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In this paper, a general characterization property considering two new dynamic relative reliability measures is obtained. The new
dynamic relative reliability measures are expressed as the ratio of hazard rates and as the ratio of reversed hazard rates. The
measures are evaluated partially at some sequential random times following a specific distribution. We show that several
particular statistics, as random times, fulfill that specific distribution, and thus, the result is applicable in the context of the
specified random times. The results are applied to some examples to characterize the Weibull distribution and the inverse
Weibull distribution.

1. Introduction

The aging process of lifetime units is very important in var-
ious fields of science to quantify it by a mathematical theory.
In survival analysis and in some medical problems, the con-
struction of models is based on the aging process of life
spans. In the context of reliability, the aging process of indi-
viduals or life span subjects is modeled by the residual life
(RL) span variable, which includes the current age of the ele-
ment [1–4]. The hazard rate (h.r.) function which is the den-
sity function divided to the survival function (s.f.) is a useful
quantity for measuring the instantaneous risk of failure of
units operating at different ages [5, 6]. This quantity has
attracted the attention of many researchers in the field,
who have presented several statistical models specifically
for fitting right-censored data [7, 8].

The inspection process, unlike the aging process that
considers the future time of failure of objects, is concerned
with determining when failure has already occurred. This
process has also been useful to researchers in several areas,
including reliability and risk. In these contexts, the inactivity

time (IT) or past lifetime variable is used to quantify the
inspection process and identify earlier times of failure
[9–13]. A useful reliability measure that takes into account
the risk of previous failures immediately prior to an inspec-
tion time is the revered hazard rate (r.h.r.) function [14–17].
The r.h.r. function which equals with density function
divided to the distribution function has also been used in
reliability analysis to propose new models that are particu-
larly useful for modeling left-censored data [18–21].

In probability theory, equivalent conditions for identical
distributions have been always important tools for further
purposes (see, e.g., [22–26]). The aim of the current paper
is to present some characterizations using two quantities
related to h.r. and r.h.r. functions. The results are obtained
using the well-known theory of completeness in functional
analysis.

In what follows, in Section 2, two new random relative
reliability measures in the context of RL at random time
(RLRT) and IT at random time (ITRT) are proposed. In Sec-
tion 3, we give the main result including a general character-
ization property obtained using the introduced random
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relative h.r. and the random relative r.h.r. evaluated in some
partial sequence of time. In Section 4, some typical random
sequences of lifetimes which fulfill the derived characteriza-
tion property are considered. In Section 5, it is shown that
the obtained characterization property can be developed
for characterization of particular distributions. In Section
6, we close the paper with further illustrations along with
additional considerations to be studied in the future.

2. Relative Measures of Lifetime Distributions

Suppose that X represents a nonnegative random variable
(r.v.) with an absolutely continuous distribution function
(d.f.) FX and probability density function (p.d.f.) f X . Then,
the conditional r.v. Xt = ½X − tjX > t� for t : FXðtÞ < 1 is
called the residual lifetime of a subject (such as an electrical
device) with random lifetime X after the time that subject
has age t. Denote by �FX the s.f. of X, defined by �FXðtÞ = 1
− FXðtÞ. Let us assume that X has h.r. function hX , given by

hX tð Þ≔ lim
Δ⟶0+

1
Δ
P Xt ≤ Δð Þ = f X tð Þ

�FX tð Þ , ð1Þ

which is valid for all t ≥ 0 for which FXðtÞ < 1. For instance,
if a system has not failed until the time t, then it is consid-
ered a used system of age t, and the r.v. Xt denotes the
remaining lifetime it has. Thus, a fresh device with the s.f.
�FðxÞ and p.d.f. f XðxÞ when it is in use and has age t will have
the updated s.f. and p.d.f.

�FXt
xð Þ≔

�FX t + xð Þ
�FX tð Þ , x ≥ 0,

f Xt
xð Þ≔ f X t + xð Þ

�FX tð Þ , x ≥ 0,
ð2Þ

respectively. Suppose Y is another nonnegative r.v. and
denote by FY , f Y , �FY , and hY its d.f., p.d.f., s.f., and h.r. func-
tions which are defined similarly as X.

For the sake of obtaining a relative measure of aging of X
with respect to Y , consider the following r.v.

RlX,Y tð Þ = hY tð ÞXt , t : max FX tð Þ, FY tð Þf g < 1, ð3Þ

which is the RL of X multiplied by the h.r. of Y . Now, the
limiting probability for failure of a device with lifetime X
right after the time t in comparison with the limiting prob-
ability for failure of another device with lifetime Y immedi-
ately after the time t (i.e., the h.r. of Y), the following
measure can be proposed:

hX,Y tð Þ≔ lim
Δ⟶0+

1
Δ
P RlX,Y tð Þ ≤ Δð Þ = hX tð Þ

hY tð Þ : ð4Þ

Note that (4) corresponds to the p.d.f. of RlX,YðtÞ evalu-
ated at the point 0. The relative measure (4) has been fre-
quently applied in literature, specially for comparison of
coherent systems and other lifetime events (see, e.g.,

[27–33]). The function defined in (4) can be viewed as a rel-
ative risk, and it plays a role in the evaluation of the
Kullback-Leibler information (see, for instance, [34]). The
monotonicity of hX,YðtÞ with respect to t induces that the
device, with lifetime X, ages faster (resp., slower) than
another device with lifetime Y when hX,YðtÞ is increasing
(resp., decreasing) in t (see [35]).

In many circumstances, the interest is in past events and,
specifically, the time elapsed since a failure or death of a sub-
ject is important to be measured. The RL can then be consid-
ered in a reversed time scale (see, e.g., [9]). The conditional
r.v. XðtÞ = ½t − XjX ≤ t� for t : FXðtÞ > 0 is considered the IT
of a subject with random lifetime X at the time t at which
the failure of the subject has been detected for the first time.
We suppose that X has r.h.r. function

~hX tð Þ≔ lim
Δ⟶0+

1
Δ
P X tð Þ ≤ Δ
� �

= f X tð Þ
FX tð Þ , ð5Þ

which is well-defined for all t > 0 for which FXðtÞ > 0. For
example, a system which is under periodically inspection at
the time t observed to be failed. The r.v. XðtÞ indicates the
interval time between the failure time of a system and the
time at which the inspector finds the system failed. The r.v.
XðtÞ has s.f. and p.d.f.

�FX tð Þ
xð Þ≔ FX t − xð Þ

FX tð Þ , x ≥ 0,

f X tð Þ
xð Þ≔ f X t − xð Þ

FX tð Þ , x ≥ 0,
ð6Þ

respectively. Let us denote by ~hY the r.h.r. function of Y .
Based on the concept of IT, another measure of X relative
to Y is

eRlX,Y tð Þ = ~hY tð ÞX tð Þ, t : min FX tð Þ, FY tð Þf g > 0, ð7Þ

which, indeed, is the IT of X multiplied by the r.h.r. of Y .
Now, the following measure can be proposed:

~hX,Y tð Þ≔ lim
Δ⟶0+

1
Δ
P eRlX,Y tð Þ ≤ Δ
� �

=
~hX tð Þ
~hY tð Þ

: ð8Þ

Note that (8) corresponds to the p.d.f. of eRlX,YðtÞ evalu-
ated at the point 0. The measure (8) has been considered a
relative quantity for two lifetime distributions in literature.
The monotonicity of ~hX,YðtÞ in terms of t concludes that
the device, with lifetime X, is faster (slower) in decreasing
r.h.r. (DRHR) property than another device with lifetime Y
when ~hX,YðtÞ decreases (resp., increases) in t (see, e.g., [17,
36]). The monotonicity of the function defined in (8) has
also been investigated in Proposition 5.1 of Di Crescenzo
and Longobardi [37].

The concept of RL and IT which are related to a given
certain time has been developed to random time. The

2 Journal of Function Spaces



random time T is assumed to be nonnegative. Let T have d.f.
H (see, for instance, [38, 39]). Then, XT = ½X − TjX > T� is
called the RL of X at T which, when T and X are indepen-
dent, has s.f.

�FXT
xð Þ =

Ð +∞
0

�FX t+xð ÞdH tð ÞÐ +∞
0

�FX tð ÞdH tð Þ , x ≥ 0, ð9Þ

and the associated p.d.f. is

f XT
xð Þ =

Ð +∞
0 f x+tð ÞdH tð ÞÐ +∞
0

�FX tð ÞdH tð Þ , x ≥ 0: ð10Þ

In contrast to the RLRT, XðTÞ = ½T − XjX ≤ T� is called
the ITRT of T . If X and T are independent, then XðTÞ has s.f.

�FX Tð Þ
xð Þ =

Ð +∞
0 FX t−xð ÞdH tð ÞÐ +∞
0 FX tð ÞdH tð Þ , ð11Þ

with corresponding p.d.f.

f X Tð Þ
xð Þ =

Ð +∞
0 f t−xð ÞdH tð ÞÐ +∞
0 FX tð ÞdH tð Þ : ð12Þ

To update the quantities (4) and (8) in terms of random-
ness of, respectively, the current age of a subject and the time
of observation of failure of an item, we define their random
counterparts. First,

hX,Y Tð Þ = lim
Δ⟶0+

1
Δ
P RlX,Y Tð Þ ≤ Δð Þ =

ð+∞
0

hX tð Þ
hY tð Þ dH

∗ tð Þ,

ð13Þ

where

dH∗ tð Þ =
�FX tð ÞdH tð ÞÐ +∞

0
�FX tð ÞdH tð Þ : ð14Þ

Similarly,

~hX,Y Tð Þ = lim
Δ⟶0+

1
Δ
P eRlX,Y Tð Þ ≤ Δ
� �

=
ð+∞
0

~hX tð Þ
h~Y tð ÞdH∗∗ tð Þ,

ð15Þ

in which

dH∗∗ tð Þ = FX tð ÞdH tð ÞÐ +∞
0 FX tð ÞdH tð Þ : ð16Þ

In the context of characterizations of distributions, one
can see that since the h.r. function is a unique characteristic
of the parent distribution, thus in view of (4), hX,YðtÞ = 1, for
all t ≥ 0 if X is equal in distribution with Y . Further, as the
r.h.r. function is also a unique characteristic of the underly-
ing distribution, therefore, in spirit of (8), ~hX,YðtÞ = 1, for all

t > 0 if X and Y are equally distributed. In the sequel, we
seek whether these properties can be developed for quanti-
ties (13) and (15). In the residual part of the paper, the terms
“increasing” and “decreasing” mean “nondecreasing” and
“nonincreasing”; thus, the monotonicity properties of func-
tions are supposed to be nonstrict throughout the paper.

3. Main Characterization Properties

In this section, using a technical lemma to reach complete-
ness property in functional analysis, two characterization
properties will be given. We first remind the concept of com-
pleteness of a sequence of real function.

Definition 1. The sequence δ1, δ2,⋯ in a given Hilbert space
H is considered complete if the sole member in H having the
orthogonality property with respect to every δm is the null
member, in the way

ψ•δm = 0,∀m ∈ℕ⇒ ψ = 0, ð17Þ

where 0 indicates the zero member in H.

The notation • represents the inner product of H. The
Hilbert space L2½a, b�, across this paper, is assumed to have
an inner product as

f1•f2 =
ðb
a
f1 xð Þf2 xð Þdx, ð18Þ

where f i, i = 1, 2 is a real-valued square integrable function
in the domain ½a, b�. It is noticeable that if δ1, δ2,⋯ is a
complete sequence in the Hilbert space H, then ∑cmδm
where cm = f •δm converges in H whenever ∑+∞

m=1jcmj2 < +
∞, and the limit becomes identical to f . Higgins [40] pro-
vided further detailed discussion regarding this area.

Lemma 2 [41]. Let φ be a function on ½a, b� which is absolutely
continuous so that φðaÞφðbÞ ≥ 0, and suppose that φ′ðxÞ ≠ 0
almost everywhere on ða, bÞ. Then, under the assumption

1
v1

+ 1
v2

+⋯ = +∞,inwhich 1 ≤ v1 < v2 <⋯, ð19Þ

the sequence φv1ðxÞ, φv2ðxÞ,⋯ is complete on a < x < b if φ is
monotone on ða, bÞ.

The special case where vm =m, for m = 1, 2,⋯, fulfills
the result of Lemma 2, because it is well-known that ∑+∞

m=11
/m = +∞. Therefore, when φ is absolutely continuous and
monotone, as a result, φðxÞ, φ2ðxÞ,⋯ constitutes a complete
sequence of functions.

We consider a sequential family of distributions for T as
the random time and apply it to update H∗ and H∗∗ in (13)
and (15), respectively. Two characterization properties will
then be secured.

Let us suppose that, for m ∈ℕ, the random time T′m has
p.d.f.
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f Tm
′ tð Þ = w tð Þφm tð ÞÐ +∞

0 w tð Þφm tð Þdt , t ≥ 0, ð20Þ

where wð·Þ and φð·Þ are two functions which wðtÞ ≥ 0 and φðt
Þ ≥ 0 for all t ≥ 0 so that 0 <

Ð +∞
0 wðtÞφmðtÞdt < +∞: We shall

denote the c.d.f. corresponding to T′m by FT′m . The random

h.r. (13) and the random r.h.r. (13) with fTm′ ,m ∈ℕg in place
of T as a sequence of random times, two characterization rela-
tions, are obtained as follows:

Theorem 3. Let T′m be a sequence of r.v.s independent of X
and Y . Then,

(i) X and Y are equally distributed, if there exists a fixed
positive integer m0 such that hX,YðTm′ Þ = 1, for all m
=m0,m0 + 1,⋯ where T′m has p.d.f. (20) with a
monotone function φ

(ii) X and Y are equally distributed, if there exists a fixed
positive integer m0 such that ~hX,YðTm′ Þ = 1, for all m
=m0,m0 + 1,⋯ in which T′m has p.d.f. (20) with a
function φ which is monotone

Proof. We first prove assertion (i). We assume that X and Y
are two nonnegative r.v.s with c.d.f.s F and G, and p.d.f.s f
and g, respectively. By (13), we get

hX,Y Tm′
� �

= E
hX T∗

mð Þ
hY T∗

mð Þ
� �

=
ð+∞
0

hX tð Þ
hY tð Þ dFT∗

m
tð Þ

=
ð+∞
0

hX tð Þ
hY tð Þ

w tð Þ�FX tð Þφm tð ÞÐ +∞
0 w tð Þ�FX tð Þφm tð Þdt dt,

ð21Þ

where T∗
m has p.d.f

f T∗
m
tð Þ = w tð Þ�FX tð Þφm tð ÞÐ +∞

0 w tð Þ�FX tð Þφm tð Þdt , t ≥ 0: ð22Þ

It is straightforward that if X and Y have equal distribu-
tion, then hX,YðTm′ Þ = 1, for all m =m0,m0 + 1,⋯. To prove
the converse, note that hX,YðTm′ Þ − 1 = 0, for all m =m0,m0
+ 1,⋯, if

ð+∞
0

hX tð Þ
hY tð Þ−1
� �

w tð Þ�FX tð Þφm tð ÞÐ +∞
0 w tð Þ�FX tð Þφm tð Þdt dt = 0, for allm =m0,m0 + 1,⋯,

ð23Þ

which holds, equivalently if,
Ð +∞
0 lðtÞφmðtÞdt = 0, for all m

= 1, 2,⋯, that is l•φm = 0, for all m = 1, 2,⋯ where lðtÞ = ð
ððhXðtÞÞ/ðhYðtÞÞÞ − 1ÞwðtÞφm0−1ðtÞ�FXðtÞ. By Lemma 2, lðtÞ
= 0, for all t ≥ 0, i.e., hXðtÞ = hYðtÞ, for all t ≥ 0, i.e., X is
equal in distribution with Y . We now prove assertion (ii).
By (15), we obtain

where T∗∗
m has p.d.f

f T∗∗
m

tð Þ = w tð ÞFX tð Þφm tð ÞÐ +∞
0 w tð ÞFX tð Þφm tð Þdt , t ≥ 0: ð25Þ

It is evident that if X and Y have equal distribution, then
~hX,YðTm′ Þ = 1, for all m =m0,m0 + 1,⋯. To prove the

reversed implication, we have ~hX,YðTm′ Þ − 1 = 0, for all m =
m0,m0 + 1,⋯, if

ð+∞
0

~hX tð Þ
~hY tð Þ

−1
 !

w tð ÞFX tð Þφm tð ÞÐ +∞
0 w tð ÞFX tð Þφm tð Þdt dt = 0, for allm =m0,m0 + 1,⋯,

ð26Þ

which is satisfied, equivalently, if
Ð +∞
0 l∗ðtÞφmðtÞdt = 0, for all

m = 1, 2,⋯, that is, l∗•φm = 0, for all m = 1, 2,⋯ where l∗ðtÞ
= ððð~hXðtÞÞ/ð~hYðtÞÞÞ − 1ÞwðtÞφm0−1ðtÞ�FXðtÞ. By applying
Lemma 2, l∗ðtÞ = 0, for all t ≥ 0, which concludes that ~hXðtÞ
= ~hYðtÞ, for all t ≥ 0, that is, X is equal in distribution with Y .

Remark 4. The result of Theorem 3 remains valid if T′m has
p.d.f.

f Tm
′ tð Þ = w tð Þφsm tð ÞÐ +∞

0 w tð Þφsm tð Þdt , t ≥ 0, ð27Þ

~hX,Y Tm′
� �

= E
h~X T∗∗

mð Þ

h~Y T∗∗
mð Þ� = Ð +∞0 ~hX tð Þ

h~Y tð ÞdFT∗∗
m

tð Þ = Ð +∞0 ~hX tð Þ
h~Y tð Þ w tð ÞFX tð Þφm tð ÞÐ +∞

0 w tð ÞFX tð Þφm tð Þdt dt,

2
66666666666664

ð24Þ
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where s1, s2,⋯ are selected such that φs1 , φs2 ,⋯ is a com-
plete sequence of functions when φ is monotone due to
Lemma 2. In this case, we see that in the context of Theorem
3 (i), one has

hX,Y Tm′
� �

= E
hX T∗

mð Þ
hY T∗

mð Þ
� �

, ð28Þ

where T∗
m has p.d.f.

f T∗
m
tð Þ = w tð Þ�FX tð Þφsm tð ÞÐ +∞

0 w tð Þ�FX tð Þφsm tð Þdt , t ≥ 0: ð29Þ

In parallel, in Theorem 3 (ii), we have

~hX,Y Tm′
� �

= E
h~X T∗∗

mð Þ
h~Y T∗∗

mð ÞÞ,
�

ð30Þ

in which T∗∗
m is considered an r.v. with p.d.f.

f T∗∗
m

tð Þ = w tð ÞFX tð Þφsm tð ÞÐ +∞
0 w tð ÞFX tð Þφsm tð Þdt , t ≥ 0: ð31Þ

Arnold and Villasenor [42] pointed out that character-
izations are particularly of interest when they can be used
to assess the conceivable of certain assumptions on distribu-
tions via suitable tests of hypotheses. Characterization prop-
erties of distributions can be, particularly, applied to build
goodness-of-fit tests of distributions. By consideration of a
proper random variable T′m in Theorem 3, the relation
hX,YðTm′ Þ = 1, for all m =m0,m0 + 1,⋯, and also the relation
~hX,YðTm′ Þ = 1, for all m =m0,m0 + 1,⋯, can be potential
indices to construct tests for the hypothesis H0 : X andY
which are equal in distribution, versus H1 : X andY which
are note equal in distribution which is an appropriate
alternative.

4. Fulfilling Random Sequences as
Random Times

In this section, several situations where particular statistics
may be adopted as random times are provided. In the con-
text of random sampling from a population, many statistics
can be considered.

4.1. Order Statistics from Homogenous Populations. In reli-
ability engineering, the lifetime of a coherent system is rep-
resented in terms of consecutive order statistics (see [43])
arisen from the components lifetimes in the system, while
the lifetime of a standby system is stated based on the partial
sum of the component lifetimes in the system (see, for exam-
ple, [44]). Suppose that T1, T2,⋯ is a sequence of indepen-
dent and identically distributed (i.i.d.) nonnegative r.v.s with
p.d.f. γ, c.d.f. H, and s.f. �H. In the sequel, assume that the
lifetime r.v. X is independent of Ti’s. Let T1:m ≤ T2:m ≤⋯ ≤
Tm:m be the order statistics from the first m elements of
the sequence of T1, T2,⋯. In the context of Theorem 3, as

i is fixed, the ith order statistic Ti:m can be considered as T
′m where m = i, i + 1,⋯, so that in the setting of Theorem
3, one can choose m0 = i. It is known that T′m has p.d.f.

f Tm
′ tð Þ = m!

i − 1ð Þ! m − ið Þ!H
i−1 tð Þ�Hm−i tð Þγ tð Þ, for all t ≥ 0,

ð32Þ

which coincides with (20) if we take wðtÞ = ððHi−1ðtÞÞ/ð�Hið
tÞÞÞγðtÞ and φðtÞ = �HðtÞ. Note that φ is a monotone decreas-
ing function. Hence, Theorem 3 (i) is applicable and con-
cludes that X and Y are equally distributed, if there exists
an i ∈ℕ such that hX,YðTi:mÞ = 1, for all m = i, i + 1,⋯. In
view of (32), T∗

m in the proof of Theorem 3 (i), for a fixed i
= 1, 2,⋯ and m = i, i + 1,⋯, has p.d.f.

f T∗
m
tð Þ =

�FX tð ÞHi−1 tð Þ�Hm−i tð Þγ tð ÞÐ +∞
0

�FX tð ÞHi−1 tð Þ�Hm−i tð Þγ tð Þdt
, for all t ≥ 0: ð33Þ

In terms of (32), the p.d.f. of T∗∗
m in the proof of Theo-

rem 3 (ii), for a fixed i = 1, 2,⋯ and m = i, i + 1,⋯, is

f T∗∗
m

tð Þ = FX tð ÞHi−1 tð Þ�Hm−i tð Þγ tð ÞÐ +∞
0 FX tð ÞHi−1 tð Þ�Hm−i tð Þγ tð Þdt

, for all t ≥ 0:

ð34Þ

Theorem 3 (ii) implies that X and Y are equally distrib-
uted, if there exists an i ∈ℕ for which ~hX,YðTi:mÞ = 1, for all
m = i, i + 1,⋯.

In spirit of (32), T′m ≔ Tm:m for m = 1, 2,⋯, has p.d.f.

f Tm
′ tð Þ =

w tð ÞHm tð ÞÐ +∞
0 w tð ÞHm tð Þdt , ð35Þ

where wðtÞ = ðγðtÞÞ/ðHðtÞÞ and, thus, (20) is reached. The
p.d.f. of T∗

m in the proof of Theorem 3 (i) for m = 1, 2,⋯,
is given here by

f T∗
m
tð Þ =

�FX tð ÞHm−1 tð Þγ tð ÞÐ +∞
0

�FX tð ÞHm−1 tð Þγ tð Þdt , for all t ≥ 0: ð36Þ

By considering φðtÞ =HðtÞ which increases in t, Theo-
rem 3 (i) applies and concludes that X and Y are equally dis-
tributed, if hX,YðTm:mÞ = 1, for all m = 1, 2,⋯. From (32),
T∗∗
m in the proof of Theorem 3 (ii), for m = 1, 2,⋯, has p.d.f.

f T∗∗
m

tð Þ = FX tð ÞHm−1 tð Þγ tð ÞÐ +∞
0 FX tð ÞHm−1 tð Þγ tð Þdt , for all t ≥ 0: ð37Þ

In this case, from Theorem 3 (ii) it concludes that X and Y
are equally distributed, if ~hX,YðTm:mÞ = 1, for all m = 1, 2,⋯.

4.2. Order Statistics from Heterogenous Populations. In previ-
ous subsection, order statistics from i.i.d. r.v.s have been
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considered. In the context of the proportional hazard rate
model (PHRM) and the proportional revered hazard rate
model (PRHRM), the condition that T1, T2,⋯ are identi-
cally distributed can be relaxed, respectively, when the smal-
lest order statistic and the greatest order statistic are
considered in these models as two coming random times.
Let us assume that T1, T2,⋯ are nonnegative independent
r.v.s and, furthermore, assume that they are independent of

X such that Ti has s.f. �H
λi , i = 1, 2,⋯ where λ1 ≥ 1 and λi

> 0, i = 2, 3,⋯. The r.v. Ti follows the PHRM. Let us take
sm =∑m

i=1λi such that ∑+∞
m=1ðsmÞ−1 = +∞ in which s1 = λ1 ≥

1. In light of (32) and also from (27), the p.d.f. of T′m ≔
T1:m for m = 1, 2,⋯, is

f Tm
′ tð Þ = w tð Þ�Hsm tð ÞÐ +∞

0 w tð Þ�Hsm tð Þdt , ð38Þ

where wðtÞ = ðγðtÞÞ/ð�HðtÞÞ. By (32), the p.d.f. of T∗
m in the

proof of Theorem 3 (i) for m = 1, 2,⋯ is replaced by the
p.d.f. (29) which yields

f T∗
m
tð Þ =

�FX tð Þ�Hsm−1 tð Þγ tð ÞÐ +∞
0

�FX tð Þ�Hsm−1 tð Þγ tð Þdt
, for all t ≥ 0: ð39Þ

Therefore, if φðtÞ = �HðtÞ which is a decreasing function,
then Theorem 3 (i) concludes that X and Y are equally dis-
tributed, if hX,YðT1:mÞ = 1, for all m = 1, 2,⋯. The p.d.f. of
T∗∗
m in the proof of Theorem 3 (ii), for m = 1, 2,⋯, is

replaced by the p.d.f. (31) which gives

f T∗∗
m

tð Þ = FX tð Þ�Hsm−1 tð Þγ tð ÞÐ +∞
0 FX tð Þ�Hsm−1 tð Þγ tð Þdt

, for all t ≥ 0: ð40Þ

Thus, by assigning φðtÞ =HðtÞ which is an increasing
function, Theorem 3 (ii) presents that X and Y are equal
in distribution, if ~hX,YðT1:mÞ = 1, for all m = 1, 2,⋯.

We now discuss the case when the PRHRM is used. In
this setting, assume that T1, T2,⋯ are nonnegative indepen-
dent r.v.s which are independent of X so that Ti has c.d.f.
Hλi , i = 1, 2,⋯ where λ1 ≥ 1 and λi > 0, i = 2, 3,⋯. We again
take sm =∑m

i=1λi with the requirement ∑+∞
m=1ðsmÞ−1 = +∞ in

which s1 = λ1 ≥ 1. In terms of (32), the p.d.f of T′m ≔ Tm:m
for m = 1, 2,⋯ is

f Tm
′ tð Þ = w tð ÞHsm tð ÞÐ +∞

0 w tð ÞHsm tð Þdt , ð41Þ

where wðtÞ = ðγðtÞÞ/ðHðtÞÞ, and this is a particular case for
the p.d.f. (27) in Remark 4. The p.d.f. of T∗

m in the proof of
Theorem 3 (i) for m = 1, 2,⋯ can be replaced by the p.d.f.
(29) implying that

f T∗
m
tð Þ =

�FX tð ÞHsm−1 tð Þγ tð ÞÐ +∞
0

�FX tð ÞHsm−1 tð Þγ tð Þdt , for all t ≥ 0: ð42Þ

Hence, if φðtÞ =HðtÞ which is an increasing function,
then Theorem 3 (i) concludes that X and Y are equally dis-
tributed, if hX,YðTm:mÞ = 1, for all m = 1, 2,⋯. The p.d.f. of
T∗∗
m in the proof of Theorem 3 (ii), for m = 1, 2,⋯, can be

replaced by the p.d.f. (31) which gives

f T∗∗
m

tð Þ = FX tð ÞHsm−1 tð Þγ tð ÞÐ +∞
0 FX tð ÞHsm−1 tð Þγ tð Þdt , for all t ≥ 0: ð43Þ

By making the choice of φðtÞ =HðtÞ which is increasing,
Theorem 3 (ii) concludes that X and Y are equally distrib-
uted, if ~hX,YðTm:mÞ = 1, for all m = 1, 2,⋯.

4.3. Record Values. Now, we consider random times in the
framework of record statistics. The epoch times associated
with a nonhomogeneous Poisson process can be thought as
the consecutive record values of a sequence of i.i.d. nonneg-
ative r.v.s (see, for instance, [45]).

4.3.1. Upper Records. The r.v. Ti upon its observation is an
upper record, if the value it takes is greater than the corre-
sponding value for previous observations. Hence, T j is con-
sidered to be an upper record if T j > Ti for every i < j. By
realizing the amounts of consecutive records, a random
sequence of times is produced at which the records appear.
Let us denote the ith element of this sequence by Ui, consid-
ered to be the time at which the ith upper record is reached.
The origin of time is considered U0 which is assumed to be
zero with probability one and, for j ≥ 1, Uj =min fi : Ti >
TUi−1

g. The upper records are then fTUm
: m = 1, 2,⋯g.

Since Ti’s are lifetime r.v.s, thus T0 = 0. The r.v. T′m ≔ TUm

as the mth upper record follows the p.d.f.

f Tm
′ tð Þ = w tð Þ −log �H tð ÞÀ ÁÀ ÁmÐ +∞

0 w tð Þ −log �H tð ÞÀ ÁÀ Ámdt , ð44Þ

where wðtÞ = γðtÞ which coincides with (20). The p.d.f. of
T∗
m in the proof of Theorem 3 (i) for m = 1, 2,⋯ is here

f T∗
m
tð Þ =

�FX tð Þ −log �H tð ÞÀ ÁÀ Ám
γ tð ÞÐ +∞

0
�FX tð Þ −log �H tð ÞÀ ÁÀ Ámγ tð Þdt : ð45Þ

Thus, if φðtÞ = −log ð�HðtÞÞ which is increasing in t, then
Theorem 3 (i) is applicable and concludes that X and Y are
equally distributed, if hX,YðTUm

Þ = 1, for all m = 1, 2,⋯. The
p.d.f. of T∗∗

m in the proof of Theorem 3 (ii), for m = 1, 2,⋯ is
given here by

f T∗∗
m

tð Þ = FX tð Þ −log �H tð ÞÀ ÁÀ Ámγ tð ÞÐ +∞
0 FX tð Þ −log �H tð ÞÀ ÁÀ Ám

γ tð Þdt , for all t ≥ 0:

ð46Þ

Theorem 3 (ii) yields X and Y are equally distributed, if
~hX,YðTUm

Þ = 1, for all m = 1, 2,⋯.
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4.3.2. Lower Records. In contrast to the upper records, the
r.v. Ti upon its observation is a lower record, if its value is
smaller than the corresponding value for previous observa-
tions. In such situation, T j is considered to be a lower record
if T j < Ti for every i < j. Holding the amount of these
records, a random sequence of times is produced at which
the lower records occur. We denote the ith element of this
sequence by Ri, considered to be the time at which the ith
lower record is achieved. The origin of time is considered
here to be R0 assumed to be zero and, for j ≥ 1, Rj =min fi
: Ti < TUi−1

g. The lower records are recognized as fTLm
: m

= 1, 2,⋯g. It is known that T0 = 0. The r.v. T′m ≔ TLm
as

the mth lower record follows the p.d.f.

f Tm
′ tð Þ = w tð Þ−log H tð Þð ÞÞmÐ +∞

0 w tð Þ −log H tð Þð Þð mdt
, ð47Þ

in which wðtÞ = γðtÞ, and this fulfills (20). The p.d.f. of T∗
m in

the proof of Theorem 3 (i) for m = 1, 2,⋯ is

f T∗
m
tð Þ =

�FX tð Þ −log H tð Þð Þð Þmγ tð ÞÐ +∞
0

�FX tð Þ −log H tð Þð Þð Þmγ tð Þdt : ð48Þ

Hence, taking φðtÞ = −log ðHðtÞÞ which is decreasing in t
, by Theorem 3 (i), we deduce that X and Y are equally dis-
tributed, if hX,YðTLm

Þ = 1, for all m = 1, 2,⋯. The p.d.f. of
T∗∗
m in the proof of Theorem 3 (ii), for m = 1, 2,⋯ is

f T∗∗
m

tð Þ = FX tð Þ −log H tð Þð Þð Þmγ tð ÞÐ +∞
0 FX tð Þ −log H tð Þð Þð Þmγ tð Þdt , for all t ≥ 0:

ð49Þ

Theorem 3 (ii) provides that X and Y are equally distrib-
uted, if ~hX,YðTLm

Þ = 1, for all m = 1, 2,⋯.

4.4. Convolution of Heterogenous Gamma Populations.
Before closing this section, we apply the characterization
property given in Theorem 3 to partial sums of gamma
r.v.s, with restricted shape parameters, as another fulfilling
random sequence. In the next example, we show that a com-
plete sequence is generated by the gamma distribution.

Example 1. Suppose Ti has p.d.f. f Ti
ðtÞ = ðtαi−1βαi e−βtÞ/ðΓð

αiÞÞ, for i = 1, 2,⋯, where αi > 0 and β > 0. Denote T′m ≔
T1 + T2 +⋯ + Tm. It is a well-known result in probability
that convolution of independent r.v.s. following gamma dis-
tribution again follows the gamma distribution. Hence, Tm ′
has a gamma distribution with p.d.f.

f Tm
′ tð Þ = w tð ÞtηmÐ +∞

0 w tð Þtηm , ð50Þ

where wðtÞ = e−βt/t and ηm =∑m
i=1αi. If ∑+∞

m=1η
−1
m = +∞,

whenever η1 = α1 ≥ 1, then tηm ,m = 1, 2,⋯ is a complete
sequence due to Lemma 2.

The p.d.f. of T∗
m in the proof of Theorem 3 (i) for m =

1, 2,⋯ is

f T∗
m
tð Þ =

�FX tð Þtηm−1e−βtÐ +∞
0

�FX tð Þtηm−1e−βtdt : ð51Þ

The choice φðtÞ = t as an increasing function together
with the discussion in Example 1 will make Theorem 3 (i)
applicable according which X and Y are equally distributed,
if hX,YðTm′ Þ = 1, for all m = 1, 2,⋯. The p.d.f. of T∗∗

m in the
proof of Theorem 3 (ii), for m = 1, 2,⋯, is

f T∗∗
m

tð Þ = FX tð Þtηm−1e−βtÐ +∞
0 FX tð Þtηm−1e−βtdt : ð52Þ

Thus, it is proved that X and Y are equally distributed, if
~hX,YðTm′ Þ = 1, for all m = 1, 2,⋯.

5. Characterizations of Specific Distributions

In Section 3 and Section 4, general characterizations of dis-
tributions have been derived using random relative
(reversed) hazard rate measure when applied to some ran-
dom sequences of time which are considered to be indepen-
dent of the original random variables. In the context of
Theorem 3 if either X or Y is fixed in a particular lifetime
distribution, then a characterization of that specific distribu-
tion is produced. In this section, our aim is to characterize
the Weibull distribution and the inverse Weibull distribu-
tion as two typical lifetime distributions.

From Theorem 3 (i), if there exist r.v.s T′1, T′2,⋯ so
that T′m follows the p.d.f. f Tm

′ ðtÞ = ðwðtÞφmðtÞÞ/ðÐ +∞0 wðtÞ
φmðtÞdtÞ, such that hX,YðTm′ Þ = 1, for m =m0,m0 + 1,⋯
(for an m0 ∈ℕ), then X and Y are identical in distribution
and vice versa. In view of Theorem 3 (i) and its proof if Eð
ðhXðT∗

mÞÞ/ðhYðT∗
mÞÞÞ = 1, for m =m0,m0 + 1,⋯ where T∗

m
has p.d.f. f T∗

m
ðtÞ = ðwðtÞ�FXðtÞφmðtÞÞ/ðÐ +∞0 wðtÞ�FXðtÞφmðtÞd

tÞ, then X and Y are equally distributed and vice versa.
Example 2 and Example 3 are derived using Theorem 3 (i).

Example 2. Suppose Y follows Weibull distribution with s.f.
�FYðtÞ = exp ð−ðλtÞαÞ, t ≥ 0. Then, hYðtÞ = αλαtα−1, and if
there exists an m0 ∈ℕ so that EððhXðT∗

mÞÞ/ðαλαðT∗
mÞα−1ÞÞ

= 1, for m =m0,m0 + 1,⋯, then X has Weibull distribution
with parameters α and λ (we write X ~Wðα, λÞ) and vice
versa. Equivalently, if there exist c0 < 1 and c1 > 0 such that
E½ðT∗

mÞc0hXðT∗
mÞ� = c1, for all m =m0,m0 + 1,⋯ then X has

Weibull distribution with α = 1 − c0 and λ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1/ð1 − c0Þ1−c0

p
and vice versa.

Example 3. Suppose X follows Wðα, λÞ. If there exists an
m0 ∈ℕ so that EððαλαðT∗

mÞα−1Þ/ðhYðT∗
mÞÞÞ = 1, for m =m0,

m0 + 1,⋯ then Y ~Wðα, λÞ and vice versa. Equivalently, if
there exist c0 > −1 and c1 > 0 such that E½ðT∗

mÞc0 /ðhYðT∗
mÞÞ�

= c1, for all m =m0,m0 + 1,⋯, then Y has Weibull
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distribution with α = 1 + c0 and λ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ðc1ð1 + c0ÞÞ1þc0

p
and

vice versa.

By Theorem 3 (ii), it turns out that if there exist r.v.s T
′1, T′2,⋯ so that T′m follows the p.d.f. f Tm

′ ðtÞ = ðwðtÞφmðt
ÞÞ/ðÐ +∞0 wðtÞφmðtÞdtÞ, such that ~hX,YðTm′ Þ = 1, for m =m0,
m0 + 1,⋯ (for anm0 ∈ℕ), then X and Y are identical in dis-
tribution and vice versa. This means from the proof of The-
orem 3 (ii) that if Eððh~XðT∗∗

m ÞÞ/ð~hYðT∗
mÞÞÞ = 1, for

m =m0,m0 + 1,⋯ where T∗∗
m has p.d.f. f T∗∗

m
ðtÞ = ðwðtÞFXðt

ÞφmðtÞÞ/ðÐ +∞0 wðtÞFXðtÞφmðtÞdtÞ, then X and Y are equally
distributed and vice versa. Example 4 and Example 5 are
considered as applications of Theorem 3 (ii).

Example 4. Assume that Y follows inverse Weibull distribu-
tion with c.d.f. FYðtÞ = exp ð−1/ðλtÞαÞ, t ≥ 0. Then, ~hYðtÞ =
α/ðλαtα+1Þ, and if there exists an m0 ∈ℕ such that Eððλα
ðT∗∗

m Þα+1h~XðT∗∗
m ÞÞ/αÞ = 1, for m =m0,m0 + 1,⋯, then X

has inverse Weibull distribution with the shape parameter
α and scale parameter λ (we write X ~ IWðα, λÞ) and vice
versa. Equivalently, if there exist c0 > 1 and c1 > 0 such that
E½ðT∗∗

m Þc0h~XðT∗∗Þ� = c1, for all m =m0,m0 + 1,⋯ then X
has inverse Weibull distribution with α = c0 − 1 and λ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc0 − 1Þ/c1c0−1
p

and vice versa.

Example 5. Assume that X follows IWðα, λÞ. If there exists
an m0 ∈ℕ so that Eðα/ðλαðT∗∗

m Þα+1h~YðT∗∗
m ÞÞÞ = 1, for m =

m0,m0 + 1,⋯, then Y ~ IWðα, λÞ and vice versa. Equiva-
lently, if there exist c0 > 1 and c1 > 0 such that E½1/ððT∗∗

m Þc0
h~YðT∗∗

m ÞÞ� = c1, for all m =m0,m0 + 1,⋯, then Y has
inverse Weibull distribution with α = c0 − 1 and λ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1ðc0 − 1Þc0−1
p

and vice versa.

The characterizations of two standard families of lifetime
distributions in the examples in this section can be devel-
oped to other (standard or nonstandard) families of lifetime
distributions. Furthermore, in this context, considering spe-
cific sequences of random times T′m as identified in Section
4 gives further characterizations of specific distributions. Let
us suppose that X1, X2,⋯, Xm, Xm+1,⋯ are i.i.d. and that
T′m = X1:m is the minimum order statistic among X1, X2,
⋯, Xm. Then, X has a distribution equal with distribution
of Y if there exists an m0 ∈ℕ such that

E
hXm+1

X1:m+1ð Þ
hY X1:m+1ð Þ

� �
= 1, for allm =m0,m0 + 1,⋯: ð53Þ

In parallel, if we consider T′m = Xm:m which is the max-
imum order statistic among X1, X2,⋯, Xm. Then, X has a
distribution equal with distribution of Y , if there exists an
m0 ∈ℕ such that

E
~hXm+1

Xm+1:m+1ð Þ
~hY Xm+1:m+1ð Þ

 !
= 1, for allm =m0,m0 + 1,⋯: ð54Þ

6. Conclusion

The hazard ratio and the reversed hazard ratio have been
developed with random ages. Characterization relations
using theses quantities, when evaluated convectively at some
random times, have been presented. The general form of the
distribution of sequence of random times has been satisfied
by a number of particular sequences of random times
including minimum and maximum order statistics, as well
as moderate order statistics of i.i.d. random times from a
general distribution, upper and lower record values of i.i.d.
random times taken from a general distribution, minimum
and maximum order statistics of independent but not iden-
tical random times from the PHRM and PRHM models, and
partial sums of gamma distributed random times. In future
studies, the generalized order statistics and the sequential
order statistics are considered as possible random times to
see whether such statistics when constitute a random
sequence fulfill the main characterization property derived
in this paper.

The random times have been considered to be indepen-
dent of the original random variable whose RLRT plays the
main role. The new measures proposed in this paper can
be developed to the case where the original random variable
and the sequence of random time are dependent. This may
arise in some situations. For example, assume that one con-
siders a coherent system and wants to compare the random
h.r. of one (specific) component working in system relative
to another (specific) component at the random time at
which the system fails. In this situation, it is apparent that
the lifetime of system cannot be independent of the lifetime
its components have. In the future, the possibility to study
the dependency in the random relative h.r. measure as well
as the random relative r.h.r. quantity of two lifetime units
will be considered.
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