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In this paper, we deal with the existence of at least two nonnegative nontrivial solutions to a p(z)-Laplacian system involving
critical nonlinearity in the context of Sobolev spaces with variable exponents on complete manifolds. We have established our
main results by exploring both Nehari’s method and doing a refined analysis on the associated fiber map and some variational

techniques.

1. Introduction

In the present work, we investigate the existence of nonneg-
ative nontrivial solutions to the following system:

2a(z)
a(z) +b(z)

i 26(2) _
_A - q9(2)-2 a(2) [, |b(2)-2
g,p(z)y ﬁ'y‘ y+ (I(Z) +6(Z) ‘w‘ |y‘ Y

-A w:a\w\q(z)’2w+ \w\“(z)’zwmb(z) in,

gp(2)
in ,

a0 =Y1an =0

(1)

Here, (#,g) is a complete compact Riemannian N-
manifold, &, S € R} to be specified later, and p, g, a,b € C(
M) satisfying the assumptions (23) and (24) in Section 3. —
Ay () is the Laplacian operator on (., g).

In recent years, several researchers have been interested
in equations or systems involving the p(z)-Laplacian, not
only for their application in several scientific fields, such as
fluid filtration in porous media, constrained heating, elasto-
plasticity, and optimal control, but also for their mathemat-
ical importance in the theory of function spaces with
variable exponents. For example, in [1], Zhang proved the
existence of positive solutions under some conditions of

the following class of p(z)-Laplacian systems:

“Aypw=af(zy) in@
(S1)] Ayow=ag(zw) inG, (2)

Wae =Yl36 =0

in bounded open set @ c R, without assuming the sym-
metric radial conditions. And by using the subsuper solution
technique, Boulaaras et al. in [2] have studied the asymptotic
behavior of the system (&, ). In [3], Aberqi et al. established
the existence of a renormalized solution for a class of nonlin-
ear parabolic systems using the Gagliardo-Nirenberg theo-
rem, with the source term being less regular. In addition,
we refer to the work of Marino and Winkert [4] who studied
this kind of system with nongrowth conditions, governed by
a double-phase operator. For the systems with singular
source data, we refer to Saoudi [5] and Papageorgiou et al.
[6]. For more results, we refer to [7-11], as well as to [12],
and the references therein.

Before explaining the novelty of this paper, we give an
overview of the literature on this kind of system in W'*(@
). Adriouch and El Hamidi in [13] proved the existence
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and multiplicity of solutions to the following system:

—Aw= 0c|w|p1_2w +(a+ 1)w|w|a_1 |y|b+1 in @,

—Ay =BTy + b+ Dw [y ing,

(3)

by using the variational techniques. Chen and Wu in [14]
examined the semilinear version of (&§,) with more general
parametric functions f,, g, and convex-concave critical

nonlinearity. Mercuri and Willem in [15] proved a represen-
tation theorem for Palais-Smale sequences involving the p-
Laplacian and critical nonlinearities. For a deeper compre-
hension, see [16-18].

Next, we will mention some papers that deal with the
same problem with the fractional p-Laplacian. We refer to
Chen and Squassina [19], Pawan and Sreenadh [20], and
Biswas and Tiwari [21] for fractional p(z)-Laplacian.
Readers may refer to the references given therein for more
background.

Our goal in the present contribution is to study this kind
of system with nonstandard convex-concave nonlinearity, in
the Sobolev spaces on the complete manifold. We prove the
existence of nonnegative nontrivial solutions using the
Nehari manifold technique. However, we address the chal-
lenges due to the fact that A, is not homogeneous, also
due to the non-Euclidean framework of the system. More-
over, we do not have enough background on this space, such
as embedding results, Holder inequality, and the relation
between the [|wl|,,) and p, ., (|Dw]), including the pertinent

result proven in ([22], Proposition 2.5). This is the first exist-
ing result in this field to the best of our knowledge.
The theorem below contains our main result.

Theorem 1. Let (M, g) satisfy the B, (e, y) property. Then,
there exists a constant K such that if 0 < a + 3 < K, then the
system (§) admits at least two nonnegative weak solutions.

The organization of this contribution is given as follows.
We start in Section 2 by presenting some definitions and
properties of Lebesgue spaces with variable exponents on a
bounded set of @ c RY and on a complete manifold .Z.
After that, in Section 3, we give some properties of the
Nehari manifold and set up the variational framework of
the system (&). Then, we establish the existence of two non-
negative nontrivial solutions to the system ().

2. Notations and Basic Properties

This section is devoted to recalling some definitions and
properties which will be used in the next sections (see
[22-27]).

Consider an open-bounded set @ of R with (/4 >2).
We define the Lebesgue space with variable exponent LV (
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@) as the set of all measurable function w : @ — R such that

()= | u(a)" e < oo, (4)

endowed with the Luxembourg norm. And the associated
Sobolev space is given by

WLV(Z)(@) — {w € LV(Z)(@) |Dw‘ c LV(Z>(@)}’ (5)
with the norm

[l = @il o) + 1w, - VD0 (@)

(6)

_ 1v(z)
And 729 (@) = c(@)” .

Lemma 2 (see [12]). Let v,(z) € L*°(Q) such that v, > 0,v,
#0. Let v, : @ — R be a measurable function such that

v,(2)v,y(2) 2 1 a.e. in @. Then, for every w e L'19:3)(@),

vi(+) v, v
Nl o < 1wl pierse @) + 1@l peme g (7)
(@) (@) (@)

2.1. Sobolev Spaces on Manifolds

Definition 3 (see [22]). Let w € C (/) and (@, ¢;),; be an
atlas of A,

Jﬂw(z)dvg(z) = ;Lk(@k) ( (det (&j) 1/211ku) ) o9 (z)dz,
(8)

where dv, = (det (gij))mdz, g;; are the components of the
Riemannian metric g in the chart and dz is the Lebesgue
measure of R”.

Definition 4 (see [22]). The Sobolev space LZ('>(%) is the
completion of CZ(')(/%) with respect to the norm |[wl| q0),
k

where

¢ () = {w € C (M) such that | Diw| € L10) (42) 5 j= o,.-.,k},

k
[w HLZ“ = Z HD’w HL‘“‘”
=0
9)

. 2 P .
with |Dfw| = (IT1 <ok &) (Dkw),»l.i.,-k (Dkw)jy-jk is the
norm of the k-th covariant derivative of w. If @ is a subset
of M, then LZ)((?(@) is the completion of CZ(')(!%) N Cy(Q)
with respect tol|.|| ), where Cy(@) denotes the vector space
k

of continuous functions whose support is a compact subset
of @.
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Definition 5 (see [22]). Let & : [a, b
C'. The length of & is

) - jbg &% ) ds. (10)

v) € M*, we define the distance between u and v

| — M a curve of class

Let (u,
by
dg(u, v) = inf {@ t[a,b]) — M : ¥(a) =uand &(b) =
(11)
Definition 6 (see [22]). Log-Holder continuity:

lett : /4 — R; we say that t is log-Hoélder continuous, if
there exists ¢ > 0 such that

c.(log (e+dy(u, v)_l))_l, V{u,v}e M.
(12)

6(u) ~ 1(v)| <

The set of Log-Hoélder continuous functions on .# will be
denoted by °8(.), which is linked to %°¢(R”) by the
proposition below.

Proposition 7 (see [24, 25]). Let (@, ¢) be a chart of M, q
€ P8 M), such that

—6 < gjj 326,-]-,

i< (61-]- is the delta Kronecker symbol), (13)

like bilinear forms. Then, o ¢~! € P%($(Q)).

Definition 8 (see [22]). We say that (., g) has property
B,.1(a, ), if the Ricci tensor of g noted by Re(g) verifies Re
(g) = a(# —1)g for some «, and for all u € 4, there exists
some y >0 such that |B,(2) |, >y where B, (z) are the balls
of radius 1 centered at some point z in terms of the volume
of smaller concentric balls.

To compare the functionals |-,

and p,,(-), one has

the relation

min {Pq(,)(w)l/qi’ P . (w)l/‘f} < ||wHL‘1<')

X (14)
<max { pyy ()", pyy ()" |-

Proposition 9 (see [23]). Holder’s inequality: for all w e
L1O() and y € LYV (M), we have

J/%|w(z)y(z)|dvg(z) = rquHLW(ﬂ)-||)’||Lq’<->(//g>’ (15)

where r, is a positive constant depending on q~ and q".

Definition 10 (see [22, 26]). We define the Sobolev space on
(4, g) by

Wl,q(Z)(%) = {w € Lq(z)(ﬂ): Dfw e Lq(z)(/%) k= 1)2,...),1},
(16)

endowed by the norm

n
= [[wl] a0 Z (17)

[0l wrae) (ar

pre

LA Z)

and we define W(l)’q(z)(/%) as the closure of C®(.#) in
W) ().

Theorem 11 (see [22, 23]). Let a(z), b(z), q(z), p(z) € C(M
YNL® (M), with M as a compact Riemannian manifold.

(i) If

vy Naz) y
p(2)<q*(2) = Ere) forze M, (18)
q(z) <N
Then, we have
WHE) () s LPE (M), (19)

(ii) If
a(z) +b(z)<q*(z) forze M, (20)
q(z) <N
Then, we have
WHE () L@ (). (21)

Proposition 12 (see [24]). We have W1W () = Wé’qm(
M), if (M, g) is complete.

3. Proof of the Main Results

In this section, we prove our main result, and we note that
J= Wé’q(z)(ﬂ ) % W(l)’q<z>(/% ), endowed  with
[(w, »)P¥) = | Dw(z)[[*) + | Dy(2)[*®. In what follows,

D(M) is the space of C* functions with compact support
in /.

norm

3.1. Nehari Manifold Analysis for (S). First, we define the
weak solution of system (&) as follows.



Definition 13. We say that (w, y) € ] is a weak solution of the
system (&), if (w, y) € ] one has

[ﬂ\Dw(z) PO2g(Duw(2), D(2))dvy(2)

+| |Dy(z) "“)?g(Dy
M

- Jﬂ(oq w(z) 12

2 a(z) a(z
+ %W |w(z) | (=)
o[ O PP () du),

(2), Dy (2))dv(2)
2 w(z) 9(2) + Bl¥(2) 1"7H(2) w(2) ) dvg(2)

Zw(2)|y(z) "9 §(2)dvy(2)

(22)
for all (¢, v) € D(M) x D(M).

The functions p,q,a,b € C(M
the following assumption:

) are assumed to satisfy

1<q <q"<p <p'<a +b <a"+b" <00, (23)

and the following condition holds

)

To prove our main result, we will use Nehari manifold
and fibering maps. The fact that (w,y) is a weak solution
is equivalent to being a critical point of the following func-
tional &,z : ] — R defined as

I '
at+b"  \(a*+b") -

Oly(z)["@dvy(2).

(25)

By a direct calculation, we have &, 5 € C'(J,R) and

<%,a,ﬁ(w’y)’ (¢ 1/’)> = Jﬂ|aw|p<z)—zw $dv,(2)
+ [ oy P2y y dvy(2)

oc|w|q “w+ B2 yy )dvy(2)

L.
J,,,a 12 wly P
-

@ g dvy(2)
2 b z)

i P2 yy vy (2),
M

(26)

for any (¢, ) € D(M) x D(M).
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Consider the Nehari manifold

Hop={(@3) I\{(0.0)}: <& g(w.y). (wiy) 0},
(27)

Then, (w, y) € #,p if and only if

|| (10w« oy )avy(z) - | (sl + i) oo

[ 29@) @, 0@ gy (2
|3 ()+5()|| ¥ dvg(2)

_ 25() b(z) v (z) =

(28)

which implies that

|| (1pwp + oy )as )
| (o s gy ) @9

- zJ |w[*® |y|"<z)dvg(z) =0.
/A

The Nehari manifold ./, g is closely linked to the behav-
ior of the function of the form (,,
> 0 defined by

s &, p(sw, sy) for s

z

(2)
((w)y) (s)= g"xﬁ(sw, sy) = Jlﬂ}% (|aw(z) ‘P(Z) +|ay(z) ‘P(ﬂ)dvg(z)

s (2)
| 2 (e + By o)

S(z)+bz
_J az(z)+5()| (@)[*ly(2)|" @ dvy(2).

(30)
Lemma 14. Let (w,y) € ]\ {(0,0)}, then (sw,sy) € Ny if
and only zf{’(w)y) (s)=0.

Proof. The result is a consequence of the fact that

{up(8) = (aplwrsy), (wiy)) =0 (31)
O

From this lemma, we have that the elements in ./, 5 cor-
respond to stationary points of the maps (.
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Hence, we note that

C(z:)y)(s) =J SP(Z)*1(|Dw(Z)|P(z) + |D)’(Z)|p(z))dvg(z)
’ M
_J §4(2)-1 <a|w(z)|q(z) +ﬁ|Y(Z)|q(Z))dVg(z)
VA
_ZJ 5(0(2)+B(Z))—1‘w(z)|a(2) |}’(Z)|B<Z>dvg(z),
M

(32)

(@)= | (0(2) =09 ((Dw(z) )+ D@ ) vy
| (@ =1 (wu(e) 9+ By ) vy
M
-2 ((a(2) +5(2)) - D592 (@) (@) ).
M
(33)
By Lemma 14, (w, y) € 4, if and only if C'(w,},)(l) =0.
Hence, according to (32), we have for (w,y) € /', 5 that
(1= (o0~ 1) (1w + [Dy(a) P )y )
- jﬂm(z) - 1) (aw()|) + Bly(2)|") dvy(2)
~2[ (@) +52) - Dlw(a) P ly(a) vy (2
=2 (6(2) - (a(@) + b)) @)y )
| (p(2) - 4()) (@)1 + Bly(2) " ) dvy(2)

Joa

=] @)= a@) (IPw@ P + D) dvy(z
J

+

—zjﬂ«a(z) +5(2)) = 4(2)|w(2)*Oy(2) " dvy(2)
= jﬂ(p(z) - (a(2) + (2))) (IDw(2) P + [Dy(2) ) dvy(2)

+ jﬂ((a(z) +5(2)) - 4(2)) (afw(2)|" + By(2)|")) dvy(2).
(34)

Thus, it is natural to split //, 4 into three corresponding
to local minima, local maxima, and points of inflexion of
{(w,)’)’ i.e.,

Wig={@) €V ¢y (1)> 0},
Hap= {(w’y) €N ap 8wy (1) < O}’

Wog={wy) e Wop: (1) =0},

(35)

Lemma 15. Let (w, y) € ], then we have

(i)

| (@ + By ) dvy(@) scrfe+
o ma {91700 b (20

A1 DT )
(ii)

L{|w(z)‘a(z) ‘y(x)‘mz)dvg(z) < ¢, max {max {\|w||‘:/\/3,,”(z>(ﬂ), |VH:V;+§Z7(,%)}’ max

a*t+b*

Il oy IS 0 1]
(37)

for some constants c;, ¢, > 0.

Proof. (i) Using Theorem 11 (i), and Lemma 2, we get

()
jﬂ (elw (@) + Bly@)I*® ) dvy(2) < 20|w] e
q() - "
+ 25||)’||L<a<z>+b<zwq<n () < 2“{ ||w||Zn<z)+b(z>(,%> + HwHZamw(z)(,ﬂ)}
+ Zﬁ{ Hszme () + ”y”Zu(ZM(ZJ(/ﬂ)}
<2 max {c(n,p', g.a +a)?,c(np.q,a + 57)‘1*}
T T
[l Bl

B+ D ]

(38)
Hence,

J (alw()[*® + Bly(z) ")) dvy(2) <y (a + B) x max
M
[ {1 1

{1 0|

(39)

(ii) By Young’s inequality, Lemma 2, and Theorem 11 (ii),
we have that



‘w(z) |a(z)+b(z)

J @Iy vy (2) < J ,W< B

a(z) +b(z)
b(2) i
- YA )
< {8y + Nl }

{1 + 50 ) |
<2 max {c(n a +b7,9)7 c(na + b‘,q')q*}
x [{Iwlig il )+ lollsyifo 0 }

4E)
b* b~
LI o+ IS j,)}]

(40)
Hence,
b(z)
J ‘w(z)“(z) y(2)|  dvg(z) <, max
M
- [max {Jlwlle i85 0 Il 0, } max
ity IR }]
(41)
O

Lemma 16. For each (a, ) € R?\ {(0, 0)}, there exists a con-
stant K; > 0 such that for any 0 < a+ < K, we have /Vguﬁ
=d.

Proof. Suppose otherwise, that 4?9 op D forall (a, B) € R?
\ {(0,0)}. Let (w,y) € /Vgﬁ, such that ||(w,y)|| > 1. Then,
by Lemma 15, (34), and the definition of /4 g’ﬁ, we have

0=0" 4y (1) S (0" — (a” +5)) | (w,y)[[*

; (42)
+ey (o B)((a” +07) —q ) [|(w. )|
that is,
((a”+07) =p)[(w )P <((a" +b") =g )e; (. B)| (ws p) || -
(43)
Then,

(a*+b") -

- U(p™=q")
s (g La@en) .

Analogously,

)”a +B

0=" (1) 2 (07 =g (. 2)|" —2((a" +5%) =g )cs | (w y

2((a" 487 = )| ()| 2 (07— ) | (w )P
(45)
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Then,
at+bt—p~ P - q+
™7 2 Bt e
thus,
p— _ q+ 1/((a*+b")—p7)
> >4 . 4
> (5ot =o) (@7

According to (44) and (47), we deduce that

b (g

(p"=q )/((a"+b")=p7)
)

(48)
which is a contradiction. Hence, we can conclude that for

any 0 <a+ B <K, we have J/, s = @V(a, B) € R*\ {(0,0)}
O

Lemma 17. If (w,y) is a minimizing of &, 3 on N,z such
that (w, y) ¢ ./Vg,ﬁ. Then, (w, y) is a critical point of &, .

Proof. Let (w, y) be a local minimizing of &, 5 in any subset
of /. Then, in any case, (w,y) is a minimizer of &,
under the constraint

Lop=(&apwy), (w,9)) =0. (49)

Since (w,y) ¢ A > the constraint is nondegenerate in

(w,y), then by the theory of Lagrange multipliers, there
exists o € R such that

%a,ﬁ(w’y) =0La,ﬁ(w’y)' (50)

Thus,

(& cpw2), (,3)) =0 (L'g(w,9), (w.) ) =0 (1):
(51)

Since C”(w’y)(l) #0 and (w,y) ¢ /Vg,ﬁ, we obtain that o
=0, which completes the proof. O

Lemma 18. For every (a, 8) € R?\ {(0,0)} such that 0<«
+ B <K;. The functional &, is bounded and coercive on

W o
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Proof. For any (w,y) € /g, according to (23), (24), (29),
and Lemma 15, we get

1

Bup(w)= | o (1Dw@P + Dy ) )

| 2 (@ By ) vy
J,%a +b(z ( ()P(Z)ﬂlDy(Z)‘M)dvg(z)
Jﬂa ) (et W+ﬁ\y<z>\q<z>)dvg<z>

1) + Bly(2)]" ) dvy(2)

+

(52)

Asp~>q", then &, 4(w, y) — oo as [|(w, y)[| — oo. It
follows that &, 4 is coercive and bounded below on ./, 4 for
O<a+pB<K,. O

Lemma 19.

W) If (,y) € ¥l then [ ,(alw(z)"® + Bly(2)|"))d

vy(2) > 0.

(ii) If (w,y)e N, p then [, |w(z
> 0.

W y(2)|" dv,(2)

Proof. (i) Since (w, y) € 4 5, we have C”(ww(l) > 0. Then,
using (23) and (34), we get
0<C ()< (" =@+ )| (|Pw(a)
Dy (2 + (0" +57) =g )| (o
a
+ B y(z)|q(2)) dv,(2),
(53)

then,

((a=+ 7)) =p")l[(w )" < ((a" +b") - q")

| (el + g1 vy e)

Hence,

@ #0020 1w, )" >0,

Jﬂ(“|w(z)\q +Bly(z \q )d"g(z) m

(55)

(if) Since (w, y) € # 5, we have { ”(w’y) (1) <0. Thus, accord-
ing to (23) and (34), we obtain that

0>8"wy ()2 (" - q*)jﬂ (IDw()P® + [Dy(a) P )av,(2)
_ 2((a+ + B+) _ q—)Jﬂ‘w(zﬂa(z) ‘y(z)\b(z)dvg(z),

(56)
then,
2((a*+8%) - )| [0l dry()> (7 -q')
/” (57)
- J (1Dl + [y ) v, (2).
M
Hence,
a(z) b(z) r-q »
[ Jw@rb@ dne)> S L jw i >o.
(58)
|

Remark 20. As a consequence of Lemmas 16-18, we have for
every (a, ) € (R*)* with a+ <K, Noapg=NopUNp
and &, is coercive and bounded below on /', 5 and A g.
We define

= + . _

Tap = (w }})rg;l/aﬁ Eop(Wsy),04p= (w’yl)rgﬁﬁ Eop(wsy),ando, g
= f .
(wayenr, Cup())

(59)
Lemma 21. The following facts hold:

(i) If a+ B<K,, then 0,3< 0, 5<0

(i) If a + B <K, then we have o, 5 > ¢, for some c,(a, b

P % ) >0
Proof. (i) Let (w, y) € /7 g; by (34), we have

0<(p=q)| (1P + Dy vy (o)
M

(60)
(0" +5) - q+>jﬂ|w|“<z> O dvy(2),



then,

|| putrepan e < 5Lt
M

& w) )
: Jﬂ (|Dw|~"<z) + |Dy|P(Z))dvg(z).
Hence, by (61) and (29), we have

Sup(w )= o | (IDw@P® + Dy P )avy(2)

- 5| (elw@ + @) vz
- | @ vy
/A

at+b*
_ (pi _ qi) J (IDw@P@ + Dy ) dvy 2
. (qi - %) || @ @) di )
2 <qi T i b+> ' (2(((1’1)1 _f’q)— q*))

[Dw(z)P) +Dy() ") dvy(2)

I

G-%) +<—+ (o
j w(z)

(

q)}

[Dw(z)P) + |Dy(=) P ) dvy(2)

+6°) +p (o' +B) = g")

) < 8 )l
(62)

Ch
N

P)
p

a

According to (24) and (23), we get &, g(w, y) < 0. There-
fore, from the definition of 0,5 and o}, it follows
thatamﬁ < az)ﬁ <0.(73)(ii) Let (w, y) € ‘/V;»B; by (47), we have

P -q - a(z) b(z)
s = 1w < | 0@ (a2,

(63)

and by Lemma 15 (ii), we get

p"—q+ - at+b*
m”(wJ)H‘D <o y)|", (64)

then,

wy | s P e
l(w,y)] e
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Hence,

-+ 1/((a*+b")—p7)
> (i) (60

According to (29), (66), and Lemma 15 (i), we deduce
that

Sup(w)2 o[ (IDw@P + Dy(a)P a2
q

- = (e + By @) duo)

B a-ibf Lj (2)*Dy(2)[* D dvy(z)
(- ) [ (P + e o
(o )| (@ By duyta)

w, )|+, (a+ B)

1 1 - 1 1
. - q R
(a_ = q,)ll(w,y)ll 2 (p a*+[)’)
, ( P -q

)
R L

N T S o
26((a" +07) —q7) "

(67)
Thus, if we choose
1 g ((a +67)-p") g 0P
R (RS IETS) '<2c2<<a+ e q*)) =k
(68)

we deduce that &, 5(w, y) > ¢, for some positive constant c,
depending on a, b, p, g, a, and . O

Lemma 22. For each (w,y) € J\ {(0,0)}, there exists a con-
stant K;>0 such that for all a+ <K, we have the
following:

@) If [ ,(alw(z) (2)1" + Bly(z )|q(z))dvg(z) =0, then there
exists a unique (s"w, s"y) > 0 such that (s w,s y) €

Nop and &, g(s w,s7y) = sup, &, g(sw, sy).
(i) 1f [ (aluw(2)

exist s, > 0 and unique numbers 0 <s* <s_..
+ + + - - —
such as (s'w,s*y) € Ny, (sw,s7y) €N, 5 and

|9(2) + ﬁ|y(z)|q(z))dvg(z) > 0, then there
<s,

& /3(5 w,sTy) = 1nf % BSW,sy) 3 &g p(sw,s7y) = Sslzl(l)) &y plsw, sy).

0<S<s),,

(69)
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Proof. Before tackling our proof, we define s, as follows:

_ Jao@ = a@) (e + Dy ) vy(2)
™20 ((a +w>> 4(2))|w(2)|"?|y(2)[*@ dvy(z)”
(70)

for every (w,y) € /.
Hence, we have that {,, (s) is increasing for s € [0, s

and decreasing forse (

We set R(s j /%

‘Zf/%sa

19, we have that

max]
+oo) and achieves its maximum.

IDw( )P 4 [Dy(z) [P v, (2)
y(z) ° dvy(z); by Lemma

max’

©w(z) [*¢

Z(0)=0and #(s) — —cowhens — oo,  (71)

92'(5) = J%(P(z> - q(z)>sp(2)74(2)*1
(IDw@® +Dy(@) P ) dvy()
-2 ((a(2) +5(2)
M

~q(2))s" O u(2)|"O ()|

(i) For 0 <s <1 which is sufficiently small, we have

Cun(®> 52| (1D + Dy o)

2ta++ﬁ+

73)
- I | I @) >0

and for s > 1 which is sufficiently large, we get

fWM<ijwmwMﬂwwMVm@
, b (74)
S(l +

o | RO P e <o

Since () (s) achieves its maximum, then by Lemma 14,
(’(wyy) (s)=( %,a,ﬁ(s_w, 5y), (w,y) ) =0. On the other hand,
if [ ,(elw(z) |q(z) +Bly(2) ‘q(z))d"g(z) <0, then there is a
unique s >s,,. such that R(s7)= f/%(oc|w(z)|q(z) +B

ly(z) |q<z))dvg(z) and since

(s wws) =] () -g@) P
- (IDw(z) ") + |Dy()P ) dvy(2)
-2 ((a(2) +5(2)
M

=4(2)(s)" O w(2) " y(2) "
()R (s

dvy(2)
)
(sl o) @ -7
: (a\w(z)lq(z) +ﬁly(2)l'“z>) dv(2)
-2 | @I () diy )
< ()T [@(sv -] (st
By(2)1)dvy(2)| 0.

(75)
We obtain that (s w,s7y) € /5.
For s> 1, we get by (74) and (34) that
(8 eplsswssy) (Swsy)) <8 (S wy))
_ 4$(a*-¢-b*)—1(S—)aﬁrﬁ+
| @Oy e <o
(76)

and for 0 < s < 1, we deduce again by (73) and (34) that

(& aploswssy), (Cw50) 2 1Y )
_ 4s(a’+b’)—1 (S—)a’+ff

| @ dn ) o
(77)
Thus, s~ is unique, which achieves the proof.

(ii) If [, (alw(2)|"® + Bly(2)|"*)) d

vy(2) > 0, we have

0< J/% (alw ()| + Bly(2)|"® ) dvy ()
<y (o Bl y)|" < R (Smax)

(78)
fora+ < Kj.

Therefore, there are unique s* and s~ such that 0 <s*
<Spax <S>

%@v=jﬂ(ﬂw@n%*+MK@w@)d@@)=%@v,

R (s >0>R'(s),
(79)
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thus, by (i), we have (s'w,s"y) € Vg (sw,s7y) € N p
Eop(sw,s7y) 28 p(sw, sy) > &, p(s'w, s*y)for eachs € [s*,
sT] and & p(sTw,sTy) <&, s(sw, sy)foreachs € [0, s7].
Hence,

+ + . - -
Eup(sw,sy) = O<1Sr<15f Eop(swssy); & p(s w,s7y)
(80)
=sup&, g(sw; sy).
520

O

3.2. Existence of Nonnegative Solutions. This section is
devoted to proving the existence of minimizers in 4,

N B also to show the existence of two nonnegative solu-
tions of system ().

Lemma 23. For a+ f<K=min {K, k,}, the functional
& p has a minimizer (wy, y,) in Ny 5, which satisfies the fol-
lowing assumptions:

(i) &,
(ii) (wy,y}) is a solution of ()

p(wy,y5) =055 <

Proof. (i) Thanks to Lemma 18, &, ; is bounded below on
N o which in particular is bounded below in A ;ﬁ. Then,
there exists a minimizing sequence {wj,y,} C 4 such
that

lim &, 5(w,,y,)= inf &, 4(w,y)=

n—+00 (w)/)e‘/l/;ﬁ

0r<0. (81)

Since, &, is coercive, {(w,,y;)} is bounded on J.
Hence, we suppose that, without loss generality, (w}, y})
— (w§, y§) on J, and by the compact embedding (Theo-
rem 11), we have

w! — w{ strongly in LP®) (M) and L@@ () as n — +c0.

yt — y¢ strongly in I/ () and L*®**) () as n — +oo.
w; (z) — w{ and y; (z) — y; (z) a.e.in M as n — +00.

" (82)

Now, we shall demonstrate that w} — wj and y} —
Y4 in Wé’q(z)(/%) as n —> +00. Otherwise, let w! —w} or

Yu—Y, In W(l)’q(z)(/%) as n —> +00. Then, we have

Poy (W) < lim inf p, . (wy),

n—+00

Py 70) < Jlim inf ) n)>

Journal of Function Spaces

using (82), we obtain that

+P() = lim i (2)
Jﬂ\wo\ dvy(2) ningw 1nfj/%|wn| dvy(2),

(84
| pirCarer= tim int | 1,1 dvyce),
M M
since, (8',5(w], 7). (], 7)) =0, we ge
1 1
% +7 * = - = n> P
@) (55 = oy 1wl
(55

1 1 -
_ + + q
(e~ ) Nl

That is,

1 1 +
im0, 57) (3 = o) im0 1

n—-+00 a + n—-+00
1 1 -
(o ) Jm Dl

(86)

By (82) and (83), we have

1 1
+ - P
7is> (57 o N+ (5

1 _
- ;) iyl

(87)
Since, p* > q~ for ||(w, y)|| > 1, we deduce that
o= (wyl)rgw Eop(wsy) >0, (88)
which is a contradiction with Lemma 21. Hence,
w; — wy in Wé’q(z> (M),
Yy —ysin Wé’w> (M), (89)
im & p(w7,) = Eap(Whs Vo) = Tape

Consequently, (w, ) is a minimizer of &,z on ;5.
(ii) According to Lemma 17, we deduce that (wj, y5) isa
solution of (&). O

Lemma 24. Let {w,} and {y,} be any two bounded
sequences in Wé’q<z)(ﬂ). Then,

i J //WZ(Z)I“(Z) [y ()" edv,y (2)

n—+00

(90)
= Jﬂ|w5<z> )y (2)]°) dv, (2).

Proof. Similar to the proof ([21], Theorem 5.2), we will omit
it. O
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Lemma 25. If a+ B <K=min {K;,K,}, then &, has a
minimizer (wy, y,) in N,z such that

(l) goc,ﬁ
(ii) (wy,y,) is a solution of (&)

(Wp»¥p) =0,5>0

Proof. (i) As &, is bounded below on ./, ;s and so on W/ g.
Then, there exists a minimizing sequence {w,,y, } €/ g
such that

lim &, 4(w,,y,)= inf & s(w,y)=0,5>0. (91)

n—+00 (wy)et g

As &, is coercive, {w,,y,} is bounded in J, and thus,
there exists (wj, ;) € J such that up to a subsequence (w),
,¥,) € (wp,yy) and according to Theorem 11, we obtain

w, — w; strongly in LP@) (. )and L*®)**G) (it )as n — +oo,
y, — y, strongly in L’®) (. )and L*®**) (L )as n — +o0,
w, (x) — wy and y, (x) — y, (x) a.e.in M as n — +00.

(92)

According to (92) and Lemma 24, we deduce that

Jﬂ (a‘w”q(z) +ﬁ‘y;‘q(2)>dvg(z) _)L, <(x‘w5|q<z) +/3‘y5‘q(z>>dvg(z),

J' (w7 (2) "y ()] Py (2) — j 5 (2)"Py; () dv(2).
VA VA
(93)

On the other hand, if (wy, yy) € /4, then there exists a
constant s > 0 such that (swy, sy;) € #, 5, and according to
(92) and (93), we have

lin:oo‘gmﬁ(sw;,sy;) = ningw inf U — (\Dsw (2)P@

- »e)

Dy Jan(e) - |

(el ()7 + Bly; (2)%) iy (2) -
|2 W o
Lza( a5 @@l dvg(z)]

> ni@w inf Jﬂﬁ (\Dsw;(z”P(Z) + ‘Dsy;(zﬂp(z))dvg(z))

1
- lim inf[ — (afsw; (2)]1®
ot | g (o)

+ Blsy; (2) 1)) v,
' Jsw; (2)|C) oy (2) vy (2) >

(2) - lim inf
2
Lo
1 . 2 -
. Jﬂm (‘Dswﬁ ()P + Dsy (Z)> dv(2)
(oc\swo( 2)|1 + Blsy; (Z)‘q(z)) dvg(2)
Jswy (2)|¢

B [ 1
JJM(Z)
—J 2 s s ()] dvy(2)
a(2) +b(2) '
:ga,ﬁ(swo ¥p)-
(54)

11
Considering (32) and (94), we get

lim ', ()= lim inf U sP(ZH(Dw;(z) \P@+\Dy;(z)|f><z))dvg(z)
M

L)1)+ By, (2)1) ) dvy(2)

| s1a-

J./ﬂ ( ‘
B(z)-1), ~ — /b

—ZJ;(“@* O (2) )y (2) [y (2)]

>s ! lim inf [ (\Dw;(z) PP® + |Dy;(z)\P(Z)>dvg(z)

n—+00

-7 lim mf[ ((x\w;(z)\q(z) +[5\y;(z)\‘1<z>> dvy(2)
a

n—+00

n—s+00

2@ iy mel/\w;(z)\“(z)\y;(z)\b(z> dvy(z) >
[ (ipwi@r® + 1Dy @p®)avy(z) -
M

: J/ﬂ (el (1) + By (2) ) dvy(2)

_ platb)-1

|| b2 dy )

M

= (’<w5’y6)(s) =0.

(95)

For n large enough, C/(w;) (s) > 0. Since (w,,y,) € Vg
for all n e N, wehave(/ s (1) = OandC ()<0f0r
every n € N. ByLemma22 weget( ()<0fors>0
then from (95), we must have s < 1. Slnce (wo>¥5) €V op

and by Lemma 22, we conclude that 1 is the global maxi-
mum for {(,,,(s). Therefore, from Lemma 23, it follows

that

& ﬁ(wo’yo)< llm & pl inf &, s(w,y).

Wis Yp) < e,

(96)

It contradicts that (w, ;) € /', 5. Hence, (w,,y,) —
(wp>yy) strongly in J as n— +0o0 and (wy, y,) € H o p.
Using the fact that

inf &,

it p(W,y) >0, (97)

%a,ﬁ(wa’y(;>

and Lemma 15, we conclude that (wy, y;) € /74
(ii) From Lemma 17, (wj, ¥;) is a solution of (§). [

Proof of Theorem 1. From Lemma 23 and Lemma 25, there

are (w',y*) € /g and (w™,y") € /5 such that
Bug(W') = int 8 pluy) and 8wy
t &, )
= in w, y).
(wy)e 5y #)
Moreover, &, g(w*,y*) =&, z(lw*|,[y*]); hence, we
can assume w* >0, y* >0. From Lemma 17, (w*, y*) are

two critical points of &, gand, thus, are nonnegative nontriv-
ial solutions of system (). O
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