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In this paper, the (2 + 1)-dimensional nonlinear conformable fractional stochastic Schrödinger system (NCFSSS) generated by the
multiplicative Brownian motion is treated. To get new rational, trigonometric, hyperbolic, and elliptic stochastic solutions, we use
two different methods: the sine-cosine and the Jacobi elliptic function methods. Moreover, we use the MATLAB tools to plot our
figures to introduce a variety of 2D and 3D graphs to highlight the effect of the multiplicative noise on the exact solutions of the
NCFSSS. Finally, we illustrate that the multiplicative Brownian motion stabilizes the solutions of NCFSSS a round zero.

1. Introduction

Stochastic partial differential equations (SPDEs) can be used
to represent a wide range of complicated nonlinear physical
processes. These kinds of equations appear in a variety of
areas including physics, finance, climate dynamics, chemis-
try, biology, geophysical, engineering, and other fields [1–3].

On the other side, fractional partial differential equations
(FPDEs) have gotten a lot of interest because they may illus-
trate the fundamental components underlying real-world
issues. They have been seen in a number of physical phe-
nomena, such as viscoelastic materials with relaxation and
creeping functions, the motion of a heavy meager surface
in a Newtonian fluid, and relapse subordinate dissipative
occupancy of components. As a result, FPDEs are employed
in a range of fields, including predicting, describing, and

modeling the mechanisms engaged in finance, polymeric
materials, a kinematic model of neutron points, engineering,
electrical circuits, solid-state physics, optical fibers, chemical
kinematics, biogenetics, plasma physics, physics of con-
densed matter, meteorology, electromagnetic, elasticity, and
oceanic spectacles [4–9].

The exact solutions of PDEs are important in nonlinear
science. As a result, various analytical techniques, such as
tanh-sech [10, 11], Darboux transformation [12], sine-cosine
[13, 14], extended simple equation [15], extended sinh-
Gordon equation expansion [16], F-expansion [17], Kudrya-
shov technique [18], generalized Kudryashov [19–21], exp ð
−ϕðςÞÞ-expansion [22], ðG′/GÞ-expansion [23–25], Hirota’s
function [26], perturbation [5, 27], the Jacobi elliptic function
[28, 29], and Riccati-Bernoulli sub-ODE [30], have been cre-
ated to deal with these types of equations.
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To reach a better level of qualitative agreement, the follow-
ing (2 + 1)-dimensional nonlinear conformable fractional sto-
chastic Schrödinger system (NCFSSS) is addressed:

idu + γ1D
α
xyu + γ2uv

h i
dt + iσudB = 0, ð1Þ

γ3D
α
xv + γ4D

α
y uj j2� �

= 0, ð2Þ

where v ∈ℝ while u ∈ℂ. Dα is the conformable derivative
(CD) [31], and γi are arbitrary constants for i = 1, ::, 4. BðtÞ
is a Brownian motion (BM), and udB is multiplicative noise
in the Itô sense.

The NCFSSS ((1) and (2)) is crucial in atomic physics,
and the functions v and u have diverse physical meanings
in various disciplines of physics such as plasma physics
[32] and fluid dynamics [33]. In the hydrodynamic con-
text, v is the induced mean flow, and u is the envelope
of the wave packet [33], while, in the context of water
waves, v is the velocity potential of the mean flow interact-
ing with the surface waves and u is the amplitude of a sur-
face wave packet [34]. The multiplicative noise iσudB
plays an important role in the theory of measurements
continuous in time in open quantum systems. For more
physical interpretations, we refer to [35, 36] and the refer-
ences therein.

Recently, many authors have established exact solutions
of NCFSSS ((1) and (2)) with σ = 0 and α = 1 by employing
various techniques, such as applied Kudryashov approach
[37], direct approach [38], and the extended modified auxil-
iary equation [39]. Moreover, Bilal and Ahmad [40] applied
three methods such as generalized Kudryashov, modified
direct algebraic, and ðG′/G2Þ-expansion function to attain
diverse forms of optical solutions of the NCFSSS ((1) and
(2)) with σ = 0, while the exact solutions of the NCFSSS
((1) and (2)) has not yet been studied.

The motivations of this work are to obtain the exact
fractional stochastic solutions of NCFSSS ((1) and (2)).
This is the first investigation to acquire the exact solutions
of NCFSSS ((1) and (2)) in the presence of stochastic term
and fractional-space derivatives. To accomplish a wide
variety of solutions, such as trigonometric, hyperbolic,
elliptic, and rational functions, we apply two different
methods such as the Jacobi elliptic function and the
sine-cosine methods. Also, we study the effect of BM on
the obtained solutions of NCFSSS ((1) and (2)) by using
MATLAB to create 3D and 2D diagrams for some of the
obtained solutions here.

The document is laid out as follows: we define and state
some features of the CD and BM in Section 2. We employ an
appropriate wave transformation in Section 3 to derive the
wave equation of NCFSSS ((1) and (2)). While in Section
4, we utilize two methods to create the analytic solutions of
the NCFSSS ((1) and (2)). In Section 5, the influence of the
BM on the obtained solutions is investigated. The conclusion
of the document is displayed last.

2. Preliminaries

Here, we define and state some features of the CD and BM.

Definition 1 (see [31]). Let ϕ : ð0,∞Þ⟶ℝ, then the CD of
ϕ of order α ∈ ð0, 1� is defined as

Dα
xϕ xð Þ = lim

κ⟶0

ϕ x + κx1−α
� �

− ϕ xð Þ
κ

: ð3Þ

Theorem 2. Let ϕ,H : ð0,∞Þ⟶ℝ be differentiable and
also α be differentiable functions, then

Dα
x ϕ ∘Hð Þ xð Þ = x1−αH ′ xð Þϕ′ H xð Þð Þ: ð4Þ

Let us state some properties of the CD. If a and b are con-
stant, then

(1) Dα
x ½aϕðxÞ + bHðxÞ� = aDα

xϕðxÞ + bDα
xHðxÞ

(2) Dα
x ½a� = 0

(3) Dα
x ½xb� = bxb−α

(4) Dα
xHðxÞ = x1−αðdH/dxÞ

In next definition, we define Brownian motion BðtÞ.

Definition 3. Stochastic process fBðtÞgt≥0 is said a Brownian
motion if it satisfies:

(1) Bð0Þ = 0
(2) BðtÞ is continuous function of t ≥ 0
(3) Bðt2Þ − Bðt1Þ is independent for t1 < t2

(4) Bðt2Þ − Bðt1Þ has a normal distribution ℵð0, t2 − t1Þ

3. Wave Equation for NCFSSS

The next wave transformation is used to get the wave equa-
tion of the NCFSSS ((1) and (2)):

u x, y, tð Þ = φ ζð Þe iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,
v x, y, tð Þ = ψ ζð Þe −σB tð Þ− 1/2ð Þσ2tð Þ,

ð5Þ

with

ζ = ζ1
α
xα + ζ2

α
yα − ζ3t,

h = h1
α
xα + h2

α
yα − h3t,

ð6Þ

where φ and ψ are deterministic functions and ζk and ℏk for
k = 1, 2, 3, are nonzero constants. Plugging Equation (5) into
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Equations (1) and (2) and using

du = −ζ3φ′ + iℏ3φ
� �

dt − σφdB
h i

e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

Dα
xyu = ζ1ζ2φ′′ + i ℏ2ζ1 + ℏ1ζ2ð Þφ′ − ℏ1ℏ2φ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

Dα
y uj j2� �

= 2ζ2φφ′e −σB tð Þ− 1/2ð Þσ2tð Þ,Dα
xv = ζ1ψ′e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð7Þ

we get for imaginary part

ζ3 = ℏ2ζ1 + ℏ1ζ2, ð8Þ

and for real part

ζ1ζ2φ′′ − ℏ3 + γ1ℏ1ℏ2ð Þφ + γ2φψe
−σB tð Þ− 1/2ð Þσ2tð Þ = 0, ð9Þ

γ3ζ1ψ′ + 2γ4ζ2φφ′e
−σB tð Þ− 1/2ð Þσ2tð Þ = 0: ð10Þ

Taking expectation Eð·Þ on both sides for Equations (9)
and (10), we have

ζ1ζ2φ′′ − ℏ3 + γ1ℏ1ℏ2ð Þφ + γ2φψe
− 1/2ð Þσ2tE e−σB tð Þ

� �
= 0,

ð11Þ

γ3ζ1ψ′ + 2γ4ζ2φφ′e− 1/2ð Þσ2tE e−σB tð Þ
� �

= 0: ð12Þ

Since BðtÞ is standard Gaussian process, hence Eð
e−σBðtÞÞ = eðσ

2/2Þt . Now Equations (11) and (12) have the
form

ζ1ζ2φ′′ − ℏ3 + γ1ℏ1ℏ2ð Þφ + γ2φψ = 0, ð13Þ

γ3ζ1ψ′ + 2γ4ζ2φφ′ = 0: ð14Þ

Integrating Equation (14) once and setting the integral
constant equal zero yields

ψ = −
γ4ζ2
γ3ζ1

φ2: ð15Þ

Plugging Equation (15) into Equation (13), we get the
following wave equation

φ′′ −Λ1φ
3 −Λ2φ = 0, ð16Þ

where

Λ1 =
γ2γ4
γ3ζ

2
1
,

Λ2 =
ℏ3 + γ1ℏ1ℏ2ð Þ

ζ1ζ2
:

ð17Þ

4. The Exact Solutions of the NCFSSS

To find the exact solutions of Equation (16), we use two dif-
ferent methods such as sine-cosine [13, 14] and the Jacobi
elliptic function [29] methods. As a result, we are able to
obtain the exact solutions of the NCFSSS ((1) and (2)).

4.1. Sine-Cosine Method. Assume the solution φ of Equation
(16) has the form

φ ζð Þ = AY n, ð18Þ

where

Y = cos Bζð Þ orY = sin Bζð Þ: ð19Þ

Setting Equation (18) into Equation (16) we get

−AB2 −n2Y n + n n − 1ð ÞY n−2� �
−Λ1A

3Y 3n −Λ2AY
n = 0,

ð20Þ

rewriting the above equation

Λ2A − AB2n2
� �

Y n + n n − 1ð ÞAB2Y n−2 +Λ1A
3Y 3n = 0: ð21Þ

Equalizing the term of Y in Equation (21), we attain

n − 2 = 3n⇒ n = −1: ð22Þ

Substituting Equation (22) into Equation (21)

Λ2A − AB2� �
Y −1 + Λ1A

3 + 2AB2� �
Y −3 = 0: ð23Þ

Equating each coefficient of Y −3 and Y −1 to zero, we have

Λ2A − AB2 = 0,
Λ1A

3 + 2AB2 = 0:
ð24Þ

By solving these equations, we get

B =
ffiffiffiffiffiffi
Λ2

p
,

A =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
:

ð25Þ

Hence, the solution of Equation (16) is

φ ζð Þ = A sec Bζð Þ orφ ζð Þ = A csc Bζð Þ: ð26Þ

There are many cases depending on the sign ofΛ1 andΛ2:
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Case 1. If Λ2 > 0 and Λ1 < 0, then the exact solutions of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
sec

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð27Þ

or

u x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
csc

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

csc2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð28Þ

Case 2. If Λ2 < 0 and Λ1 < 0, then the exact solutions of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ = i

ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
sech

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð29Þ

or

u x, y, tð Þ =
ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
csch

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = −2Λ2γ4ζ2
Λ1γ3ζ1

csc h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð30Þ

Case 3. If Λ2 < 0 and Λ1 > 0, then the exact solutions of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
sech

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð31Þ

or

u x, y, tð Þ = −i

ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
csch

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = −2Λ2γ4ζ2
Λ1γ3ζ1

csc h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð32Þ

Case 4. If Λ2 > 0 and Λ1 > 0, then the exact solution of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ = i

ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
sec

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð33Þ

or

u x, y, tð Þ = i

ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
csc

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

csc2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð34Þ

where Λ1 and Λ2 are defined in (17) and ζ = ðζ1/αÞxα + ðζ2
/αÞyα − ζ3t and h = ðh1/αÞxα + ðh2/αÞyα + h3t:

4.2. The Jacobi Elliptic Function Method. We suppose that
the solution to Equation (16) has the type

φ ζð Þ = a + bsn ρζð Þ, ð35Þ

where a, b, and ρ are undefined constants and snðρζÞ = snð
ρζ,mÞ is the Jacobi elliptic sine function (Latin: sinus ampli-
tudinis) for 0 <m < 1. Differentiate Equation (35) two times,
we have

φ′′ ζð Þ = − m2 + 1
� �

bρ2sn ρζð Þ + 2m2bρ2sn3 ρζð Þ: ð36Þ

Plugging Equations (35) and (36) into Equation (16), we
attain

2m2bρ2 −Λ1b
3� �
sn3 ρζð Þ − 3Λ1ab

2sn2 ρζð Þ
− m2 + 1
� �

bρ2 + 3Λ1a
2b +Λ2b

� �
sn ρζð Þ

− Λ1a
3 + aΛ2

� �
= 0:

ð37Þ

Putting each coefficient of ½snðρζÞ�n to be zero for n = 0
, 1, 2, 3, we have

Λ1a
3 + aΛ2 = 0,

m2 + 1
� �

bρ2 + 3Λ1a
2b +Λ2b = 0,

3Λ1ab
2sn2 = 0,

2m2bρ2 −Λ1b
3 = 0:

ð38Þ
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When we solve the previous equations, we get

a = 0,

b = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
m2 + 1ð ÞΛ1

s
,

ρ2 = −Λ2
m2 + 1ð Þ :

ð39Þ

As a result, using (35), the solution of Equation (16) is

φ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
m2 + 1ð ÞΛ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
m2 + 1ð Þ

s
ζ

 !
: ð40Þ

Therefore, the exact solution of the NCFSSS ((1) and (2))
is

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
m2 + 1ð ÞΛ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
m2 + 1ð Þ

s
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

ð41Þ

v x, y, tð Þ = γ4ζ2m
2Λ2

m2 + 1ð Þγ3ζ1Λ1
sn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
m2 + 1ð Þ

s
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð42Þ
for Λ2 < 0 and Λ1 > 0: If m⟶ 1, then the solutions (41)
and (42) turn to:

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffi
−Λ2
Λ1

s
tanh

ffiffiffiffiffiffiffiffiffi
−Λ2
2

r
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = γ4ζ2Λ2
2γ3ζ1Λ1

tanh2
ffiffiffiffiffiffiffiffiffi
−Λ2
2

r
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð43Þ

In the same way, we can substitute sn in (35) with cnðξ
Þ = cnðξ,mÞ (wherecnis the elliptic cosine (Latin: cosinus
amplitudinis)) and dnðξ,mÞ = dnðξ,mÞ (where dn is the
delta amplitude (Latin: delta amplitudinis)) to derive the
solutions of Equation (16) as follows:

φ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
2m2 − 1ð ÞΛ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
,

φ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2Λ2
2 −m2ð ÞΛ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
2 −m2ð Þ

s
ζ

 !
:

ð44Þ

Therefore, the solutions of the NCFSSS ((1) and (2)) are
as follows:

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
2m2 − 1ð ÞΛ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

ð45Þ

v x, y, tð Þ = 2γ4ζ2m2Λ2
γ3ζ1Λ1 2m2 − 1ð Þ cn

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð46Þ

for ðΛ2/ð2m2 − 1ÞÞ < 0, Λ1 > 0, and

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
2m2 − 1ð ÞΛ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

ð47Þ

v x, y, tð Þ = 2γ4ζ2m2Λ2
γ3ζ1Λ1 2 −m2ð Þ dn

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
2 −m2ð Þ

s
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð48Þ

for Λ2 < 0 and Λ1 > 0, respectively. If m⟶ 1, then the
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Figure 1: 3D diagrams of Equation (41).
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solutions (45) and (46) and (47) and (48) turn to:

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
sech

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

� �
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = k2m2Λ2 sec h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

� �
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð49Þ

for Λ2 < 0 and Λ1 > 0:

5. The Effect of BM on NCFSSS Solutions

The effect of BM on the exact solutions of the NCFSSS ((1)
and (2)) is discussed here. Fix the parameters γ1 = γ2 = −1,
γ3 = 1, γ4 = −2,ℏ1 = ℏ2 = ζ1 = ζ2 = 1,ℏ3 = −1, and m = 0:5.
Hence, ζ3 = −2,Λ1 = 2, and Λ2 = −2. Now, for various values
of α (the fractional derivative order) and σ (noise intensity),
we provide a number of graphs for t ∈ ½0, 5� and x ∈ ½0, 6�. To
draw these graphs, we use the MATLAB tools. In the follow-
ing Figure 1, if σ = 0, we can observe how the surface fluctu-
ates as the value of α changes:

While in Figures 2 and 3, we can observe that after small
transit patterns, the surface smooths significantly when
noise is incorporated, and its intensity increases σ = 1, 2 for
different value of α.

Figure 4 shows 2D graphs of Equation (41) with σ =
0,0:5,1, 2 and with α = 1, which highlight the above results.

We may infer from Figures 1–4 the following:

(1) As fractional-order α decreases, the surface shrinks

(2) The solutions of NCFSSS are stabilized by BM
around zero

6. Conclusions

In this paper, we considered the (2 + 1)-dimensional nonlin-
ear conformable fractional stochastic Schrödinger system
((1) and (2)) which has never been examined before with
stochastic term and fractional space at the same time. We
employed two different methods such as the sine-cosine
and the Jacobi elliptic function methods to get elliptic,
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Figure 2: 3D diagrams of Equation (41) with α = 1:
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Figure 3: 3D diagrams of Equation (41) with α = 0:5.
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Figure 4: 2D diagrams of Equation (41).
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trigonometric, rational, and hyperbolic fractional stochastic
solutions. These obtained solutions are useful in describing
some of interesting physical phenomena due to the impor-
tance of the NCFSSS in plasma physics and fluid dynamics.
Finally, the effect of BM on the exact solution of the NCFSSS
((1) and (2)) is demonstrated by introducing 3D and 2D
graphs for some analytical fractional stochastic solutions.
In future study, we can address the NCFSSS ((1) and (2))
with multidimensional multiplicative noise.
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