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In this article, we consider two nonlinear neutral systems with multiple delays. Our main tool here is to use dichotomy theory to
construct an implicit solution for these two systems. Utilizing Krasnoselskii’s fixed point theorem, we obtain sufficient criteria for
the existence of periodic solutions, as well as for the uniqueness of solutions. The main results expand and generalize certain
previously published findings.

1. Introduction

Periodic solutions of equations are solutions that describe
regularly repeated processes. The periodic solutions of sys-
tems of differential equations occupy special importance in
branches of science such as the theory of oscillations,
dynamical systems, and celestial mechanics, and the analysis
of these systems in depth opens up new possibilities and
horizons in these sciences. Such a study aids in understand-
ing the geometric behavior of solutions eventually (see
[1–4]).

In recent years, several investigators have tried the stabil-
ity and existence of periodic solutions by using the technique
of fixed point, in particular Burton, Furumochi, Zhang, and
others (see [5–13]).

By Krasnoselskii’s fixed point theorem, Luo et al. [14]
investigate the existence of positive periodic solutions for

two neutral functional differential equations

y ζð Þ − cy ζ − τ ζð Þð Þð Þ′ = −a ζð Þy ζð Þ + f ζ, y ζ − τ ζð Þð Þð Þ, ð1Þ

d
dζ

y ζð Þ−c
ð0
−∞

Q ωð Þy ζ + ωð Þdω
� �

= −a ζð Þy ζð Þ+
ð0
−∞

Q ωð Þf ζ, y ζ + ωð Þð Þdω,
ð2Þ

in which y : ℝ⟶ℝ; aðζÞ ∈ Cðℝ, ð0,∞ÞÞ; f ∈ Cðℝ ×ℝ,ℝÞ;
τðζÞ ∈ Cðℝ,ℝÞ; aðζÞ, bðζÞ, τðζÞ, and f ðζ, yÞ are T-periodic
functions; T > 0 and jcj < 1 are constants; QðωÞ ∈ Cðð−∞,0�
, ½0,∞ÞÞ; and Ð 0−∞QðωÞdω = 1.

The above functional differential equations ( (1) and (2))
cover many mathematical ecological and population models,
for example, hematopoiesis models (see [15, 16]),
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Nicholson’s blowflies models (see [17, 18]), and blood cell
production (see [19]).

Sa Ngiamsunthorn [11] considered the differential sys-
tem

y ζð Þ − cy ζ − τð Þð Þ′ = A ζð Þy ζð Þ + f ζ, y ζ − σ1 ζð Þð Þ,⋯, y ζ − σm ζð Þð Þð Þ,
ð3Þ

with dichotomy condition (3) periodic coefficients. Similar
system of (3) has been studied in [20].

Motivated by the works mentioned above, we are con-
cerned with the existence of periodic solutions for two non-
linear neutral systems of differential equations

y ζð Þ − q ζ, y ζ − τ ζð Þð Þð Þð Þ′ =A ζð Þy ζð Þ + f ζ, y ζ − σ1 ζð Þð Þ,⋯, y ζ − σm ζð Þð Þð Þ,
ð4Þ

y ζð Þ−
ð0
−∞

Q ωð Þq ζ, y ζ + τ ωð Þð Þð Þdω
� �

′

= A ζð Þy ζð Þ+
ð0
−∞

Q ωð Þf ζ, y ζ + σ1 ωð Þð Þ,⋯, y ζ + σm ωð Þð Þð Þdω,

ð5Þ
in which y : ℝ⟶ℝn, τðζÞ, and σiðζÞ, i = 1,⋯,m, are real
continuous T-periodic functions on ℝ, T > 0. AðζÞ is a n ×
n real continuous matrix T-periodic function defined on ℝ
. QðωÞ is a n × n real continuous matrix periodic function
defined on ð−∞, 0� with Ð 0−∞QðωÞdω = I. The functions qð
ζ, uÞ and f ðζ, u1,⋯, umÞ are real continuous vector func-
tions defined on ℝ ×ℝn and ℝ × ðℝnÞm, respectively, such
that

f ζ + T , u1, u2,⋯, umð Þ = f ζ, u1, u2,⋯, umð Þ,
q ζ + T , uð Þ = q ζ, uð Þ:

ð6Þ

Note that the functional yðζ − τðζÞÞ and function yðζÞ
are in different spaces because yðζ − τðζÞÞ is in the phase
space, but their norms are equivalent (for more details on
space theory, we refer the reader to the following papers)
[21, 22].

This paper is arranged as follows: after this introduction,
we list a set of definitions and previous results related to
integrable dichotomies and fixed point theorems in Section
2. Sections 3 and 4 deal with the existence and uniqueness
of periodic solutions of systems (4) and (5), respectively,
and are followed by a conclusion.

2. Preliminaries

In this section, we outline some results and definitions of
integrable dichotomy that will be crucial in the proof of
our results (see [23, 24]). Consider the following linear dif-
ferential system:

z′ ζð Þ = A ζð Þz ζð Þ, ð7Þ

in which AðζÞ is a continuous n × n matrix function. Let

ΨðζÞ be the fundamental matrix solution of system (7) with
Ψð0Þ = I. Assume P is a projection matrix. We let a green
matrix G≔GP be associated with P by

G ζ, ωð Þ =
Ψ ζð ÞPΨ−1 ζð Þ, forζ ≥ ω,
−Ψ ζð Þ I − Pð ÞΨ−1 ζð Þ, forζ < ω:

(
ð8Þ

Definition 1 (see [23]). If a projection matrix P and a positive
constant μ exist for which the associated Green matrix G =
GP satisfies

sup
ζ∈ℝ

ð∞
−∞

G ζ, ωð Þk kdω = μ, ð9Þ

the linear differential system (7) has an integrable
dichotomy.

Proposition 2 (see [23]). Assume that system (7) has an inte-
grable dichotomy. Then, zðζÞ = 0 is the only bounded solution
to (7).

Now, the set of bounded and continuous functions is des-
ignated as BCðℝ,ℝnÞ. If we consider the nonhomogeneous
linear system

z′ ζð Þ = A ζð Þz ζð Þ + f ζð Þ, ð10Þ

under an integrable dichotomy condition, we take the follow-
ing theorem from [23].

Theorem 3. Assume that system (7) has an integrable dichot-
omy. If f ∈ BCðℝ,ℝnÞ, then system (10) has a unique
bounded solution z ∈ BCðℝ,ℝnÞ. Furthermore,

z ζð Þ =
ð∞
−∞

G ζ, ωð Þf ωð Þdω: ð11Þ

Theorem 4 (see [23]). Assume that the homogeneous system
(7) has an integrable dichotomy for which ΨðζÞPΨ−1ðζÞ is
bounded. If A is T-periodic, then ΨðζÞPΨ−1ðζÞ is also T
-periodic. In addition, if f ∈ BCðℝ,ℝnÞ is T-periodic, then
(10) has a unique periodic solution satisfying (11).

We present the fixed point theorems that we utilize to
demonstrate the existence and uniqueness of periodic solu-
tions to system (4) (see [5, 25]).

Theorem 5 (Banach). Assume that ðY , ρÞ is a complete met-
ric space and Γ : Y ⟶ Y . If there is a constant γ < 1 such
that for u, v ∈ Y ,

ρ Γu, Γvð Þ ≤ γρ u, vð Þ, ð12Þ

then there is one and only one point z ∈ Y with Γz = z.

Smart [25] established a hybrid result by combining
Banach’s theorem and Schauder’s theorem as follows:
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Theorem 6 (Krasnoselskii). Let Ω be a closed bounded con-
vex nonempty subset of a Banach space Y . Assume that Γ1
and Γ2 map Ω into Y such that

(i) Γ1 is a contraction mapping on Ω

(ii) Γ2 is completely continuous on Ω

(iii) u, v ∈Ω implies Γ1u + Γ2v ∈Ω

Then, there exists z ∈Ω with z = Γ1z + Γ2z.

Assume M > 0 be a constant. Denote

Ω = u ∈ BC ℝ,ℝnð Þ: uk k ≤M and u ζ + Tð Þ = u ζð Þ for all ζ ∈ℝf g:
ð13Þ

Clearly, the set Ω is a bounded nonempty closed and
convex subset of BCðℝ,ℝnÞ.

Assume that, for u, v ∈Ω, there exists L1 ∈ ð0, 1Þ such
that

q ζ, uð Þ − q ζ, vð Þj j ≤ L1 u − vj j, for all ζ ∈ℝ, ð14Þ

and for u1, u2,⋯um, v1, v2,⋯, vm ∈Ω, there exists L2 > 0
such that

f ζ, u1, u2,⋯, umð Þ − f ζ, v1, v2,⋯, vmð Þj j
≤ L2 u1 − v1j j+⋯+ um − vmj jð Þ, for all ζ ∈ℝ:

ð15Þ

Denote supζ∈½0,T�jqðζ, 0Þj = α, supζ∈½0,T�j f ðζ, 0,⋯, 0Þj = β,
and supζ∈½0,T�kAðζÞk = λ, and we assume also

L1M + α + μ λ L1M + αð Þ + L2mM + βð Þ½ � ≤M: ð16Þ

3. Existence of Periodic Solutions for (4)

In this section, we show the existence and the uniqueness of
solution of (4) under the conditions stated in the previous
section. So, let

z ζð Þ = y ζð Þ − q ζ, y ζ − τ ζð Þð Þð Þ: ð17Þ

Hence,

z′ ζð Þ = A ζð Þz ζð Þ + A ζð Þq ζ, y ζ − τ ζð Þð Þð Þ + f ζ, y ζ − σ1 ζð Þð Þ,⋯, y ζ − σm ζð Þð Þð Þ:
ð18Þ

By Theorem 3, system (4) holds the integral equation

z ζð Þ =
ð∞
−∞

G ζ, ωð Þ A ωð Þq ω, y ω − τ ωð Þð Þð Þ½
+ f ω, y ω − σ1 ωð Þð Þ,⋯, y ω − σm ωð Þð Þð Þ�dω:

ð19Þ

The above equation is equivalent to

y ζð Þ = q ζ, y ζ − τ ζð Þð Þð Þ+
ð∞
−∞

G ζ, ωð Þ A ωð Þq ω, y ω − τ ζð Þð Þð Þ½
+ f ω, y ω − σ1 ωð Þð Þ,⋯, y ω − σm ωð Þð Þð Þ�dω:

ð20Þ

Define the operators Γ1 and Γ2 by

Γ1uð Þ ζð Þ≔ q ζ, u ζ − τ ζð Þð Þð Þ for u ∈ BC ℝ,ℝnð Þ, ð21Þ

Γ2uð Þ ζð Þ≔
ð∞
−∞

G ζ, ωð ÞA ωð Þq ω, u ω − τ ωð Þð Þð Þdω

+
ð∞
−∞

G ζ, ωð Þf ω, u ω − σ1 ωð Þð Þ,⋯, u ω − σm ωð Þð Þð Þdω:

ð22Þ

Note that if the operator Γ1 + Γ2 has a fixed point, then
this fixed point is a periodic solution of (4).

Lemma 7. If (14) and (15) hold, then the operators Γ1 and Γ2
are defined by (21) and (22), respectively, from Ω into BCð
ℝ,ℝnÞ, that is, Γ1, Γ2 : Ω⟶ BCðℝ,ℝnÞ.

Proof. Let u ∈Ω, by (14). Therefore,

Γ1uð Þ ζð Þj j = q ζ, u ζ − τ ζð Þð Þð Þj j ≤ L1 u ζ − τ ζð Þð Þj j + q ζ, 0ð Þj j
≤ L1 uk k + sup

ζ∈ 0,ζ½ �
q ζ, 0ð Þj j ≤ L1M + α:

ð23Þ

Secondly, for u ∈Ω, by (14) and (15), we get

Γ2uð Þ ζð Þj j =
ð∞
−∞

G ζ, ωð Þk k A ωð Þk k q ω, u ω − τ ωð Þð Þð Þj jdω

+
ð∞
−∞

G ζ, ωð Þk k f ω, u ω − σ1 ωð Þð Þ,⋯, u ω − σm ωð Þð Þð Þj jdω

≤ λ L1M + αð Þ + L2mM+βð Þ½ �
ð∞
−∞

G ζ, ωð Þk kdω

≤ μ λ L1M + αð Þ + L2mM + βð Þ½ �:
ð24Þ

Since all quantities in Γ1 and Γ2 are periodic, then Γ1,
Γ2 : Ω⟶ BCðℝ,ℝnÞ.

Lemma 8. If (14) holds, then the operator Γ1 : Ω⟶ BCðℝ
,ℝnÞ defined by (21) is a contraction.

Proof. Let u, v ∈Ω. By using (14), we get

Γ1uð Þ ζð Þ − Γ1vð Þ ζð Þj j = q ζ, u ζ − τ ζð Þð Þð Þ − q ζ, v ζ − τ ζð Þð Þð Þj j
≤ L1 u ζ − τ ζð Þð Þ − v ζ − τ ζð Þð Þj j ≤ L1 u − vk k:

ð25Þ
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Then,

Γ1u − Γ1vk k ≤ L1 u − vk k: ð26Þ

Therefore, Γ1 is a contraction because L1 ∈ ð0, 1Þ.

Lemma 9. If (14) and (15) hold, then the operator Γ2 : Ω
⟶ BCðℝ,ℝnÞ defined by (22) is completely continuous.

Proof. To prove the operator Γ2 : Ω⟶ BCðℝ,ℝnÞ
completely continuous, we must prove that Γ2 is continuous
and Γ2ðΩÞ is contained in a compact set; for this purpose, let
un ∈Ω where n is a positive integer such that un ⟶ u as n
⟶∞. Then,

Γ2unð Þ ζð Þ − Γ2uð Þ ζð Þj j ≤
ð∞
−∞

G ζ, ωð Þk k A ωð Þk k q ω, un ω − τ ωð Þð Þð Þj

− q ω, u ω − τ ωð Þð Þð Þjdω+
ð∞
−∞

G ζ, ωð Þk k
× f ω, un ω − σ1 ωð Þð Þ,⋯, un ω − σm ωð Þð Þð Þj
− f ω, u ω − σ1 ωð Þð Þ,⋯, u ω − σm ωð Þð Þð Þjdω

≤ μ λL1 + L2mð Þ un − uk k:
ð27Þ

So, the dominated convergence theorem implies

lim
n⟶∞

Γ2unð Þ ζð Þ − Γ2uð Þ ζð Þj j = 0, ð28Þ

which implies that Γ2 is continuous. Next, we show that the
image of Γ2 is contained in a compact set. Let un ∈Ω, and by
(24), we have

Γ2unk k ≤ μ λ L1M + αð Þ + L2mM + βð Þ½ �: ð29Þ

Second, we calculate ðΓ2unÞ′ðζÞ and show that it is uni-
formly bounded.

Γ2unð Þ′ ζð Þ =
ð∞
−∞

G ζ, ωð Þ A ωð Þq ω, un ω − τ ωð Þð Þð Þ½
�
+ f ω, un ω − σ1 ωð Þð Þ,⋯, un ω − σm ωð Þð Þð Þ�dωÞ′

= un′ ζð Þ − q′ ζ, un ζ − τ ζð Þð Þð Þ
= A ζð Þu ζð Þ + f ζ, un ζ − σ1 ζð Þð Þ,⋯, un ζ − σm ζð Þð Þð Þ
= A ζð Þ Γ1un + Γ2unð Þ + f ζ, un ζ − σ1 ζð Þð Þ,⋯, un ζ − σm ζð Þð Þð Þ:

ð30Þ

Then,

Γ2unð Þ′�� �� ≤ λ + L2mð ÞM + β: ð31Þ

Thus, the sequence ðΓ2unÞ is uniformly bounded and
equicontinuous. As a result, by Ascoli-Arzela’s theorem Γ2
ðΩÞ is relatively compact.

We next prove for any u, v ∈Ω that Γ1u + Γ2v ∈Ω.

Lemma 10. If (14)–(16) hold, then for any u, v ∈Ω, we have
Γ1u + Γ2v ∈Ω.

Proof. Let u, v ∈Ω. Then, kuk, kvk ≤M. By (16), we have

Γ1uð Þ ζð Þ + Γ2vð Þ ζð Þj j ≤ q ζ, u ζ − τ ζð Þð Þð Þj j
+
ð∞
−∞

G ζ, ωð Þk k A ωð Þk k q ω, v ω − τ ωð Þð Þð Þj jdω

+
ð∞
−∞

G ζ, ωð Þk k f ω, v ω − σ1 ωð Þð Þ,⋯, v ω − σm ωð Þð Þð Þj jdω

≤ L1M + α + λ L1M + αð Þ + L2mM+βð Þ½ �
ð∞
−∞

G ζ, ωð Þk kdω

≤ L1M + α + μ λ L1M + αð Þ + L2mM + βð Þ½ � ≤M:

ð32Þ

It follows that

Γ1u + Γ2vk k ≤M, ð33Þ

for all u, v ∈Ω. Hence, Γ1u + Γ2v ∈Ω.

Theorem 11. Assume that system (7) has an integrable
dichotomy. If conditions (14)–(16) hold, then system (4) has
at least one T-periodic solution.

Proof. Clearly, by Lemmas 7–10, all the requirements of the
Krasnoselskii’s theorem are satisfied. Thus, there exists a
fixed point z ∈Ω such that z = Γ1z + Γ2z; this fixed point is
a solution of (4). Hence, (4) has a T-periodic solution.

Theorem 12. Assume that system (7) has an integrable
dichotomy. If conditions (14) and (15) and

L1 + μ λL1 + L2mð Þ < 1, ð34Þ

hold, then system (4) has a unique T-periodic solution.

Proof. Let the mapping Γ be presented by

Γuð Þ ζð Þ = q ζ, u ζ − τ ζð Þð Þð Þ+
ð∞
−∞

G ζ, ωð Þ A ωð Þq ω, u ω − τ ωð Þð Þð Þ½
+ f ω, u ω − σ1 ωð Þð Þ,⋯, u ω − σm ωð Þð Þð Þ�dω:

ð35Þ

For u1, u2 ∈ BCðℝ,ℝnÞ, we obtain

Γu1ð Þ ζð Þ − Γu2ð Þ ζð Þj j ≤ q ζ, u1 ζ − τ ζð Þð Þð Þ − q ζ, u2 ζ − τ ζð Þð Þð Þj j
+
ð∞
−∞

G ζ, ωð Þk k A ωð Þk k q ω, u1 ω − τ ωð Þð Þð Þj

− q ω, u2 ω − τ ωð Þð Þð Þjdω+
ð∞
−∞

G ζ, ωð Þk k
× f ω, u1 ω − σ1 ωð Þð Þ,⋯, u1 ω − σm ωð Þð Þð Þj
− f ω, u2 ω − σ1 ωð Þð Þ,⋯, u2 ω − σm ωð Þð Þð Þjdω
= L1 + μ λL1 + L2mð Þð Þ u1 − u2k k:

ð36Þ

Since (34) hold, the contraction mapping completes the
proof.

4 Journal of Function Spaces



Example 1. Consider system (4) with n = 2, m = 2, T = 2π,
and y = ðy1, y2Þt , and

y ζð Þ =
y1 ζð Þ
y2 ζð Þ

 !
, q ζ, y ζ − τ ζð Þð Þð Þ = 10−4 sin ζð Þ

y2 ζ − cos ζð Þð Þ
y1 ζ − cos ζð Þð Þ

 !
,

A ζð Þ =
10−2 sin tð Þ −0:99

0:99 10−3 sin tð Þ

 !
,

f ζ, y ζ − σ1 ζð Þð Þ, y ζ − σ2 ζð Þð Þð Þ

= 10−5 cos ζð Þ
y1 ζ − 10−2
� �

+ y2 ζ − sin ζð Þð Þ

y2 ζ − 10−2
� �

+ y1 ζ − sin ζð Þð Þ

0
@

1
A:

ð37Þ

Let the set

Ω = u ∈ BC 0, 2π½ �,ℝnð Þ: uk k ≤M and u ζ + 2πð Þ = u ζð Þ for all ζ ∈ℝf g:
ð38Þ

Clearly, the set Ω is a bounded nonempty closed and
convex subset of BCð½0, 2π�,ℝnÞ for any positive constant
M.

Note that L1 = 10−4, L2 = 10−5, α = 0, and β = 0, and we
use kAk =max1≤j≤2∑2

i=1aij to get

A ζð Þk k =
10−2 sin ζð Þ −0:99

0:99 10−3 sin ζð Þ

 !�����
�����

=max 10−2 sin ζð Þ		 		 + 0:99, 10−3 sin ζð Þ		 		 + 0:99

 �

= 10−2 sin ζð Þ		 		 + 0:99:
ð39Þ

Then, λ = 10−1.
We can see that conditions (14) and (15) hold.
We substitute all quantities in the inequality (16), and we

have

10−4 + μ 10−5 + 2 × 10−5
� 

≤ 1: ð40Þ

Now, since the matrix A is continuous and periodic, then
system (4) has an integrable dichotomy, and we have two
cases: if μ ≤ ðð1 − 10−4Þ/ð3 × 10−5ÞÞ, then (16) holds for any
positive constant M, and by Theorem 11, system (4) has at
least one 2π-periodic solution.

If μ < ðð1 − 10−4Þ/ð3 × 10−5ÞÞ, then condition (34) holds,
and by Theorem 11, system (4) has a unique 2π-periodic
solution.

4. Existence of Periodic Solutions for (5)

In this section, we show the existence and the uniqueness of
the solution of (5) under the conditions stated in the previ-

ous section. So, let

z ζð Þ = y ζð Þ−
ð0
−∞

Q rð Þq ζ, y ζ + τ rð Þð Þð Þdr: ð41Þ

Then,

z′ ζð Þ = A ζð Þz ζð Þ+A ζð Þ
ð0
−∞

Q rð Þq ζ, y ζ + τ rð Þð Þð Þdr

+
ð0
−∞

Q rð Þf ζ, y ζ + σ1 rð Þð Þ,⋯, y ζ + σm rð Þð Þð Þdr:

ð42Þ

By Theorem 3, system (5) holds the integral equation

z ζð Þ =
ð∞
−∞

G ζ,ωð ÞA ωð Þ
ð0
−∞

Q rð Þq ω, y ω + τ rð Þð Þð Þdrdω

+
ð∞
−∞

G ζ,ωð Þ
ð0
−∞

Q rð Þf ω, y ω + σ1 rð Þð Þ,⋯, y ω + σm rð Þð Þð Þdrdω:

ð43Þ

The above equation is equivalent to

y ζð Þ =
ð0
−∞

Q rð Þq ζ, y ζ + τ rð Þð Þð Þdr

+
ð∞
−∞

G ζ,ωð ÞA ωð Þ
ð0
−∞

Q rð Þq ω, y ω + τ rð Þð Þð Þdrdω

+
ð∞
−∞

G ζ,ωð Þ
ð0
−∞

Q rð Þf ω, y ω + σ1 rð Þð Þ,⋯, y ω + σm rð Þð Þð Þdrdω:

ð44Þ

We define, for u ∈ BCðℝ,ℝnÞ, the operators Y1 and Y2
by

Y1uð Þ ζð Þ =
ð0
−∞

Q rð Þq ζ, u ζ + τ rð Þð Þð Þdr, ð45Þ

Y2uð Þ ζð Þ =
ð∞
−∞

G ζ,ωð ÞA ωð Þ
ð0
−∞

Q rð Þq ω, u ω + τ rð Þð Þð Þdrdω

+
ð∞
−∞

G ζ,ωð Þ
ð0
−∞

Q rð Þf ω, u ω + σ1 rð Þð Þ,⋯, u ω + σm rð Þð Þð Þdrdω:

ð46Þ

Lemma 13. If (14) and (15) hold, then the operators Y1 and
Y2 defined above are operators from Ω into BCðℝ,ℝnÞ, that
is, Y1, Y2 : Ω⟶ BCðℝ,ℝnÞ.
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Proof. Let u ∈Ω; by (14), we get

Y1uð Þ ζð Þj j =
ð0
−∞

Q rð Þq ζ, u ζ + τ rð Þð Þð Þdr
				

				
≤ L1 u ζ − τ ζð Þð Þj j + q ζ,0ð Þj jð Þ

ð0
−∞

Q rð Þdr
				

				
≤ L1 uk k + sup

ζ∈ 0,ζ½ �
q ζ, 0ð Þj j

 !
Ik k ≤ L1M + α:

ð47Þ

Secondly, for u ∈Ω, by (14) and (15), we get

Y2uð Þ ζð Þj j =
ð∞
−∞

G ζ,ωð Þk k A ωð Þk k
ð0
−∞

Q rð Þq ω, u ω + τ rð Þð Þð Þdr
				

				dω
+
ð∞
−∞

G ζ,ωð Þk k
ð0
−∞

Q rð Þf ω, u ω + σ1 rð Þð Þ,⋯, u ω + σm rð Þð Þð Þdr
				

				dω
≤ λ L1M + αð Þ + L2mM+βð Þ½ �

ð∞
−∞

G ζ,ωð Þk k
ð0
−∞

Q rð Þdr
				

				dω
≤ μ λ L1M + αð Þ + L2mM + βð Þ½ �:

ð48Þ

Since all quantities in Y1 and Y2 are periodic, then Y1,
Y2 : Ω⟶ BCðℝ,ℝnÞ.

By the same technique proofs in Lemmas 8–10, we state
the following lemmas without proofs.

Lemma 14. If (14) holds, then the operator Y1 : Ω⟶ BCð
ℝ,ℝnÞ defined by (45) is a contraction.

Lemma 15. If (14) and (15) hold, then the operator Y2 : Ω
⟶ BCðℝ,ℝnÞ defined by (46) is completely continuous.

Lemma 16. If (14)–(16) hold, then for any u, v ∈Ω, we have
Y1u + Y2v ∈Ω.

Theorem 17. Assume that system (7) has an integrable
dichotomy. If conditions (14)–(16) hold, then system (5) has
at least one T-periodic solution.

Proof. By Lemmas 13–16, all the requirements of the Kras-
noselskii’s theorem are satisfied. Thus, there exists a fixed
point z ∈Ω such that z = Y1z + Y2z; this fixed point is a
solution of (5). Hence, (5) has a ζ-periodic solution.

Theorem 18. Assume that system (7) has an integrable
dichotomy. If conditions (14), (15), and (34) hold, then system
(5) has a unique T-periodic solution.

Proof. Let the mapping Y be presented by

Yuð Þ ζð Þ =
ð0
−∞

Q rð Þq ζ, u ζ + τ rð Þð Þð Þdr

+
ð∞
−∞

G ζ,ωð ÞA ωð Þ
ð0
−∞

Q rð Þq ω, u ω + τ rð Þð Þð Þdrdω

+
ð∞
−∞

G ζ,ωð Þ
ð0
−∞

Q rð Þf ω, u ω + σ1 rð Þð Þ,⋯, u ω + σm rð Þð Þð Þdrdω:

ð49Þ

For u1, u2 ∈ BCðℝ,ℝnÞ, we have

Yu1ð Þ ζð Þ − Yu2ð Þ ζð Þj j ≤
ð0
−∞

Q rð Þq ζ, u1 ζ + τ rð Þð Þð Þdr−
ð0
−∞

Q rð Þq ζ, u2 ζ + τ rð Þð Þð Þdr
				

				
+
ð∞
−∞

G ζ,ωð Þk k A ωð Þk k
ð0
−∞

Q rð Þ q ω, u1 ω + τ rð Þð Þð Þð
				

− q ω, u2 ω + τ rð Þð Þð ÞÞdrjdω

+
ð∞
−∞

G ζ,ωð Þk k
ð0
−∞

Q rð Þ f ω, u1 ω + σ1 rð Þð Þ,⋯, u1 ω + σm rð Þð Þð Þj
				

− f ω, u2 ω + σ1 rð Þð Þ,⋯, u2 ω + σm rð Þð Þð Þjdrjdω
= L1 + μ λL1 + L2mð Þð Þ u1 − u2k k:

ð50Þ

Since (34) holds, the contraction mapping completes the
proof.

5. Conclusion

In this paper, we dealt with the study of types of neutral
equations more generally, represented in nonlinear systems
with several delays under the dichotomy condition, where
the fixed point theorems were used to prove existence and
uniqueness.

The benefit of this paper is to generalize several well-
known researches such as [11, 14]. So that if qðζ, yðζ − τðζÞ
ÞÞ = cyðζ − τÞ, then our results will apply to systems (3) of
[11]. Also, the periodicity of (1) and (2) in [14] is generalized
by our systems (4) and (5) in n-dimentional case.
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