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The present research correlates with a fuzzy hybrid approach merged with a new iterative transform method known as the fuzzy
new iterative transform method. With the help of Atangana-Baleanu under generalized Hukuhara differentiability, we show that
this system works well by getting fractional fuzzy Cauchy reaction-diffusion equations with the initial fuzzy condition. Fractional
Cauchy reaction-diffusion equations play a significant role in diffusion, and instabilities can lead to formation and stabilization.
The suggested technique looks at fuzzy set theory to figure out how to solve the fuzzy Cauchy reaction-diffusion equations. In
this way, the components can be quickly defined and a couple of numerical solutions with the uncertainty parameter can be
found. Several numerical instances are looked at to show how effective and valuable the proposed technique is to see if the
given problem will come to a solution. The simulation results show that the fuzzy new iterative transform method is an
excellent way to study a proposed model’s behaviour precisely and accurately.

1. Introduction

Fractional calculus is often used in fields where data is
inaccurate, such as natural, biological, and physical engi-
neering and science [1, 2]. Before getting into such chal-
lenges, let us first familiarise ourselves with the fuzzy set.
Zadeh invented the notion of fuzzy set in 1965 [3], which
shows how to measure uncertainty in particular phenomena.
As a result, the fuzzy set theory is extended to various other
fields of mathematics and science, including algebra, topol-
ogy, fuzzy logic, analysis, and automata. They develop the
basic concept by describing fuzzy function and control.
Based on these findings, the scholars expanded on the

concept by introducing essential fuzzy calculus. The frac-
tional integral and differential equations have become
famous because they can be used to describe real-world phe-
nomena [4, 5]. In [6], Babolian et al. evaluated a few vital
mathematical analytical results. Fractional fuzzy integral
equations (FFIEs) and fractional fuzzy differential equations
(FFDEs) can be employed to represent these types of prob-
lems. Several more authors and scientists believe that this
technique can be utilized to evaluate, respectively, fractional
and integer fuzzy differential equations. Due to the multiple
applications of the fuzzy differential equation to simulate
unknown processes in a range of fields, including business,
physical sciences, and biology, see references [7–11].
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In recent decades, a wide variety of applied sciences and
engineering fields, including porous media, signal process-
ing, electrical circuits, thermal systems, acoustics, robotics,
and optimal control, have turned to fuzzy differential
equations to describe physical processes and uncertain
parameters. By using fractional operators to fuzzy equations,
one can further faithfully represent physical occurrences and
gain a better understanding of their underlying causes [12].
As a result, the uniqueness and existence of solutions to
fuzzy fractional differential equations have been demon-
strated in [13], building on the concept proposed in [14]. In
this regard, Agarwal et al. [14] developed the concept of fuzzy
fractional differential equations. Fuzzy fractional differential
equations with Riemann-Liouville H-differentiability have
been analyzed using Laplace fuzzy transformations [15].
Allahviranloo et al. used Mittag-Leffler functions to find
explicit solutions to fuzzy fractional differential equations via
Riemann-Liouville generalized H-differentiability [16]. The
fractional derivative generalized Atangana-Baleanu method
has been developed in [17] for the purpose of solving fuzzy
fractional differential equations. Additionally, Allahviranloo
and Ghanbari [18] studied the ABC fractional derivative as a
method for dealing with fuzzy fractional differential equations
given in parametric interval form. Hoa [19] proposed a
new technique for solving fuzzy fractional differential
equations analytically utilizing the Caputo Katugampola
fractional derivative.

Modelling real-world and industrial issues using partial
differential equations (PDEs) is difficult for scientists and
researchers. Modelling nonlinear schemes of the differential
equation give rise to a slew of issues [20–22]. Scholars have
sought to analyze these issues numerically or analytically
using various approaches and formulae to achieve better
precision [23–26]. In numerical analysis, the implicit and
explicit Finite Difference Method (FDM), spectral colloca-
tion method, subdomain least squares method, Galerkin
and modified Galerkin methods, shooting method, and
decomposition method are all often employed [27–30].
Despite its limitations, the FDM has been frequently utilized;
we may acquire solutions at specific grid points using this
approach, but it cannot come up with a solution at every sin-
gle point between two points on the grid. The expense of
computing to obtain more precision is the next disadvan-
tage. For a while, the Galerkin finite element method played
an essential role in solving industrial and engineering
challenges, including intricate geometries and material char-
acteristics, to overcome these difficulties. Even in the prob-
lem’s complicated domain, this widely applied Galerkin
weighted residual approach gives the numerical outcomes
among any grid two-point. The Galerkin finite element tech-
nique is commonly used to solve ordinary, partial equations
[31, 32], and fractional-order differential equations, both lin-
ear and nonlinear [33, 34].

The convection-diffusion-reaction (CDR) equation, for
example, may illustrate actual situations, and because of its
relevance, numerous academics have devised numerical sys-
tems. Its prospective applications have sparked a lot of inter-
est. The Finite Element Approach (FEM) is the most
accurate method for solving linear and nonlinear CDR

models among the methods discussed above. Diffusion, con-
vection, and reaction are essential because they may be used
to solve a variety of physical issues involving how the con-
centration of one or more substances dispersed in a medium
changes as a result of the three processes [35, 36]. Convec-
tion describes the movement of imports caused by the trans-
port medium in a circle. Diffusion, conversely, preserves the
uniform distribution of the material by verifying the sub-
stance’s migration from a higher concentration to a lower
one and vice versa, depending on the applications. In a nut-
shell, the CDR model is a mathematical representation of
how a substance’s concentration is spread [37, 38].

2. Fundamental Definitions

Definition 1. Let a fuzzy continuous term ~ΨðηÞ on ½0, σ� ⊂ R
in the presence of Atangana-Baleanu-Caputo (ABC) opera-
tor with respect to η as [39].

The ABC derivative of ~ΨðηÞ ∈H 1ð0, ηÞ is expressed as

Dϱ
η
~Ψ ηð Þ = ABC ϱð Þ

1 − ϱ

ðη
0

d
dε

~Ψ εð ÞMϱ

−ϱ
1 − ϱ

η − εð Þϱ
� �

dε: ð1Þ

Replacing Eρ½ð−ϱ/1 − ϱÞðη − εÞϱ� by E1½ð−ϱ/1 − ϱÞðη − εÞ�,
we get “differential operator Caputo Fabrizio.” Moreover, if
~ΨðηÞ ∈ CF ½0, σ� ∩ LF ½0, σ�, such that ~ΨðηÞ = ½Ψϱ, �ΨϱðηÞ�,
ϱ ∈ ½0, 1� and η0 ∈ ð0, σÞ, then the fractional fuzzy ABC
derivative is given as

Dϱ
η
~Ψ ηð Þ

h i
δ
= Dϱ

ηΨϱ ηð Þ,Dϱ
η
�Ψδ ηð Þ

h i
, 0 ≤ δ ≤ 1, ð2Þ

such that

Dϱ
ηΨϱ ηð Þ = ABC ϱð Þ

1 − ϱ

ðη
0

d
dε

Ψ εð ÞEϱ

−ϱ
1 − ϱ

η − εð Þϱ
� �

dε,

Dϱ
η
~Ψϱ ηð Þ = ABC ϱð Þ

1 − ϱ

ðη
0

d
dε

~Ψ εð ÞEϱ

−ϱ
1 − ϱ

η − εð Þϱ
� �

dε,

Dϱ
η constant½ � = 0:

ð3Þ

Here, ABCðϱÞ represent “function of normalization” and
defined by κð0Þ = κð1Þ = 1, and Eϱ is named as “Mittag-
Leffler” function.

Definition 2. Then, the ABC integral is defined as [39]

Iϱη
~Ψ ηð Þ = 1 − ϱð Þ~Ψ ηð Þ

ABC ϱð Þ + ϱ

ABC ϱð Þ
ðη
0

η − εð Þϱ−1
Γ ϱð Þ

~Ψ εð Þdε:

ð4Þ

Then, fuzzy fractional ABC integral is defined as

I
ϱ
0 ~Ψ ηð Þ

h i
δ
= Iδ0Ψδ ηð Þ, Iδ0 �Ψδ ηð Þ
h i

, 0 ≤ δ ≤ 1, ð5Þ
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such that

Iδ0Ψδ ηð Þ = 1 − ϱ

ABC ϱð ÞΨ ηð Þ + ϱ

ABC ϱð ÞΓ ϱð Þ
ðη
0
η − εð Þϱ−1Ψ εð Þdε ,

Iδ0 �Ψδ ηð Þ = 1 − ϱ

ABC ϱð Þ
�Ψ ηð Þ + ϱ

ABC ϱð ÞΓ ϱð Þ
ðη
0
η − εð Þϱ−1 �Ψ εð Þdε :

ð6Þ

Definition 3. The “fuzzy Laplace transform” of ABC deriva-
tive of ~ΨðηÞ is given as [39]

L Dϱ
0 ~Ψ ηð Þ

h i
= ABC ϱð Þ

sϱ 1 − ϱð Þ + ϱ½ � sϱL ~Ψ ηð Þ − sϱ−1 ~Ψ 0ð Þ
h ih i

:

ð7Þ

Definition 4. The “Mittag-Leffler” function EβðηÞ is given
by [39]

Eβ ηð Þ = 〠
∞

n=0

ηn

Γ nβ + 1ð Þ , β > 0: ð8Þ

Definition 5. A mapping κ : R⟶ ½0, 1�. If it holds, it is
considered to be number of fuzzy [39].

(i) κ is upper semicontinuous

κ μ ε1ð Þ + μ ε2ð Þf g ≥min κ ε1ð Þ, κ ε2ð Þf g: ð9Þ

(ii) ∃ε0 ∈ R such that κðε0Þ = 1
(iii) clfr ∈ R, κðrÞ > 0g is compact

Definition 6. The fuzzy number of parametric form is ðκðδÞ,
�κðδÞÞ such that 0 ≤ δ ≤ 1; and conditions [39]

(i) kðδÞ increasing, left continuous over ð0, 1� and right
continuous at 0

(ii) �kðδÞ decreasing, left continuous over ð0, 1� and right
continuous at 0

k δð Þ ≤ �k δð Þ: ð10Þ

3. Methodology

In this section, we apply Laplace transform to analysis gen-
eral solution of fuzzy fractional PDE. On both sides using
Laplace transform, we have

L Dϱ
η

~Ψ ϑ, ηð Þ
� �h i

=L A
∂2

∂ϑ2
~Ψ ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ ϑ, ηð Þ
� �" #

:

ð11Þ

Evaluating the Laplace transform, Equation (11)
implies that

ABC ϱð Þ
sϱ 1 − ϱð Þ + ϱ½ � sϱL ~Ψ ϑ, ηð Þ

h i
− sϱ−1 ~Ψ ϑ, 0ð Þ

h i

=L A
∂2

∂ϑ2
~Ψ ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ ϑ, ηð Þ
� �" #

:

ð12Þ

By using initial condition, we get

sϱL ~Ψ ϑ, ηð Þ
h i

= sϱ−1~g ϑ, ηð Þ + sϱ 1 − ϱð Þ + ϱ½ �
ABC ϱð Þ L

� A
∂2

∂ϑ2
~Ψ ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ ϑ, ηð Þ
� �" #

,

ð13Þ

or

L ~Ψ ϑ, ηð Þ
h i

= 1
s
~g ϑ, ηð Þ + sϱ 1 − ϱð Þ + ϱ½ �

sϱABC ϱð Þ L

� A
∂2

∂ϑ2
~Ψ ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ ϑ, ηð Þ
� �" #

:

ð14Þ

The analysis of series form solution, we can write as
~Ψðϑ, ηÞ =∑∞

n=0 ~Ψnðϑ, ηÞ . In these form representations,
Equation (11) becomes

L 〠
∞

n=0
~Ψn ϑ, ηð Þ

" #
= 1

s
~g ϑ, ηð Þ + sϱ 1 − ϱð Þ + ϱ½ �

sϱABC ϱð Þ L

� A
∂2

∂ϑ2
〠
∞

n=0
~Ψn ϑ, ηð Þ

 !
+ ∂
∂x

h ϑð Þ〠
∞

n=0
~Ψn ϑ, ηð Þ

 !" #
:

ð15Þ

Comparisons terms by terms of Equation (15), we have

L ~Ψ0 ϑ, ηð Þ
h i

= 1
s
~g ϑ, ηð Þ,

L ~Ψ1 ϑ, ηð Þ
h i

= sϱ 1 − ϱð Þ + ϱ½ �
sϱABC ϱð Þ L A

∂2

∂ϑ2
~Ψ0 ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ0 ϑ, ηð Þ
� �" #

,

L ~Ψ2 ϑ, ηð Þ
h i

= sϱ 1 − ϱð Þ + ϱ½ �
sϱABC ϱð Þ L A

∂2

∂ϑ2
~Ψ1 ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ1 ϑ, ηð Þ
� �" #

,

⋮

L ~Ψn+1 ϑ, ηð Þ
h i

= sϱ 1 − ϱð Þ + ϱ½ �
sϱABC ϱð Þ L

� A
∂2

∂ϑ2
~Ψn ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψn ϑ, ηð Þ
� �" #

, n ≥ 0:
ð16Þ
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Using inverse Laplace transformation in Equation (6),
we get

~Ψ0 ϑ, ηð Þ =L−1 1
s
~g ϑ, ηð Þ

� �
,

~Ψ1 ϑ, ηð Þ =L−1 sϱ 1 − ϱð Þ + ϱ½ �
sϱABC ϱð Þ L A

∂2

∂ϑ2
~Ψ0 ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ0 ϑ, ηð Þ
� �" #" #

,

~Ψ2 ϑ, ηð Þ =L−1 sϱ 1 − ϱð Þ + ϱ½ �
sϱABC ϱð Þ L A

∂2

∂ϑ2
~Ψ1 ϑ, ηð Þ
� �

+ ∂
∂x

h ϑð Þ~Ψ1 ϑ, ηð Þ
� �" #" #

,

⋮

~Ψn+1 ϑ, ηð Þ =L−1 sϱ 1 − ϱð Þ + ϱ½ �
sϱABC ϱð Þ L A

∂2

∂ϑ2
~Ψn ϑ, ηð Þ
� �""

+ ∂
∂x

h ϑð Þ~Ψn ϑ, ηð Þ
� ���

, n ≥ 0:
ð17Þ

Thus, the fuzzy solution is obtained as

Ψ ϑ, ηð Þ = 〠
∞

n=0
Ψn ϑ, ηð Þ , �Ψ ϑ, ηð Þ = 〠

∞

n=0
�Ψn ϑ, ηð Þ : ð18Þ

4. Numerical Implementation

In this section, we analyze the following fuzzy fractional
CRD equations by new iterative transform method.

4.1. Case I. Consider the fractional-order fuzzy CRDE is
defined as

ABCDϱ
η
~Ψ ϑ, ηð Þ =D2

η
~Ψ ϑ, ηð Þ − ~Ψ ϑ, ηð Þ, 0 < ϱ ≤ 1, ð19Þ

with the boundaries and initial conditions

~Ψ ϑ, 0ð Þ = ~κ e−ϑ + ϑ
� �

= ~κg ϑð Þ, ~Ψ 0, ηð Þ = ~κ1 = ~κf0 ηð Þ,

∂~Ψ 0, ηð Þ
∂η

= ~κ e−η − 1ð Þ = ~κf1 ηð Þ, ~κ = κ δð Þ�κ δð Þð Þ = δ − 1, 1 − δð Þ:

ð20Þ

Applying the suggested technique, we get

Ψ0 ϑ, ηð Þ = κ δð Þ e−ϑ + ϑ
n o

,

�Ψ0 ϑ, ηð Þ = �κ δð Þ e−ϑ + ϑ
n o

,

Ψ1 ϑ, ηð Þ = κ δð Þ −ϑ
ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

,

�Ψ1 ϑ, ηð Þ = �κ δð Þ −ϑ
ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

,

Ψ2 ϑ, ηð Þ = κ δð Þ ϑ

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

,

�Ψ2 ϑ, ηð Þ = �κ δð Þ ϑ

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

:

ð21Þ

In the same way, we can get the higher functions.
Equation (19) is used to solve the series, so we write
it down

~Ψ ϑ, ηð Þ = ~Ψ0 ϑ, ηð Þ + ~Ψ1 ϑ, ηð Þ + ~Ψ2 ϑ, ηð Þ + ~Ψ3 ϑ, ηð Þ + ~Ψ4 ϑ, ηð Þ+⋯:

ð22Þ

In the upper and lower branches, it is

Ψ ϑ, ηð Þ =Ψ0 ϑ, ηð Þ +Ψ1 ϑ, ηð Þ +Ψ2 ϑ, ηð Þ +Ψ3 ϑ, ηð Þ +Ψ4 ϑ, ηð Þ+⋯,

�Ψ ϑ, ηð Þ = �Ψ0 ϑ, ηð Þ + �Ψ1 ϑ, ηð Þ + �Ψ2 ϑ, ηð Þ + �Ψ3 ϑ, ηð Þ + �Ψ4 ϑ, ηð Þ+⋯,

Ψ ϑ, ηð Þ = κ δð Þ e−ϑ + ϑ
n o

+ κ δð Þ −ϑ
ABC ϱð Þ 1 − ρ + ϱηϱ

Γ ϱ + 1ð Þ
� �

+ κ δð Þ ϑ

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

+⋯,

�Ψ ϑ, ηð Þ = �κ δð Þ e−ϑ + ϑ
n o

+ �κ δð Þ −ϑ
ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

+ �κ δð Þ ϑ

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

+⋯:

ð23Þ

The exact result is

~Ψ ϑ, ηð Þ = ~κ e−ϑ + ϑe−η
� �

: ð24Þ

In Figure 1, the first figure shows the 3D fuzzy upper
and lower branches of analytical solution at ρ = 1 and
the 2nd figure shows the 2D fuzzy figure at ϱ = 1. In
Figure 2 are the various fractional order ρ figures of upper
and lower branches of analytical solution.

4.2. Case II.

ABCDϱ
η
~Ψ ϑ, ηð Þ =D2

η
~Ψ ϑ, ηð Þ − 1 + 4ϑ2

� 	
~Ψ ϑ, ηð Þ, 0 < ρ ≤ 1,

ð25Þ

with initial condition

~Ψ ϑ, 0ð Þ = ~κeϑ
2 , ~κ = κ δð Þ�κ δð Þð Þ = δ − 1, 1 − δð Þ: ð26Þ

Using the proposed method, we have

Ψ0 ϑ, ηð Þ = κ δð Þeϑ2 ,
�Ψ0 ϑ, ηð Þ = �κ δð Þeϑ2 ,

Ψ1 ϑ, ηð Þ = κ δð Þ eϑ
2

ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

,

�Ψ1 ϑ, ηð Þ = �κ δð Þ eϑ
2

ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

,

4 Journal of Function Spaces



Ψ2 ϑ, ηð Þ = κ δð Þ eϑ
2

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

,

�Ψ2 ϑ, ηð Þ = �κ δð Þ eϑ
2

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

:

ð27Þ

In the same way, we can get the higher functions.
Equation (25) is used to solve the series, so we write
it down

~Ψ ϑ, ηð Þ = ~Ψ0 ϑ, ηð Þ + ~Ψ1 ϑ, ηð Þ + ~Ψ2 ϑ, ηð Þ + ~Ψ3 ϑ, ηð Þ
+ ~Ψ4 ϑ, ηð Þ+⋯:

ð28Þ
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Figure 1: The first figure shows the 3D fuzzy upper and lower branches of analytical solution at ρ = 1 and the 2nd figure shows the 2D fuzzy
figure at ϱ = 1.
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Figure 2: The various fractional order ϱ figures of upper and lower branches of analytical solution.
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In the upper and lower portion form, it is

Ψ ϑ, ηð Þ =Ψ0 ϑ, ηð Þ +Ψ1 ϑ, ηð Þ +Ψ2 ϑ, ηð Þ +Ψ3 ϑ, ηð Þ +Ψ4 ϑ, ηð Þ +⋯,

�Ψ ϑ, ηð Þ = �Ψ0 ϑ, ηð Þ + �Ψ1 ϑ, ηð Þ + �Ψ2 ϑ, ηð Þ + �Ψ3 ϑ, ηð Þ + �Ψ4 ϑ, ηð Þ +⋯,

Ψ ϑ, ηð Þ = κ δð Þeϑ2 + κ δð Þ eϑ
2

ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

+ κ δð Þ eϑ
2

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

+⋯,

�Ψ ϑ, ηð Þ = �κ δð Þeϑ2 + �κ δð Þ eϑ
2

ABC ϱð Þ 1 − ϱ + ϱηϱ

Γ ϱ + 1ð Þ
� �

+ �κ δð Þ eϑ
2

ABC ϱð Þð Þ2 1 − ϱð Þ2 + 2ϱ 1 − ϱð Þηϱ
Γ ϱ + 1ð Þ + ϱ2η2ϱ

Γ 2ϱ + 1ð Þ
� �

+⋯:

ð29Þ

The exact result is

~Ψ ϑ, ηð Þ = ~κ eϑ
2+η

� �
: ð30Þ

In Figure 3, the first figure shows the 3D fuzzy upper
and lower branches of analytical solution at ρ = 1 and
the 2nd figure shows the 2D fuzzy figure at ϱ = 1. In
Figure 4 are the various fractional order ρ figures of upper
and lower branches of analytical solution.

4.3. Case III. Consider fractional-order fuzzy Cauchy
reaction-diffusion equation:

ABCDϱ
η
~Ψ ϑ, ηð Þ =D2

η
~Ψ ϑ, ηð Þ + 2η~Ψ ϑ, ηð Þ, 0 < ρ ≤ 1, ð31Þ

with initial condition

~Ψ ϑ, 0ð Þ = ~κeϑ, ~κ = κ δð Þ�κ δð Þð Þ = δ − 1, 1 − δð Þ: ð32Þ

Using the proposed method, we have

Ψ0 ϑ, ηð Þ = κ δð Þeϑ,
�Ψ0 ϑ, ηð Þ = �κ δð Þeϑ,

Ψ1 ϑ, ηð Þ = κ δð Þ eϑ

ABC ϱð Þ
2ϱηϱ+1
Γ ϱ + 2ð Þ + ϱηϱ

Γ ϱ + 1ð Þ + 2η 1 − ϱð Þ + 1 − ϱð Þ
� �

,

�Ψ1 ϑ, ηð Þ = �κ δð Þ eϑ

ABC ϱð Þ
2ϱηϱ+1
Γ ϱ + 2ð Þ +

ϱηϱ

Γ ϱ + 1ð Þ + 2η 1 − ϱð Þ + 1 − ϱð Þ
� �

,

Ψ2 ϑ, ηð Þ = κ δð Þ eϑ

ABC ϱð Þð Þ2 4ϱ ϱ + 2ð Þ η2ϱ+2

Γ 2ϱ + 3ð Þ
�

+ 2ϱ ϱ + 2ð Þ η2ϱ+1

Γ 2ϱ + 1ð Þ + ϱ
η2ϱ

Γ 2ρ + 1ð Þ + 8 1 − ϱð Þ ηϱ+2

Γ ϱ + 3ð Þ
+ 4 1 − ϱð Þ ηϱ+1

Γ ϱ + 2ð Þ + 1 − ϱð Þ ηϱ

Γ ϱ + 1ð Þ
�
,

�Ψ2 ϑ, ηð Þ = �κ δð Þ eϑ

ABC ϱð Þð Þ2 4ϱ ϱ + 2ð Þ η2ϱ+2

Γ 2ϱ + 3ð Þ
�

+ 2ϱ ϱ + 2ð Þ η2ϱ+1

Γ 2ϱ + 1ð Þ + ϱ
η2ϱ

Γ 2ϱ + 1ð Þ + 8 1 − ϱð Þ ηϱ+2

Γ ϱ + 3ð Þ
+ 4 1 − ϱð Þ ηϱ+1

Γ ϱ + 2ð Þ + 1 − ϱð Þ ηϱ

Γ ϱ + 1ð Þ
�
:

ð33Þ
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Figure 3: The first figure shows the 3D fuzzy upper and lower branches of analytical solution at ϱ = 1 and the 2nd figure shows the 2D fuzzy
figure at ϱ = 1.
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In the same way, we can get the higher functions.
Equation (31) is used to solve the series, so we write it down

~Ψ ϑ, ηð Þ = ~Ψ0 ϑ, ηð Þ + ~Ψ1 ϑ, ηð Þ + ~Ψ2 ϑ, ηð Þ + ~Ψ3 ϑ, ηð Þ + ~Ψ4 ϑ, ηð Þ+⋯:

ð34Þ

In the upper and lower portion form, it is

Ψ ϑ, ηð Þ =Ψ0 ϑ, ηð Þ +Ψ1 ϑ, ηð Þ +Ψ2 ϑ, ηð Þ +Ψ3 ϑ, ηð Þ +Ψ4 ϑ, ηð Þ+⋯,

�Ψ ϑ, ηð Þ = �Ψ0 ϑ, ηð Þ + �Ψ1 ϑ, ηð Þ + �Ψ2 ϑ, ηð Þ + �Ψ3 ϑ, ηð Þ + �Ψ4 ϑ, ηð Þ+⋯,
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Figure 4: The various fractional order ϱ figures of upper and lower branches of analytical solution.

300

200

100

0

–100

–200

–300

0

0
0.1

0.5 5

0
–300

–100

–200

0

100

200

300

1 2 3 4 5
4

3
2

1
0.2

0.3
0.4

𝜗

𝜗𝜂

Figure 5: The first figure shows the 3D fuzzy upper and lower branches of analytical solution at ρ = 1 and the 2nd figure shows the 2D fuzzy
figure at ϱ = 1.

7Journal of Function Spaces



Ψ ϑ, ηð Þ = κ δð Þeϑ + κ δð Þ eϑ

ABC ϱð Þ
2ϱηϱ+1
Γ ϱ + 2ð Þ + ϱηϱ

Γ ϱ + 1ð Þ + 2η 1 − ϱð Þ + 1 − ϱð Þ
� �

+ κ δð Þ eϑ

ABC ϱð Þð Þ2 4ϱ ϱ + 2ð Þ η2ϱ+2

Γ 2ϱ + 3ð Þ + 2ϱ ϱ + 2ð Þ η2ϱ+1

Γ 2ϱ + 1ð Þ
�

+ ρ
η2ϱ

Γ 2ϱ + 1ð Þ + 8 1 − ϱð Þ ηϱ+2

Γ ϱ + 3ð Þ + 4 1 − ϱð Þ ηϱ+1

Γ ϱ + 2ð Þ
+ 1 − ϱð Þ ηϱ

Γ ϱ + 1ð Þ
�
+⋯,

�Ψ ϑ, ηð Þ = �κ δð Þeϑ + �κ δð Þ eϑ

ABC ϱð Þ
2ϱηϱ+1
Γ ϱ + 2ð Þ + ϱηϱ

Γ ϱ + 1ð Þ + 2η 1 − ϱð Þ + 1 − ϱð Þ
� �

+ �κ δð Þ eϑ

ABC ϱð Þð Þ2 4ϱ ϱ + 2ð Þ η2ϱ+2

Γ 2ϱ + 3ð Þ + 2ϱ ϱ + 2ð Þ η2ϱ+1

Γ 2ϱ + 1ð Þ
�

+ ϱ
η2ϱ

Γ 2ϱ + 1ð Þ + 8 1 − ϱð Þ ηϱ+2

Γ ϱ + 3ð Þ + 4 1 − ϱð Þ ηϱ+1

Γ ϱ + 2ð Þ
+ 1 − ϱð Þ ηϱ

Γ ϱ + 1ð Þ
�
+⋯:

ð35Þ

The exact result is

~Ψ ϑ, ηð Þ = ~κ eϑ+η+η
2

� �
: ð36Þ

In Figure 5, the first figure shows the 3D fuzzy upper and
lower branches of analytical solution at ρ = 1 and the 2nd
figure shows the 2D fuzzy figure at ϱ = 1. In Figure 6 are the
various fractional order ρ figures of upper and lower branches
of analytical solution.

5. Conclusion

This investigation is aimed at providing a semianalytical
result to the fuzzy fractional Cauchy reaction-diffusion

equation solution by considering the Atangana-Baleanu
operator. Therefore, fuzzy operators are preferable to
describe the physical phenomenon in such a scenario. We
explored the Cauchy reaction-diffusion equation in a fuzzy
approach, taking into account the uncertainty in the initial
condition. In this research, we have generalized the fuzzy
fractional of the Cauchy reaction-diffusion equation. We
then used a new iterative transform method to obtain the
approximate expression of the suggested problem in its
parametric form. We identified numerous illustrations to
support the intended methodology and achieved a paramet-
ric solution for each case. In the end, it is not simple to find
analytical solutions for many types of fuzzy fractional partial
differential equations. In the future, it is essential to look at
and solve fractional fuzzy partial differential, dynamical,
and integrodifferential equations based on the Atangana-
Baleanu operator of fractional order ϱ > 1.
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