHadamard's inequalities for fractional integrals and related fractional inequalities," Mathematical and Computer Modelling, vol. 57, no. 9-10, pp. 2403-2407, 2013.
[2] E. Set, "New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals," Computers \& Mathematics with Applications, vol. 63, no. 7, pp. 1147-1154, 2012.
[3] İ. İşcan and S. Wu, "Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals,"

Applied Mathematics and Computation, vol. 238, pp. 237244, 2014.
[4] M. Z. Sarikaya and H. Yildrim, "On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals," Miskolc Mathematical Notes, vol. 17, no. 2, pp. 1049-1059, 2016.
[5] M. Z. Sarikaya, E. Set, and M. E. Özdemir, "On new inequalities of Simpson's type for s-convex functions," Computers \& Mathematics with Applications, vol. 60, no. 8, pp. 2191-2199, 2010.
[6] C. Peng, C. Zhou, and T. S. Du, "Riemann-Liouville fractional Simpson's inequalities through generalized (m, h_{1}, h_{2})-preinvexity," Italian Journal of Pure and Applied Mathematics, vol. 38, pp. 345-367, 2017.
[7] J. Chen and X. Huang, "Some new inequalities of Simpson's type for s-convex functions via fractional integrals," Filomat, vol. 31, no. 15, pp. 4989-4997, 2017.
[8] M. Z. Sarikaya and F. Ertugral, "On the generalized HermiteHadamard inequalities," Annals of the University of CraiovaMathematics and Computer Science Series, vol. 47, pp. 193213, 2020.
[9] D. Zhao, M. A. Ali, A. Kashuri, and H. Budak, "Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions," Advances in Difference Equations, vol. 2020, no. 1, Article ID 137, 2020.
[10] H. Budak, F. Hezenci, and H. Kara, "On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals," Mathematical Methods in the Applied Sciences, vol. 44, no. 17, pp. 1252212536, 2021.
[11] H. Budak, S. Erden, and M. A. Ali, "Simpson and Newton type inequalities for convex functions via newly defined quantum integrals," Mathematical Methods in the Applied Sciences, vol. 44, no. 1, pp. 378-390, 2021.
[12] P. Siricharuanun, S. Erden, M. A. Ali, H. Budak, S. Chasreechai, and T. Sitthiwirattham, "Some new Simpson's and Newton's formulas type inequalities for convex functions in quantum calculus," Mathematics, vol. 9, article 1992, 2021.
[13] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, "Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions," Fractal and Fractional, vol. 6, no. 3, p. 175, 2022.
[14] M. U. Awan, S. Talib, Y.-M. Chu, M. A. Noor, and K. I. Noor, "Some new refinements of Hermite-Hadamard-type inequalities involving -Riemann-Liouville fractional integrals and applications," Mathematical Problems in Engineering, vol. 2020, Article ID 3051920, 10 pages, 2020.
[15] A. Kashuri and R. Liko, "Generalized trapezoidal type integral inequalities and their applications," Journal of Analysis, vol. 28, no. 4, pp. 1023-1043, 2020.
[16] M. A. Khan, A. Iqbal, M. Suleman, and Y.-M. Chu, "HermiteHadamard type inequalities for fractional integrals via Green's function," Journal of Inequalities and Applications, vol. 2018, no. 1, Article ID 161, 2018.
[17] M. A. Khan, T. Ali, S. S. Dragomir, and M. Z. Sarikaya, "Her-mite-Hadamard type inequalities for conformable fractional integrals," Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 112, no. 4, pp. 1033-1048, 2018.
[18] E. Set, J. Choi, and A. Gözpinar, "Hermite-Hadamard type inequalities for the generalized k-fractional integral operators," Journal of Inequalities and Applications, vol. 2017, no. 1, Article ID 206, 2017.
[19] M. Tunç, "On new inequalities for h-convex functions via Riemann-Liouville fractional integration," Univerzitet u Nišu, vol. 27, no. 4, pp. 559-565, 2013.
[20] M. Vivas-Cortez, M. A. Ali, A. Kashuri, and H. Budak, "Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions," AIMS Mathematics, vol. 6, no. 9, pp. 9397-9421, 2021.
[21] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, and M. Z. Sarikaya, "Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals," Journal of Inequalities and Applications, vol. 2020, no. 1, Article ID 222, 2020.
[22] D. Zhao, M. A. Ali, C. Promsakon, and T. Sitthiwirattham, "Some generalized fractional integral inequalities for convex functions with applications," Fractal and Fractional, vol. 6, no. 2, p. 94, 2022.
[23] S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, and A. Mukheimer, "New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications," Symmetry, vol. 13, no. 8, p. 1429, 2021.
[24] S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, and M. De la Sen, "Hermite-Hadamard type inequalities involving k-fractional operator for (h, m)-convex functions," Symmetry, vol. 13, no. 9, article 1686, 2021.
[25] M. Tariq, S. K. Sahoo, J. Nasir, H. Aydi, and H. Alsamir, "Some Ostrowski type inequalities via n-polynomial exponentially s -convex functions and their applications," AIMS Mathematics, vol. 6, no. 12, pp. 13272-13290, 2021.
[26] S. S. Dragomir, "On the Ostrowskis integral inequality for mappings with bounded variation and applications," Mathematical Inequalities \& Applications, vol. 4, no. 1, pp. 59-66, 2001.
[27] S. S. Dragomir, R. P. Agarwal, and P. Cerone, "On Simpson's inequality and applications," Journal of Inequalities and Applications, vol. 5, 579 pages, 2000.
[28] S. S. Dragomir, "On Simpson's quadrature formula for mappings of bounded variation and applications," Tamkang Journal of Mathematics, vol. 30, no. 1, pp. 53-58, 1999.
[29] M. W. Alomari, "A companion of the generalized trapezoid inequality and applications," Journal of Mathematics and Applications, vol. 36, pp. 5-15, 2013.
[30] S. S. Dragomir, "On trapezoid quadrature formula and applications," Kragujevac Journal of Mathematics, vol. 23, pp. 2536, 2001.
[31] S. S. Dragomir, "On the midpoint quadrature formula for mappings with bounded variation and applications," Kragujevac Journal of Mathematics, vol. 22, pp. 13-19, 2000.
[32] S. Rashid, R. Ashraf, and E. Bonyah, "On analytical solution of time-fractional biological population model by means of generalized integral transform with their uniqueness and convergence analysis," Journal of Function Spaces, vol. 2022, Article ID 7021288, 29 pages, 2022.
[33] S. Rashid, R. Ashraf, and F. Jarad, "Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels," AIMS Mathematics, vol. 7, no. 5, pp. 7936-7963, 2022.
[34] S. Rashid, F. Jarad, A. G. Ahmad, and K. M. Abualnaja, "New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and conse-
quences for control mechanisms," Results in Physics, vol. 35, article 105304, 2022.
[35] S. Rashid, F. Jarad, and A. G. Ahmad, "A novel fractalfractional order model for the understanding of an oscillatory and complex behavior of human liver with non-singular kernel," Results in Physics, vol. 35, article 105292, 2022.
[36] S. Rashid, M. K. A. Kaabar, A. Althobaiti, and M. S. Alqurashi, "Constructing analytical estimates of the fuzzy fractionalorder Boussinesq model and their application in oceanography," Journal of Ocean Engineering and Science, 2022.
[37] B. P. Moghaddam and Z. S. Mostaghim, "Modified finite difference method for solving fractional delay differential equations," Boletim da Sociedade Paranaense de Matemática, vol. 35, no. 2, pp. 49-58, 2017.
[38] B. P. Moghaddam and Z. S. Mostaghim, "A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations," Ain Shams Engineering Journal, vol. 5, no. 2, pp. 585-594, 2014.
[39] B. P. Moghaddam, A. Dabiri, and J. A. T. Machado, "Application of variable-order fractional calculus in solid mechanics," in Applications in Engineering. Life and Social Sciences, Part A, vol. 7, pp. 207-224, 2019.
[40] B. P. Moghaddam, A. M. Lopes, J. A. T. Machado, and Z. S. Mostaghim, "Computational scheme for solving nonlinear fractional stochastic differential equations with delay," Stochastic Analysis and Applications, vol. 37, no. 6, pp. 893-908, 2019.
[41] B. P. Moghaddam, Z. S. Mostaghim, A. A. Pantelous, and J. A. T. Machado, "An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay," Communications in Nonlinear Science and Numerical Simulation, vol. 92, article 105475, 2021.
[42] R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, 1997.
[43] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[44] S. Mubeen and G. M. Habibullah, "k-fractional integrals and application," International Journal of Contemporary Mathematical Sciences, vol. 7, pp. 89-94, 2012.
[45] F. Ertuğral and M. Z. Sarikaya, "Simpson type integral inequalities for generalized fractional integral," Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3115-3124, 2019.
[46] M. W. Alomari, "A companion of Dragomir's generalization of the Ostrowski inequality and applications to numerical integration," Ukrainian Mathematical Journal, vol. 64, no. 4, pp. 491-510, 2012.

