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This research paper intends to study some qualitative analyses for a nonlinear fractional integrodifferential equation with a
variable order in the frame of a Mittag-Leffler power law. At first, we convert the considered problem of variable order into an
equivalent standard problem of constant order using generalized intervals and piecewise constant functions. Next, we prove the
existence and uniqueness of analytic results by application of Krasnoselskii’s and Banach’s fixed point theorems. Besides, the
guarantee of the existence of solutions is shown by different types of Ulam-Hyer’s stability. Then, we investigate sufficient
conditions of positive solutions for the proposed problem. In the end, we discuss an example to illustrate the applicability of
our obtained results.

1. Introduction

Fractional calculus and its applications [1, 2] has recently
gained in popularity due to their applicability in modeling
many complex phenomena in a wide range of science and
engineering disciplines. Several biological models [3] and opti-
mal control problems [4] have been presented in the literature
through the development of fractional calculus. In order to
describe the dynamics of real-world problems, new methods
and techniques have been discovered. In particular, Caputo
and Fabrizio in [5] investigated a new type of fractional deriv-
atives (FDs) in the exponential kernel. There are some inter-
esting properties of Caputo and Fabrizio that were discussed
by Losada and Nieto in [6]. In [7], Atangana and Baleanu,
investigated a new type and interesting FD with a Mittag-
Leffler (ML) kernel. Atangana-Baleanu (AB) FD was extended
to higher arbitrary order by Abdeljawad in [8], along with

their associated integral operators. For some theoretical works
on AB fractional operator, we refer the reader to a series of
papers [9–13].

Variable order fractional operators can be seen as a nat-
ural analytical extension of constant order fractional opera-
tors. In recent years, variable order fractional operators
have been designed and formalized mathematically only.
After that, the applications of this effect rolled rapidly. In
this regard, Lorenzo and Hartley [14] studied the behaviors
of a fractional diffusion problem with fractional operators
in the variable order. Afterward, different applications of
variable order spaces of a fractional kind have shown up in
striking and fascinating points of interest, see [15–20]. For
instance, Sun et al. [21] introduced a comparative study on
constant and variable order models to describe the memory
identification of certain systems. The authors in [22] have
formulated a nonlinear model of alcoholism in the frame
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of FDEs with variable order and discussed the solutions of
such a model numerically and analytically. The authors in
[23] analyzed a variable order mathematical fuzzy model
through a computational approach for nonlinear fuzzy par-
tial FDEs.

The probability of formulating evolutionary control
equations has led to the effective application of these opera-
tors to model complex real-world problems going from
mechanics to transition and control processes to theory
and biology. For available applications of variable order frac-
tional operators in the overall area of engineering and scien-
tific modeling, see [24, 25]. Such broad and various
applications promptly require a progression of systematic
studies on the qualitative analyses of solutions of FDEs with
variable order such as existence, uniqueness, and stability.

Recently, Li et al. [26], by a new numerical approach,
have studied the following fractional problem

MLDϱ ϰð Þ
0+ ϑ ϰð Þ + a ϰð Þϑ ϰð Þ =K ϰ, ϑ ϰð Þð Þ, ϰ ∈ 0, 1½ �,

B ϑð Þ = 0,

(
ð1Þ

where MLDϱðϰÞ
0+ is the Atangana-Baleanu FD with a variable

order ϱðϰÞ and BðϑÞ is the linear boundary condition.
Bouazza et al. [27] established the existence and stability

results for a multiterm fractional BVP with a variable order
of the form:

CDϱ ϰð Þ
0+ ϑ ϰð Þ =K ϰ, ϑ ϰð Þ, Iϱ ϰð Þ

0+ ϑ ϰð Þ
� �

, ϰ ∈ 0, b½ �,
ϑ 0ð Þ = 0, ϑ bð Þ = 0,

8<: ð2Þ

where CDϱðtÞ
0+ , IϱðtÞ0+ are Caputo’s and Riemann-Liouville’s

operators of variable order ϱðtÞ. The existence and Ulam-
Hyers stability results of a Caputo-type problem (2) have
been obtained by Benkerrouche et al. [28]. Kaabar et al.
[29] investigated some qualitative analyses of solutions for
the following implicit FDE with variable order

CDϱ ϰð Þ
0+ ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,CDϱ ϰð Þ

0+ ϑ ϰð Þ
� �

, ϰ ∈ 0, b½ �,
ϑ 0ð Þ = 0, ϑ bð Þ = 0,

8<: ð3Þ

where CDϱðϰÞ
0+ is the Caputo FD of variable order ϱðϰÞ.

Cauchy’s type of nonlocal problems can be used to
explain differential laws in the development of systems,
which is remarkable. Nonnegative quantities, such as the
concentration of a species or the distribution of mass or tem-
perature, are often described using these types of equations.
In this regard, the first question to ask before analyzing any
system or model of a real-world phenomenon is whether or
not the problem actually exists. The answer to this question
is given by the fixed point theory. We refer here to some
results that dealt with the stability approach in the concept
of Ulam-Hyers and others related to fixed point techniques,
see [30–35].

Motivated by the argumentations above, we intend to
analyze and investigate the sufficient conditions of solution
for ML-type nonlinear fractional integrodifferential equa-
tions with a variable order of the form

MLDϱ ϰð Þ
0+ ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱ ϰð Þ

0+ ϑ ϰð Þ,MLDϱ ϰð Þ
0+ ϑ ϰð Þ

� �
, ϰ ∈ E ≔ 0, bð �,

ϑ 0ð Þ = 0, ϑ bð Þ = 〠
n

j=1
τjϑ κj
� �

, κj ∈ 0, bð Þ,

8>>><>>>:
ð4Þ

where MLDϱðϰÞ
0+ and MLIϱðϰÞ0+ are the ML-type derivative and

the ML-type integral of fractional variable order ϱðϰÞ > 0,,
respectively, τ j ∈ℝ, κj,j = 1, 2,⋯, n are prefixed points satis-
fying 0 < κ1 ≤ κ2 ≤⋯≤ κi < b and K : E ×ℝ3 ⟶ℝ is a
continuous function fulfilling some later-specified
assumptions.

Let CðE,ℝÞ be a Banach space of continuous functions
ϑ : E⟶ℝ equipped with the norm kϑk = sup fjϑðϰÞj: ϰ
∈Eg:

Definition 1 (see [36]). Let ϱðϰÞ ∈ ðn − 1, n�,ϑ ∈H1ðEÞ: Then,
the ML-type FD of a variable order ϱðϰÞ for a function ϑ
with the lower limit zero is defined by

MLDϱ ϰð Þ
0+ ϑ ϰð Þ = ϒ ϱϰð Þ

1 − ϱ ϰð Þ
ðϰ
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ − θð Þϱ
� �

ϑ′ θð Þdθ, ϰ > 0,

ð5Þ

respectively. The normalization function ϒðϱðϰÞÞ satisfies
ϒð0Þ =ϒð1Þ = 1, where EϱðϰÞ is the ML function defined by

Eϱ ϰð Þ ϑð Þ = 〠
∞

i=0

ϑi

Γ iϱ ϰð Þ + 1ð Þ , Re ϱ ϰð Þð Þ > 0, ϑ ∈ℂ: ð6Þ

The correspondent ML fractional integral is given by

MLIϱ ϰð Þ
0+ ϑ ϰð Þ = 1 − ϱ ϰð Þ

ϒ ϱ ϰð Þð Þ ϑ ϰð Þ + ϱ ϰð Þ
ϒ ϱ ϰð Þð ÞΓ ϱ ϰð Þð Þ

ðϰ
0
ϰ − sð Þϱ ϰð Þ−1ϑ sð Þds:

ð7Þ

For an integer n ∈ℕ and B is a partition of the interval
E defined as

B = E1 = 0, b1½ �,E2 = b1, b2½ �,E3 = b2, b3½ �, ::⋯ ,En = bn−1, bn½ �f g:
ð8Þ

Let ϱðϰÞ: E⟶ ð1, 2� be a piecewise constant function

2 Journal of Function Spaces



with respect to B such that

ϱ ϰð Þ = 〠
n

l=1
ϱlQl ϰð Þ =

ϱ1, if ϰ ∈E1

ϱ2, if ϰ ∈E2

:

:

:

ϱn, if ϰ ∈En,

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

where ϱl ∈ ð1, 2� are constants, and Ql is the indicator of the
interval E l ≔ ðbl−1, bl�, l = 1, 2,⋯, n (with b0 = 0, bn = b) such
that

Ql ϰð Þ =
1, if ϰ ∈El

0, for elsewhere:

(
ð10Þ

Let CðEl,ℝÞ, l ∈ f1, 2,⋯, ng be a Banach space of con-
tinuous functions ϑ : El ⟶ℝ equipped with the norm kϑ
k = sup fjϑðϰÞj: ϰ ∈Elg. Then, for ϰ ∈El, l = 1, 2,⋯, n the
ML-type FD of variable order ϱðϰÞ for a function ϑ ∈ CðE,
ℝÞ defined by (5) can be written as a sum of left ML-type
FD of constant orders ϱl, l = 1, 2,⋯, n as follows.

MLDϱ ϰð Þ
0+ ϑ ϰð Þ = ϒ ϱ ϰð Þð Þ

1 − ϱ ϰð Þ
ðb1
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ − θð Þϱ ϰð Þ
� �

� ϑ′ θð Þdθ+:⋯⋯ + ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðϰ
bl−1

Eϱ ϰð Þ

� ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ − θð Þϱ ϰð Þ
� �

ϑ′ θð Þdθ:

ð11Þ

Thus, according to (11), the BVP (4) can be written for
any ϰ ∈El, l = 1, 2,⋯, n in the form

ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðb1
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 b1 − θð Þϱ ϰð Þ
� �

ϑ′ θð Þdθ+:⋯⋯

+ ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðϰ
bl−1

Eϱ ϰð Þ
ϱ ϰð Þ

ϱ ϰð Þ − 1 b − θð Þϱ ϰð Þ
� �

ϑ′ θð Þdθ

=K ϰ, ϑ ϰð Þ,MLIϱ ϰð Þ
0+ ϑ ϰð Þ,MLDϱ ϰð Þ

0+ ϑ ϰð Þ
� �

:

ð12Þ

Let the function ϑ ∈ CðEl,ℝÞ be such that ϑðϰÞ = 0 on
ϰ ∈ ½0, bl−1� and such that it solves the integral equation
(12). Then, (12) is reduced to

MLDϱ1
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱ1b+l−1ϑ ϰð Þ,MLDϱ1
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E1,

MLDϱ2
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱ2b+l−1ϑ ϰð Þ,MLDϱ2
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E2,
:

:

MLDϱn
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱnb+l−1ϑ ϰð Þ,MLDϱn
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈En:

8>>>>>>>>>><>>>>>>>>>>:
ð13Þ

In our forthcoming analysis, we shall deal with the fol-
lowing BVP:

MLDϱl
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E l

ϑ bl−1ð Þ = 0, ϑ blð Þ = 〠
n

j=1
τjϑ κj
� �

, κj ∈ 0, bð Þ:

8>>><>>>:
ð14Þ

Observe that, problem (4) is more general of problems
(1), (2), and (3). In addition, it is assumed that it should be
noted that due to the complexity of the computations and
the division of the underlying time interval, not many papers
can be found in the literature in which the authors focused
on the existence and stability results of fractional variable
order integrodifferential equations. To fill this gap, we inves-
tigate some qualitative analyses for the fractional variable
order problem (14) in the frame of ML-type fractional oper-
ators. More precisely, we convert the ML-type fractional var-
iable order problem into an equivalent standard ML-type
fractional constant order problem using generalized inter-
vals and piecewise constant functions. Then, we prove the
existence and uniqueness of solutions for problem (14) via
Krasnoselskii’s and Banach’s fixed point techniques. Also,
we discuss the Ulam-Hyers stability result to the proposed
problem. Further, we establish the sufficient conditions of
positive solutions for problem (14).

The major contribution of this work is to develop the
nonlocal fractional calculus with respect to variable order
and learn more properties for the proposed ML-type frac-
tional problems, which makes use of nonsingular kernel
derivatives with fractional variable order. Already significant
amount of work on constant fractional order for different
operators has been done in literature. But to the best of
our information, variable order problems have not been well
studied so for fractional calculus. There is a waste gap
between constant and variable fractional order problems in
literature, the first one has got tremendous attention as com-
pared to the second one. Very recently, the area of variable
order has started attention to be investigated. In line with
these developments, a new approach is used in this work
to discuss some qualitative properties of solution for the
considered problem. Multiple terms can be solved using this
approach. To the best of our understanding, this is the first
work dealing with the ML-type derivative with fractional
variable order. The results of this work will therefore make
a useful contribution to the existing literature on this subject.
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The outline of our work is as follows. Some basic notions
and axiom results are presented in Section 2. Our main
results are obtained in Sections 3, 4, and 5 based on Krasno-
selskii’s and Banach’s fixed point theorems. An illustrative
example is fitted in Section 6. Concluding remarks about
our results are in the final section.

2. Auxiliary Results

Definition 2. Problem (14) has a solution in CðE,ℝÞ, if there
are functions ϑl, l = 1, 2,⋯, n, so that ϑl ∈ CðEl,ℝÞ, satisfy-
ing Equation (12), and ϑlð0Þ = 0, ϑlðbÞ =∑n

j=1τjϑðκjÞ.

Lemma 3 (see [8]). Let ϑðϰÞ be a function defined on ½0, b�
and n < ϱ ≤ n + 1, for some n ∈ℕ0, we have

MLIϱML
0+ Dϱ

0+ϑ
� �

ϰð Þ = ϑ ϰð Þ − 〠
n

i=0

ϑ ið Þ 0ð Þ
i!

ϰi: ð15Þ

Theorem 4 (see [37]). Let S be closed subspace from a
Banach space K , and let Π : S ⟶ S be a strict contraction
such that

Π xð Þ −Π yð Þk k ≤ ρ x − yk k, ð16Þ

for some 0 < ρ < 1, and for all x, y ∈ S: Then, Π has a fixed
point in S.

Theorem 5 (see [38]). Let K be a nonempty, closed, convex,
and bounded subset of the Banach space X. If there are two
operators Φ1,Φ2 such that

(1) Φ1u +Φ2v ∈X, for all u, v ∈X,
(2) Φ1 is compact and continuous

(3) Φ2 is a contraction mapping

Then, there exists a function z ∈ K such that z =Φ1z +
Φ2z:.

Remark 6. Let uðϰÞ, vðϰÞ ∈ CðE,ℝÞ be two functions. We
notice that the semigroup property is not valid, meaning that

MLIu ϰð Þ
0+

ML
Iv ϰð Þ
0+ ϑ ϰð Þ ≠ MLIu ϰð Þ+v ϰð Þ

0+ ϑ ϰð Þ: ð17Þ

Lemma 7 (see [8]). Let ϱ ∈ ð1, 2� and ℏ ∈ CðE,ℝÞ: Then, the
following ML-type linear problem,

MLDϱ
a+ϑ ϰð Þ = ℏ ϰð Þ, ϑ að Þ = c1,

ϑ′ að Þ = c2,

(
ð18Þ

is equivalent to the following integral equation

ϑ ϰð Þ = c1 + c2 ϰ − að Þ+MLIϱa+ℏ ϰð Þ, ð19Þ

where

MLIϱa+ℏ ϰð Þ = 2 − ϱ

ϒ ϱ − 1ð Þ
ðϰ
a
ℏ sð Þds + ϱ − 1

ϒ ϱ − 1ð ÞΓ ϱð Þ
ðϰ
a
ϰ − sð Þϱ−1ℏ sð Þds:

ð20Þ

Lemma 8. Let ϱl ∈ ð1, 2�, l = 1, 2,⋯, n and ℏ ∈ CðEl,ℝÞ and
let Θ = ðbl − bl−1Þ −∑n

j=1τjðκj − bl−1Þ ≠ 0, τj ∈ℝ, κj ∈ ðbl−1, bl
Þ, with b0 = 0, bn = b, j = 1, 2,⋯, n: Then, the following ML-
type linear problem,

MLDϱl
b+l−1

ϑ ϰð Þ = ℏ ϰð Þ,

ϑ bl−1ð Þ = 0, ϑ blð Þ = 〠
n

j=1
τjϑ κj
� �

,

8>><>>: ð21Þ

is equivalent to the following integral equation

ϑ ϰð Þ = ϰ − bl−1ð Þ
Θ

〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #
+MLIϱlb+l−1ℏ ϰð Þ,

ð22Þ

where

MLIϱlb+l−1ℏ ϰð Þ = 2 − ϱl
ϒ ϱl − 1ð Þ

ðϰ
bl−1

ℏ sð Þds + ϱl − 1
ϒ ϱl − 1ð ÞΓ ϱlð Þ

�
ðϰ
bl−1

ϰ − sð Þϱl−1ℏ sð Þds:
ð23Þ

Proof. Suppose that ϑ ∈ CðE l,ℝÞ is a solution of problem
(21). Applying the operator MLIϱlb+l−1 to both sides of (21), we

find

ϑ ϰð Þ = c1 + c2 ϰ − bl−1ð Þ+MLIϱlb+l−1ℏ ϰð Þ: ð24Þ

By the condition ϑðbl−1Þ = 0, we get c1 = 0:. Hence, Equa-
tion (24) reduces to

ϑ ϰð Þ = c2 ϰ − bl−1ð Þ+MLIϱlb+l−1ℏ ϰð Þ: ð25Þ

As per condition ϑðblÞ =∑n
j=1τjϑðκ jÞ, we obtain

c2 =
1
Θ

〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #
: ð26Þ

Substitute the values of c1, c2 into Equation (24), we get
Equation (22). Conversely, we assume that ϑ satisfies Equa-
tion (22). Then, by applying the operator MLDϱl

b+l−1
on both

sides of Equation (22) and using the fact MLDϱl
b+l−1

ðϰ − bl−1Þ
= 0,, we have

4 Journal of Function Spaces



MLDϱl
b+l−1

ϑ ϰð Þ= MLDϱl
b+l−1

ϰ − bl−1ð Þ
Θ

� 〠
n

j=1
τj

MLIϱlb+l−1ℏ κj
� �� �

−MLIϱlb+l−1ℏ blð Þ
" #

+MLDϱl
b+l−1

MLIϱlb+l−1ℏ ϰð Þ
� �

= ℏ ϰð Þ:

ð27Þ

As ϰ⟶ κj in (25) and multiply by τj, we get

〠
n

j=1
τjϑ κj
� �

=
∑n

j=1τj κj − bl−1
� �
Θ

� 〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #

+ 〠
n

j=1
τj

MLIϱlb+l−1ℏ κj
� �� �

= bl − bl−1ð Þ −Θ

Θ

� 〠
n

j=1
τML
j Iϱlb+l−1ℏ κj

� �
−MLIϱlb+l−1ℏ blð Þ

" #

+ 〠
n

j=1
τj

MLIϱlb+l−1ℏ κj
� �� �

= ϑ blð Þ:

ð28Þ

Thus, nonlocal conditions are satisfied.

Theorem 9. Let ϱl ∈ ð1, 2�, l = 1, 2,⋯, n and K : El ×ℝ3

⟶ℝ be continuous function and Θ = ðbl − bl−1Þ −∑n
j=1τj

ðκj − bl−1Þ ≠ 0,τ j ∈ℝ, κj ∈ ðbl−1, blÞ, with b0 = 0, bn = b, j = 1,
2,⋯, n: If ϑ ∈ CðE l,ℝÞ is a solution of the following ML-
type problem

MLDϱl
b+l−1

ϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

, ϰ ∈E l

ϑ bl−1ð Þ = 0, ϑ blð Þ = 〠
n

j=1
τjϑ κj
� �

,

8>>><>>>:
ð29Þ

then, ϑ satisfies the following fractional integral equation

ϑ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þds

 

−
ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
!
+ P3

ðϰ
bl−1

Kϑ sð Þj j

� ds + P4

Γ ϱlð Þ
ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ sð Þds,

ð30Þ

where

Kϑ ϰð Þ =K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

,

P1 =
2 − ϱl

Θϒ ϱl − 1ð Þ , P2 =
ϱl − 1

Θϒ ϱl − 1ð Þ ,

P3 =
2 − ϱl

ϒ ϱl − 1ð Þ , P4 =
ϱl − 1

ϒ ϱl − 1ð ÞΓ ϱlð Þ :

ð31Þ

3. Existence and Uniqueness of Solutions

This section is devoted to proving the existence and unique-
ness theorems for the ML-type problem (14). For simplicity,
we set

M = 2 − ϱlð Þ bl − bl−1ð Þ
Y ϱlð Þ + ϱl − 1ð Þ bl − bl−1ð Þ

Y ϱl − 1ð ÞΓ ϱl + 1ð Þ
� 	

,

RP = P1 bl − bl−1ð Þ 〠
n

j=1
τj κj − bl−1
� �

+ bl − bl−1ð Þ
 !

+ P2 bl − bl−1ð Þ
Γ ϱl + 1ð Þ 〠

n

j=1
τj κj − bl−1
� �ϱl + bl − bl−1ð Þϱl

 !

+ P3 bl − bl−1ð Þ + P4
Γ ϱl + 1ð Þ bl − bl−1ð Þϱl

� �
,

Ω =RP

Nf 1 +Mð Þ
1 −Nf

:

ð32Þ

Theorem 10. Suppose that

H1ð Þ: K ϰ, x, y, zð Þ −K ϰ, �x, �y, �zð Þj j
≤Nf x − �xj j + y − �yj j + z − �zj jð Þ,N f > 0,

ð33Þ

for all x, y, z, �x, �y, �z ∈ CðE l,ℝÞ. Then, problem (14) has a
unique solution provided that Ω < 1.

Proof. As per Theorem 9, we define the operator Π : CðE l,
ℝÞ⟶ CðEl,ℝÞ

Πϑð Þ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þ

 

� ds −
ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
!

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds:

ð34Þ
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Let us consider a closed ball Πφ as

Kηl
= ϑ ∈ C E l,ℝð Þ: ϑk k ≤ ηlf g, ð35Þ

with the radius ηl ≥Ω1/1 −Ω, where

Ω =RPωf , ð36Þ

and ωf =maxϰ∈El
jKϑð0Þj: Now, we show that ΠKηl

⊂Kηl
:

For all ϑ ∈Kηl
and ϰ ∈E l, we have

Πϑð Þ ϰð Þj j = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj j

 

� ds +
ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
!

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds:

ð37Þ

By ðH1Þ and definition of MLIϱlb+l−1 in the case of ϱl ∈ ð1, 2�
defined as Equation (23), we have

K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �


 




= K ϰ, ϑ ϰð Þ,MLIϱlb+l−1ϑ ϰð Þ,MLDϱl
b+l−1

ϑ ϰð Þ
� �

− f ϰ, 0, 0, 0ð Þ



 



+ f ϰ, 0, 0, 0ð Þj j ≤ Nf 1 +Mð Þ

1 −Nf
ϑ ϰð Þj j + ωf :

ð38Þ

Hence,

Πϑk k ≤ P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj j

 

� ds +
ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
!

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds

≤Ωηl +Ω1 ≤ ηl:

ð39Þ

Thus Πϑ ∈Dl. Now, we need to prove that Π is a con-

traction map. Let ϑ, bϑ ∈Dl and ϰ ∈El .Then, we have

Πϑð Þ ϰð Þ − Πbϑ� �
ϰð Þ




 


 ≤ P1 ϰ − bl−1ð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þ −Kbϑ sð Þ



 


ds + ðbl

bl−1

Kϑ sð Þ −Kbϑ sð Þ



 


ds !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þ −Kbϑ sð Þ




 


 

� ds +
ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þ −Kbϑ sð Þ



 


ds! + P3

ðϰ
bl−1

Kϑ sð Þj

−Kbϑ sð Þjds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þ −Kbϑ sð Þ



 


ds:

ð40Þ

From our assumption, we obtain

Kϑ sð Þ −Kbϑ sð Þ



 


 ≤Nf ϑ sð Þ − bϑ sð Þ




 


 + MLIϱlb+l−1ϑ ϰð Þ−MLIϱlb+l−1
bϑ ϰð Þ




 


�
+ Kϑ sð Þ −Kbϑ sð Þ



 


� ≤ Nf 1 +Mð Þ

1 −Nf
ϑ − bϑ��� ���:

ð41Þ

Hence,

Πϑ −Πbϑ��� ��� ≤Ω ϑ − bϑ��� ���: ð42Þ

Due to Ω < 1, we conclude that Π is a contraction map-
ping. Hence, by the Banach fixed point Theorem 4, Π has a
unique fixed point.

Theorem 11. Under the hypotheses of Theorem 10, the ML-
type problem (14) has at least one solution.

Proof. Let us consider the operator Π defined by Theorem
10. Now, we will divided the operator Π into two operators
Π1,Π2 such that ðΠϑÞðϰÞ = ðΠ1ϑÞðϰÞ + ðΠ2ϑÞðϰÞ, where

Π1ϑð Þ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þds −

ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
 !

,

Π2ϑð Þ ϰð Þ = P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ sð Þds:

ð43Þ

Consider a closed ball Kηl
defined as in Theorem 10. In

order to fulfill the conditions in Theorem 5, we split the
proof into the following steps:
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Step 1. Π1ϑ +Π2
bϑ ∈Kηl

for all ϑ, bϑ ∈Kηl
. First, in order to

operator Π1: For ϑ ∈Kηl
and ϰ ∈E l, we have

Π1ϑð Þ ϰð Þj j ≤ P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj jds +

ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
 !

:

ð44Þ

By Equation (38), we have

Π1ϑk k ≤ P1 bl − bl−1ð Þ 〠
n

j=1
τj κj − bl−1
� �

+ bl − bl−1ð Þ
 !"

+ P2 bl − bl−1ð Þ
Γ ϱl + 1ð Þ 〠

n

j=1
τj κj − bl−1
� �ϱl + bl − bl−1ð Þϱl

 !#

� Nf 1 +Mð Þ
1 −Nf

ηl + ωf

 !
:

ð45Þ

Next, for the operator Π2, we have

Π2ϑk k ≤ P3 bl − bl−1ð Þ + P4
Γ ϱl + 1ð Þ bl − bl−1ð Þϱl

� �
Nf 1 +Mð Þ
1 −Nf

ηl + ωf

 !
:

ð46Þ

Inequalities (45) and (46) give

Π1ϑ +Π2ϑk k ≤ Π1ϑk k + Π2ϑk k < ηl: ð47Þ

Thus, Π1ϑ +Π2bϑ ∈Kηl
.

Step 2. Π2 is a contraction map. Due to the operator Π is a
contraction map, we conclude that Π1 is contraction too.

Step 3. Π1 is continuous and compact. Since Kϑ is continu-
ous, Π1 is continuous too. Also, by Equation (45), Π1 is uni-
formly bounded on Kηl

. Now, we show that Π1ðKηl
Þ is an

equicontinuous. For this purpose, let ϑ ∈Kηl
, a ≤ ϰ1 < ϰ2 ≤ b

. Then, we have

Π1ϑð Þ ϰ2ð Þ − Π1ϑð Þ ϰ1ð Þj j ≤ P1 ϰ2 − bl−1ð Þ − ϰ1 − bl−1ð Þ½ �

� 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þds −
ðbl
bl−1

Kϑ sð Þds
 !

+ P2 ϰ2 − bl−1ð Þ − ϰ1 − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kϑ sð Þds −

ðbl
bl−1

bl − sð Þϱl−1Kϑ sð Þds
 !

:

ð48Þ

Thus,

Π1ϑð Þ ϰ2ð Þ − Π1ϑð Þ ϰ1ð Þk k⟶ 0 as ϰ2 ⟶ ϰ1: ð49Þ

In view of the previous steps along with the theorem
of Arzela-Ascoli, we deduce that ðΠ1Kηl

Þ is relatively com-
pact. Consequently, Π1 is completely continuous. Hence,
by Theorem 5, there exists a solution ϑl of problem (14).
For l ∈ f1, 2,⋯, ng, we define the function

ϑl =
0, ϰ ∈ 0, bl−1½ �,
~ϑl, ϰ ∈El:

(
ð50Þ

As a result of this, it is well known that ϑl ∈ CðE l,ℝÞ
given by Equation (50) satisfies the following problem

ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

ðb1
0
Eϱ ϰð Þ

ϱ ϰð Þ
ϱ ϰð Þ − 1 ϰ1 − θð Þϱ ϰð Þ
� �

ϑl′ θð Þdθ+⋯⋯ + ϒ ϱ ϰð Þð Þ
1 − ϱ ϰð Þ

�
ðϰ
bl−1

Eϱ ϰð Þ
ϱ ϰð Þ

ϱ ϰð Þ − 1 b − θð Þϱ ϰð Þ
� �

ϑl′ θð Þdθ

=K ϱ, ϑl ϱð Þ,MLIϱ ϰð Þ
0+ ϑl ϱð Þ,MLDϱ ϰð Þ

0+ ϑl ϱð Þ
� �

,

ð51Þ

where ϑl is a solution to Equation (12) equipped with
ϑlð0Þ = ϑlðblÞ = ~ϑlðblÞ = 0. Then,

ϑ ϰð Þ =

ϑ1 ϰð Þ, ϰ ∈E1,

ϑ2 ϰð Þ =
0, ϰ ∈E1,
~ϑ2, ϰ ∈E2,

(
:

:

:

ϑn ϰð Þ =
0, ϰ ∈ 0, bl−1½ �,
~ϑn, ϰ ∈En,

(

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð52Þ

is the solution of problem (14).

4. Stability Results for ML-Type Problem (14)

In this section, we discuss Ulam-Hyers (UH) and general-
ized Ulam-Hyers (GUH) stability results for problem (14).
Let ε > 0 and ϑ be a function such that ϑðϰÞ ∈ CðEl,ℝÞ sat-
isfies the following inequations:

MLDϱ ϰð Þ
0 ϑ ϰð Þ −Kϑ ϰð Þ




 


 ≤ ε, ϰ ∈E: ð53Þ

Define the functions ϑlðϰÞ, bϑ lðϰÞ, klðϰÞ,ϰ ∈El as follows.

ϑl ϰð Þ =
0, ifϰ ∈ 0, bl−1½ �,
ϑ ϰð Þ ifϰ ∈El,

(
ð54Þ
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bϑ l ϰð Þ =
0, if ϰ ∈ 0, bl−1½ �,bϑ ϰð Þ if ϰ ∈El,

(
ð55Þ

kl ϰð Þ =
0, if ϰ ∈ 0, bl−1½ �,
k ϰð Þ if ϰ ∈El:

(
ð56Þ

Definition 12. Problem (14) is UH stable if there exists a real
number CK > 0 such that, for each ε > 0 and for each solu-

tion bϑ ∈ CðEl,ℝÞ of inequality (53), there exists a unique
solution ϑ ∈ CðE l,ℝÞ of problem (14) with

bϑ ϰð Þ − ϑ ϰð Þ



 


 ≤ CKε, ð57Þ

where ϑ and bϑ are defined by Equation (54) and Equation
(55), respectively.

Remark 13. Let bϑ ∈ CðEl,ℝÞ be the solution of inequality
(53) if and only if we have a function k ∈ CðEl,ℝÞ which
depends on ϑ such that

(i) jkðϰÞj ≤ ε for all ϰ ∈El

(ii) MLDϱl
b+l−1
bϑðϰÞ =Kbϑ ðϰÞ + kðϰÞ, for all ϰ ∈E:

Lemma 14. If ϑ ∈ CðEl,ℝÞ is a solution of inequality (53),
then ϑ satisfies the following inequality

bϑ ϰð Þ −Ψbϑ − P3

ðϰ
bl−1

Kbϑ sð Þds − P4

Γ ϱlð Þ
ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þds












 ≤ εRP,

ð58Þ

where

Ψbϑ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kbϑ sð Þds −
ðbl
bl−1

Kbϑ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1Kbϑ sð Þds −

ðbl
bl−1

bl − sð Þϱl−1Kbϑ sð Þds
 !

:

ð59Þ

Proof. As per Remark 13, we have

MLDϱl
b+l−1
bϑ ϰð Þ =Kbϑ ϰð Þ + k ϰð Þ, ϰ ∈Elbϑ bl−1ð Þ = bϑ blð Þ = 0:

8<: ð60Þ

Then, by Lemma 8, we get

bϑ ϰð Þ =Ψbϑ + P3

ðϰ
bl−1

Kbϑ sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þ

� ds + P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

k sð Þds −
ðbl
bl−1

k sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1k sð Þds −

ðbl
bl−1

bl − sð Þϱl−1k sð Þds
 !

+ P3

ðϰ
bl−1

k sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1k sð Þds,

ð61Þ

which implies

bϑ ϰð Þ −Ψbϑ − P3

ðϰ
bl−1

Kbϑ sð Þds − P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þds












 ≤ εRP:

ð62Þ

Theorem 15. Suppose that ðH1Þ holds. If

P3 bl − bl−1ð Þ + P4 bl − bl−1ð Þϱl
Γ ϱl + 1ð Þ

� �
Nf 1 +Mð Þ
1 −Nf

< 1, ð63Þ

then the ML-type problem (14) is UH and GUH stable.

Proof. Let ε > 0 and bϑ ∈ CðEl,ℝÞ be a function that satisfies
the inequality (53), and let ϑ ∈ CðE l,ℝÞ be the unique solu-
tion of the following problem.

MLDϱl
b+l−1

ϑ ϰð Þ =Kϑ ϰð Þ, ϰ ∈El

ϑ bl−1ð Þ = bϑ bl−1ð Þ = 0

ϑ blð Þ = bϑ blð Þ = 0:

8>>><>>>: ð64Þ

Then, by Lemma 8, the solution of Equation (64) is given
by

ϑ ϰð Þ =Ψbϑ + P3

ðϰ
bl−1

Kϑ sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ sð Þds:

ð65Þ

Hence, by Lemma 14, we have

bϑ ϰð Þ − ϑ ϰð Þ ≤ bϑ ϰð Þ −Ψbϑ − P3

ðϰ
bl−1

Kbϑ sð Þds − P4
Γ ϱlð Þ














�
ðϰ
bl−1

ϰ − sð Þϱl−1Kbϑ sð Þdsjj + P3

ðϰ
bl−1

Kbϑ sð Þ −Kϑ sð Þ



 




� ds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kbϑ sð Þ −Kϑ sð Þ



 


ds ≤ εRP

+ P3 bl − bl−1ð Þ + P4
Γ ϱl + 1ð Þ bl − bl−1ð Þϱl

� �
Nf 1 +Mð Þ
1 −Nf

bϑ − ϑ
��� ���:

ð66Þ
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Thus,

bϑ − ϑ
��� ��� ≤ CKε, ð67Þ

where

CK = RP

1 − P3 bl − bl−1ð Þ + P4/Γ ϱl + 1ð Þð Þ bl − bl−1ð Þϱlð Þ Nf 1 +Mð Þ/1 −Nf

� � > 0:

ð68Þ

Therefore, the ML-type problem (14) is UH stable.
Finally, by choosing CKðεÞ = CKε such that CKð0Þ = 0, then
the ML-type problem (14) has GUH stability.

5. Existence of Positive Solution for ML-Type
Problem (14)

In this section, we extend and develop the sufficient condi-
tions of the existence and uniqueness of positive solution
for problem (14). For the forthcoming analysis, the following
assumptions must be satisfied:

ðV1Þ: K : E l ×ℝ3 ⟶ℝ is continuous function.
ðV2Þ: There exists constants numbers n1, n1 > 0,n1 ≠ n2

such that

n1 ≤Kϑ ϰð Þ ≤ n2:

V3ð Þ: Ω =RP

Nf 1 +Mð Þ
1 −Nf

:
ð69Þ

Define the cone P ⊂ CðE l,ℝÞ as

P = ϑ ∈ C E l,ℝð Þ: ϑ ϰð Þ ≥ 0, ϰ ∈ 0, b½ �f g: ð70Þ

Lemma 16. Assume that ðV1Þ-ðV2Þ hold. Then, Π : P ⟶
P is completely continuous.

Proof. By Theorem 11, we conclude Π : P ⟶P is
completely continuous due to Π : CðE l,ℝÞ⟶ CðE l,ℝÞ is
completely continuous, since P ⊂ CðE l,ℝÞ.

Theorem 17. Assume that ðV1Þ-ðV3Þ hold. Then, (14) has at
least one positive solution.

Proof. First, we have Π is compact due to Lemma 16. Next,
we define two sets A1,A2 such that A1 = fϑ ∈ CðE l,ℝÞ: kϑ
k ≤ n1Ωg and A2 = fϑ ∈ CðE l,ℝÞ: kϑk ≤ n2Ωg. Now, for ϑ
∈P ∩ ∂A2, we have 0 ≤ ϑðϰÞ ≤ n2Ω, ϰ ∈El: Since KϑðϰÞ ≤
n2, we have

Πϑð Þ ϰð Þj j ≤ P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ sð Þj jds +
ðbl
bl−1

Kϑ sð Þj jds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ 〠

n

j=1
τ j

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ sð Þj jds +

ðbl
bl−1

bl − sð Þϱl−1 Kϑ sð Þj jds
 !

+ P3

ðϰ
bl−1

Kϑ sð Þj jds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1 Kϑ sð Þj jds ≤RP

Nf 1 +Mð Þ
1 −Nf

n2 ≤Ωn2:

ð71Þ

Hence, kΠϑk ≤Ωn2. Next, for ϑ ∈P ∩ ∂A1, we have 0
≤ ϑðϰÞ ≤ n1Ω, ϰ ∈ ½0, b�. Since KϑðϰÞ ≥ n1, we have kΠϑk ≥
Ωn1: Thus, the operator Π has a fixed point in P ∩ ð �A2 \
A1Þ: ,which implies that the ML-problem (14) has a positive
solution.

Theorem 18. Let ϱl ∈ ð1, 2�, l = 1, 2, 3, :⋯ , n
andK : El ×ℝ3 ⟶ℝ is nondecreasing continuous function
for each ϰ ∈El and let ϑ∗, ϑ∗ ∈P such that 0 < ϑ∗ < ϑ∗ < b,
ϰ ∈El, satisfying MLDϱl

b+l−1
ϑ∗ðϰÞ ≤ ϑ∗ and MLDϱl

b+l−1
ϑ∗ðϰÞ ≥ ϑ∗.

Then, problem (14) has a positive solution.

Proof. Let ϑ∗, ϑ∗ ∈P such that 0 < ϑ∗ < ϑ∗ < b: Then, we
have

Πϑ∗ð Þ ϰð Þ = P1 ϰ − bl−1ð Þ 〠
n

j=1
τj

ðκ j
bl−1

Kϑ∗
sð Þds +

ðbl
bl−1

Kϑ∗
sð Þds

 !
+ P2 ϰ − bl−1ð Þ

Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ∗

sð Þ

 

ds + ðbl
bl−1

bl − sð Þϱl−1Kϑ∗
sð Þds

 !

+ P3

ðϰ
bl−1

Kϑ∗
sð Þds + P4

Γ ϱlð Þ
ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ∗
sð Þds ≤ P1 ϰ − bl−1ð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

Kϑ∗ sð Þds +
ðbl
bl−1

Kϑ∗ sð Þds
 !

+ P2 ϰ − bl−1ð Þ
Γ ϱlð Þ

� 〠
n

j=1
τj

ðκ j
bl−1

κj − s
� �ϱl−1 Kϑ∗ sð Þj jds +

ðbl
bl−1

bl − sð Þϱl−1Kϑ∗ sð Þds
 !

+ P3

ðϰ
bl−1

Kϑ∗ sð Þds + P4
Γ ϱlð Þ

ðϰ
bl−1

ϰ − sð Þϱl−1Kϑ∗ sð Þds = Πϑ∗ð Þ ϰð Þ:

ð72Þ

Thus, ðΠϑ∗ÞðϰÞ ≤ ðΠϑ∗ÞðϰÞ. According to Theorem 1.3
in [39], the operator Π is compact and hence Π has a fixed
point in the ordered Banach space hϑ∗, ϑ∗i: Thus, Π : hϑ∗,
ϑ∗i⟶ hϑ∗, ϑ∗i is compact. Accordingly,Π has a fixed point
ϑ ∈ hϑ∗, ϑ∗i. Thus, problem (14) has at least one positive
solution.

Corollary 19. Let K : E l ×ℝ3
+ ⟶ℝ+ be nondecreasing

continuous function in E l: If

0 < lim
ϑ⟶∞

Kϑ ϰð Þ <∞,ϰ ∈E l, ð73Þ

then problem (14) has at least one positive solution.

Corollary 20. Let K : E l ×ℝ3
+ ⟶ℝ+ be nondecreasing

continuous function in E l: If

0 < lim
ϑk k⟶∞

Kϑ ϰð Þ
ϑk k <∞,ϰ ∈El, ð74Þ

then problem (14) has at least one positive solution.

Corollary 21. If there exist constants m1,m2 > 0, ρ ∈ ð0, 1�
such that KϑðϰÞ =m1ϑðϰÞ +mρ

1 , then problem (14) has at
least one positive solution.
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Corollary 22. If the function K : E l ×ℝ3
+ ⟶ℝ+ is contin-

uous and there is a constant Nf > 0 and

K ϰ, x, y, zð Þ −K ϰ, �x, �y, �zð Þj j ≤Nf x − �xj j + y − �yj j + z − �zj jð Þ,Nf > 0,

ð75Þ

for all x, y, z, �x, �y, �z ∈ CðEl,ℝ+Þ such that RPðNf ð1 +MÞ/1
−N f Þ < 1, then problem (14) has a positive solution (Theo-
rem 10).

Corollary 23. Assume that there exists two continuous functions
f1, f2 such that 0 < f1ðϰÞ ≤KϑðϰÞ ≤ f2ðϰÞ, ϰ ∈El: Then, prob-
lem (14) has at least one positive solution ϑðϰÞ ∈ CðEl,ℝÞ.

6. An Example

Example 24. Let ϱ ∈ ð1, 2� and let us consider the following
ML-type problem.

MLDϱ ϰð Þ
0+ ϑ ϰð Þ = ϰ2

20eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLIϱ ϰð Þ
0+ ϑ ϰð Þ




 



1+MLIϱ ϰð Þ

0+ ϑ ϰð Þ
+

MLDϱ ϰð Þ
0+ ϑ ϰð Þ

1+MLDϱ ϰð Þ
0+ ϑ ϰð Þ

0@ 1A
ϑ 0ð Þ = 0, ϑ 1ð Þ = 0:

8>>><>>>:
ð76Þ

Here, a = 0, b = 2 and

Kϑ ϰð Þ = ϰ2

10eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLIϱ ϰð Þ
0+ ϑ ϰð Þ

1+MLIϱ ϰð Þ
0+ ϑ ϰð Þ

+ %MLDϱ ϰð Þ
0+ ϑ ϰð Þ

1+MLDϱ ϰð Þ
0+ ϑ ϰð Þ

 !
:

ð77Þ

Let ϰ ∈ ½0, 2�, and ϑ, �ϑ ∈ CðE l,ℝÞ. Then,

Kϑ ϰð Þ −K�ϑ ϰð Þj j ≤ 1
20 ϑ ϰð Þ − �ϑ ϰð Þ

 

�

+ MLIϱ ϰð Þ
0+ ϑ ϰð Þ−MLIϱ ϰð Þ

0+
�ϑ ϰð Þ




 


 + MLDϱ ϰð Þ
0+ ϑ ϰð Þ−MLDϱ ϰð Þ

0+
�ϑ ϰð Þ




 


Þ:
ð78Þ

Therefore, (H1) holds with Nf = 1/20: Here,

ϱ ϰð Þ =
3
2 , if ϰ ∈ 0, 1ð �,
5
2 if ϰ ∈ 1, 2ð �:

8>><>>: ð79Þ

For l = 1, we have

MLD
3
2
0+ϑ ϰð Þ = ϰ2

20eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLI3/20+ ϑ ϰð Þ

 


1+MLI

3
2
0+ϑ ϰð Þ +

MLD3/2
0+ ϑ ϰð Þ

1+MLD3/2
0+ ϑ ϰð Þ

 !
, ϰ ∈ 0, 1ð �

ϑ 0ð Þ = 0, ϑ 1ð Þ = 0

8>><>>:
ð80Þ

Also, Ω = 0:68 < 1: Thus, all conditions of Theorem 10
are satisfied, and hence, the ML-type problem (14) has a
unique solution. For every ε =max fε1, ε2g > 0 and eachbϑ ∈ CðE l,ℝÞ satisfies

MLDϱ ϰð Þ
0 ϑ ϰð Þ −Kϑ ϰð Þ




 


 ≤ ε: ð81Þ

There exists a solution ϑ ∈ CðE l,ℝÞ of the ML-type
problem (14) with

bϑ − ϑ
��� ��� ≤ CKε, ð82Þ

where

CK = RP

1 − P3 bl − bl−1ð Þ + P4 bl − bl−1ð Þϱl /Γ ϱl + 1ð Þð Þð Þ N f 1 +Mð Þ/1 −Nf

� � > 0:

ð83Þ

Therefore, all conditions in Theorem 15 are satisfied,
and hence, the ML-problem (14) is UH stable.

Next, for l = 2,, we have

MLD
5
2
0+ϑ ϰð Þ = ϰ2

20eϰ e−ϰ + ϑ ϰð Þj j
1 + ϑ ϰð Þj j +

MLI5/20+ ϑ ϰð Þ

 


1+MLI5/20+ ϑ ϰð Þ +

MLD5/2
0+ ϑ ϰð Þ

1+MLD5/2
0+ ϑ ϰð Þ

 !
, ϰ ∈ 1, 2ð �

ϑ 0ð Þ = 0, ϑ 1ð Þ = 0,

8>><>>:
ð84Þ

and Ω = 0:55 < 1: Thus, all conditions of Theorem 10 are
satisfied, and hence, the ML-type problem (14) has a unique

solution. For every ε =max fε1, ε2g > 0 and each bϑ ∈ CðE l,
ℝÞ satisfies

MLDϱ ϰð Þ
0 ϑ ϰð Þ −Kϑ ϰð Þ




 


 ≤ ε: ð85Þ

There exists a solution ϑ ∈ CðE l,ℝÞ of the ML-type
problem (14) with

bϑ − ϑ
��� ��� ≤ CKε, ð86Þ

where

CK = RP

1 − P3 bl − bl−1ð Þ + P4 bl − bl−1ð Þϱl /Γ ϱl + 1ð Þð Þð Þ Nf 1 +Mð Þ/1 −Nf

� � > 0:

ð87Þ

7. Conclusion Remarks

AB fractional operators are very fertile and interesting topic
of research recently; thus, there are some researchers who
studied and developed some qualitative properties of solu-
tions of FDEs involving such operators. Already significant
amount of work on fractional constant order for various
operators has been done in literature. But to the best of
our information, fractional variable order problems have
not been well studied so for fractional calculus. There is a
waste gap between constant and variable fractional order
problems in literature, the first one has got tremendous
attention as compared to the second one. Very recently,
the area of variable order has started attention to be investi-
gated. In line with these developments, we developed and
investigated sufficient conditions of the existence and
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uniqueness of solutions for fractional variable order integro-
differential equations in the frame of a ML power law. Our
approach was based on the reduction of the proposed prob-
lem into the fractional integral equation and using some
standard fixed point theorems as per the Banach-type and
Krasnoselskii-type. Furthermore, through mathematical
analysis techniques, we have analyzed the stability results
in UH and GUH sense. An example has been provided to
justify the main results. Due to the wide recent investigations
and applications of the ML power law, we believe that
acquired results here will be interesting for future investiga-
tions on the theory of fractional calculus.

In future studies, it would be interesting to study the cur-
rent problem using a Mittag-Leffler power law with respect
to another function introduced by Fernandez and
Baleanu [40].
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