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This work is reserved for the study of a special category of boundary value problems (BVPs) consisting of Liouville-Caputo
integro-differential equations with multiple nonlinear terms. This fractional model and its boundary value conditions (BVCs)
involve different simple BMPs, in which the second BVC as a linear combination of two Caputo derivatives of the unknown
function equals a nonzero constant. The Banach principle gives a unique solution for this Liouville-Caputo BVP. Further, the
Krasnoselskii and Leray-Schauder criteria give the existence property regarding solutions of the mentioned problem. For each
theorem, we provide an example based on the required hypotheses and derive numerical data in the framework of tables and

figures to show the consistency of results from different points of view.

1. Introduction

In recent years, fractional differential equations have
attracted the attention of many authors because of the
numerous applications in various branches of science and
engineering, in particular, fluid mechanics, image and
signal processing, electromagnetic theory, potential the-
ory, fractals theory, biology, control theory, viscoelas-
ticity, and so on [1-3]. From the mathematical point of
view, a number of researchers working on fractional
calculus conduct their research in the field of applications
of different fractional operators and various structures of
BVPs in modeling abstract and real-world phenomena,
but the discussion related to the fractional derivatives is an
old problem and continues to receive many kinds of
feedback. The physical aspect of the fractional derivative is

now proved in many investigations. As we know, frac-
tional-order derivatives have many advantages in com-
parison to the first-order derivatives. For example, one of
the most simple examples in which the fractional de-
rivative has a significant impact can be observed in dif-
fusion processes. It is established that the subdiffusion is
obtained when the order of the fractional derivative be-
longs to the interval (0, 1). Another impact of fractional
derivatives can be observed in stability analysis. There are
many differential equations that are not stable with the
first-order derivative but are stable when we replace the
first-order derivative by the fractional-order derivatives.
By considering these cases, we can understand the im-
portance of fractional operators, and the Liou-
ville-Caputo derivative is one of the most important
examples in this field. For better and more accurate
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simulations and better numerical results, we use the
Liouville-Caputo derivative in this paper.

Along with these important abilities, fixed point theory is
regarded as one of the most important tools to derive ex-
istence criterion of solutions. To better understand the
subject, some research in this field can be enumerated. In [4],
Ahmad and Agarwal turned to the existence of solution for
several new structures of fractional BVPs via slit-strip BVCs.
Then, Ahmad and Ntouyas [5] and Alsaedi et al. [6] in-
vestigated similar results regarding solutions of a sequential
BWPs consisting of nonlocal integro-differential inclusions
of the Caputo type. In [7], Boucenna et al. defined a non-
linear P on the Sobolev space and utilized the special op-
erators for proving theorems with the help of some tools in
functional analysis. Similarly, Azzaoui et al. [8] defined
a Sobolev space again and derived the existence criterion for
positive solutions on such a space. Bai and Sun [9] not only
established the aforesaid existence criterion regarding
positive solutions but also derived their multiplicity to
a singular BVP. In [10], Islam et al. proved some results
about the existence of a solution of an infinite system of
integral equations by using a new family of contractions
entitled the generalized a-admissible Hardy-Rogers con-
tractions in cone b,-metric spaces over Banach algebras. In
[11], Shoaib et al. studied other existence results via
f-contractions of Nadler type in 2020. After that, recently,
Ali et al. [12] considered a nonlinear fractional differential
equation equipped with the integral type boundary condi-
tions and proved the existence results with the help of to-
pological degree theory.

Recently, Boulfoul et al. [13] considered a weighted space
of the Banach type by defining a nonlinear integro-differ-
ential BVP on an unbounded domain and checked two
properties of existence and uniqueness under fixed point
techniques. In the sequel of this path, a new type of gen-
eralized fractional operator in the Hilfer settings was utilized
by Shatanawi et al. to prove the main existence conditions
for a nonlocal multipoint BMP [14]. Zada et al. [15] con-
tinued similar area of existence theory by studying an im-
pulsive integro-differential BVP in the sense of
Riemann-Liouville and reviewed the property of the sta-
bility. In 2021, the authors in [16, 17] used two numerical
algorithms for approximating solutions of two similar
multiorder multiterm BWPs, with RL operators and the
generalized RL-y-operators. By developing studies in this
regard, new classes of BVPs were designed in the context of
p-Laplacian operators. Khan et al. introduced an advanced
singular fractional in the framework of the Atanga-
na-Baleanu derivation operators along with p-Laplacian
structure [18]; then, in another work, Hasib Khan et al. [19]
extended the above system in the form of a p-Laplacian
hybrid BWP.

Thereafter, some researchers expanded their existence
results on real systems and models. For example, Rizwan
et al. [20] designed a switched system of coupled impulsive
implicit model of Langevin equation, and both stability and
existence theories can be found in their paper for such
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a fractional physical structure. Etemad et al. [21] continued
their study by considering an inclusion BMP of the Capu-
to-Hadamard type and accomplished some results by terms
of a new notion called end-points along with approximate
property for these points. In the same year, Samei et al. [22]
reformulated similar Caputo-Hadamard inclusion BVP of
the hybrid type and turned to deriving existence criteria. The
theory of topological degree is another tool for obtaining
some results regarding solutions of a multiterm delay BVP
which Sher et al. implemented it in their newly published
article [23]. Abdeljawad et al. [24] modeled a new fractional
BWP and proved the relevant existence theorems on the
extended b-metric space. Also, Boutiara et al. [25] applied
the Caputo type and Erdélyi-Kober type operators for
modeling a nonlocal fractional BVP and deriving existence
aspects of solutions.

Along with above works, some researchers general-
ized existence theorems by terms of the existing notions
in quantum fractional calculus. For instance, Etemad
et al. [26] investigated a 3-point quantum inclusion BVIP
in the context of a-y-contractions. Sitthiwirattham [27]
studied g-integro-difference BVP containing different
values of q and orders, and Sitho et al. [28] designed
a noninstantaneous impulsive g-integro-difference BVP
with quantum Hahn operators. Samei et al. also in-
troduced a singular quantum BVP for the first time [29].
Even, some applications of fixed point can be followed in
the papers regarding mathematical biological models (see
[30-32]).

In [33], Ntouyas and Tariboon discussed the multiorder
BWP with a linear combination of fractional integrals in the
BVCs:

rD'z(8) + (1 - Dz (8) = u(8,2(8), 0<8<r’,
2(0)=0, rDINz(r")+(1-ADrz(r") = a,,
(1)

where D stands for the Riemann-Liouville 4™ derivative
with 7 € {6,,6,} provided that 1<d,,6,<2 and [ is the
Riemann-Liouville 7" integral with # € {#,,%,}, a, € R,
0<7<1, and 0<#<1. Green’s function for this corre-
sponding problem has been investigated and some existence
results have been obtained using fixed point theorems. Xu
et al. [34] turned to investigating the existence property and
Hyers-Ulam stability to fractional multiple order BWP:

DIz (8) + Dz (8) = u(8,2(8)), 0<8<7",

2

z(0)=0, 7Dy'z(r")+ 1522 (8) = aq, ()

where DJ and D} are Riemann-Liouville fractional de-

rivatives, with 1<¢<2 and 1<7<4, 0<rF<1, 0<¥<1,
0<6,<6-76,20,a,€R, and 0<g,< 1"

Inspired by the works cited above and to continue the
study of existence theory in the context of fractional BVPs,
we focus on surveying some results regarding solutions of
the following Liouville-Caputo integro-differential BVP:
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(FDQE F(1- r’)l]gf>z(§) = u(8,2(3)) + “Dii (8,2(3)),0< 8 < 1",

(3)

z(0) =0, rchgiz(T*) +(1- r’)Cngiz(T*) = a,,

so that °Dll is the Caputo 7" derivative with
71 € {6,635, 9,%,}, ay€R and [} stands for the Rie-
mann-Liouville fractional ¢4 integral such that
s1<6,,65<2,6,>65, 0<6,<1, 0<¥<1l, 0<rF<l,
0<7,,9,<d; —d3, and u, 1 € C(OxR,R) are two given
functions, where 0=:[0, 7*].

In fact, the existing ideas of two papers published in
[33, 34] motivate us to design a combined model of
Liouville-Caputo integro-differential BVP. Also, by as-
suming special values for coefficients, our problem is

(rC[D? F(1- r')ug'i"2>z(g) —u(3,2(8) + DT (8,2(8)), 8€0,

y
z(0)=0, “Dyu(l)=a,

Precisely, and in comparison to some similar works,
we have studied a more general problem in which we
have illustrated our theoretical results by numerical
examples and plots. These items make the novelty of our
work because it is important for us that we can analyze
the mentioned system analytically, numerically, and
graphically. We also consider two different nonlinear
terms in the right-hand side of the problem to cover
a vast range of nonlinear functions arising in particular
real fractional nonlinear mathematical models.

This paper is organized as follows. In Section 2, we
recollect several assembled definitions of fractional calculus,
useful lemmas, and some theorems about the fixed point that
we need subsequently. Section 3 is divided into three parts.
First, we utilize Banach’s criterion of contraction mapping to
establish our result regarding unique solution. In the next
subsection, we give the proof of the first fundamental ex-
istence theorem of this paper by utilizing a fixed point
criterion due to Krasnoselskii. Also, in the third subsection,
we verify another result regarding existence theory with the
aid of Leray-Schauder theorem. Along with these, appro-
priate applications in the framework of illustrative examples
are provided, in which numerical simulation and the cor-
responding data are given in each part graphically. Finally, in
Section 4, we point out the conclusions of our article.

2. Preliminaries

Before establishing our main results, we need to present
some useful definitions and properties which help us to
prove the essential lemmas and theorems.

Definition 1 (see [3]). Let 6>0 and z: (0,+00) — R be
continuous. The integral

reduced to some simpler forms of the fractional
boundary value problems. In other words, if # =1 and
7" = 1, then Liouville-Caputo BV (3) is reduced to the
following one:

°DYz(3) = 1(8,2(3)) + DL (8,2(3)), 8 € 0,
2(0)=0, “Dpu(l)+(1-ADLu(1) = a,

and if #=0 and 7 =1, then Liouville-Caputo BVP (3)
becomes

(5)

¢ 1 8 -1
ﬂwaa=ﬂajow—a 2 (E)dE (6)

is named as the fractional integral in the Riemann-Liouville
(FRL-integral) framework of order ¢ provided this integral
possesses a finite value.

Definition 2 (see [3]). Let ¢>0, x=[d]+1, and
z: (0,4+00) — R belong to AC™ ((0,00), R). Then, the
integral

cn? _ 1 g a1 (0
D(8) = roogs |, 50 2 @dE )

is named as the fractional derivative in the Caputo frame-
work of order ¢ provided its value is finite.

Remark 1. We have the following:
(E1) For 0<7<d, the equality CID;;[ISLZ(Q) = I]g:y’z(?;)
holds.

(E2) For 6> -1 such that 6#7-j,(j=1,2,...,n),
we have for 8 >0,

et v L(L+Y) g cg oy .
D8 =— " 3 d°p%8" 7 =0, =1,2,...,n).
F TTog+1) M0 (J ")
(8)

Proposition 1 (see [35]). Suppose that z is contained in the
space L (0)NE (O) and k = [6] + 1, where O = (0, 1). Then,

I]g+CCI]]Jg+z(§) =z(8)+d, +d,8+d;8" +---+d,_,8, (9)

with dy,dy, ..., d,_, € R.



Lemma 1 (see [36]). Let V be a nonempty, closed, and
convex subset of a Banach space E. Let Y,,Y, be such that
(H)Y,v+Y,w eV whenever z,w € V, (H;)Y, is compact
and continuous, and (H;)Y, is contraction. Then, 3z € V
withz =Yz+ Y,z

Lemma 2 (see [37]). Let E be a Banach space, V C E be
closed and convex in B, & CV be open, 0 € &, and let
@: & — V be completely continuous. Then, either (H,)
a fixed point is found for @ in & or (H;)3z €0E and £ € O
with z = €0 (z), where 0 = (0, 1).

This key lemma will be useful for our study.

Lemma 3. Let 1<6,,6;<2,6,>06; 0<d,<1, 0<F<1,
0<7#<1, and 0< 9,9, <G, — 3. Then, the integral equation

-1 # & 40,1
2@ = [ -orez@a
1 ¢ Gi-1
e ), e ue
1 # F=dy- 173
+m Jo (8-9) U)dé
F(F-1) T G-
+H§|:ao—mjo (T —E) Z(E)df
B ¥ o *_Eo’l—v’l—lu(f)df
5 o 79
S O T
7T(6, — ag) .[0 (=9
A-AF-1) [T, . dedr-1
—mjo (7" =% z(&)d¢
1-7 L R
G ), T o
1-7 T NG—di- i
_”T(él — 63) Jo (T - f) u(f)df],
(10)
with
¥ 1-7 1!
= 11
1= [rata o) a

is the solution of the linear fractional BVIP:
(r’chgi f(1- r’)ﬂgi)z(é) - U8+ DRTI(8), 0<8<T",
z(0) =0, rc[[]);’iz(r*) +(1- r’)Cngiz(T*) = a,.
(12)
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Proof. In view of the first equation of (12), we can write
' F1 1 le o
‘Dyiz(8) = ——1%z(8) + S U(8) + Dy Al (8).  (13)
d 7 7

Taking the ¢!" FRL-integral on (13), we find

N 1.
2(8) = 10"z (8) + 10 2 (3)
r r

L,
+=lpt CUB) +d, +4d,8
r

-1 # # 4y 1
—m Jo (8-9) z(&)d&
(14)

+

3
d-1
v end IR IOE

1
T (6, - 6y)
3 , N
JO (8= &) H T (E)dE +d, +d,8,

where d,,d, € R. The first boundary condition of (12) gives
us d, = 0; then,

=1 ® 40,1
z(3) —m ,[o (8-9) z(&)d&
1 ¢ g1
e ), B ueE (1s)

3 , -
! J(é’»—f)a"”3_1u(f)d€+d2§,

+7
T (6, -65) Jo

and by applying the #'"-Caputo derivative (1 € {#,,%,}) with
0<#%<d, —d; to (15), we obtain

f $ ,
D)= gy |, B9 2
1 2
1 ® G- 1
+m jo (8-9) U (§)dé
8 L
+rr(a_—10_,7) JO (-7~ T UE)dE
1 3
d, 1-4f
+F(2—’7)§ ,

(16)

because “D{.8 = I'(2)/T (2 — )8!~ ". Taking 7 = ¥, and 7} =
¥, in expression (16) and applying the second boundary
condition of (12), we get
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a F(F—1) J'l (1= 7015 (g)dE

TG, +6,-7) Jo

rf

1 s ’ 1
+fj (1- 5" (e
0

7T (6, - ;)
7 ! 6— Gy V- 153 dyf
e Jo T RO
1-AF-1) (! & 40y-v)—1
m Jo (1-9) z(&)dé
1-# ! G-y 1
+m[0(1—f) U(&)dE
1-7 b mde 15y d,(1-7)
G g |y 00T IO
(17)
Therefore,
B _F(F-1) N
dz‘n[“o FT (6, + 6, — ¥y) Jo(l ) <O

Ty Jl (1-5" " u(é)de
"T(ﬁl - 1;1) 0

‘ 1 L
! j (1- 9% (H)de

(6, -6, -7,) o

— A (F - 1 L e
_ (1 r) (7’ 1) j (1 _ €)01+027‘1}2712(£)d£

T (6,+6,- %) Jo

_ ¥ 1 .,
S J(l—f)"l'”z‘lu(f)df

(6, -%,) Jo
1-7 ! G Gy 177
S i=E) | a-o (Dt |
(18)

By substituting the value of d, in equation (15), we
obtain integral equation (10). This ends the proof. O

1-7

F(1- A

3. Basic Theorems with Illustrative Examples

Let O = [0, 1] throughout the paper. Consider the Banach
space C (0, R) of all continuous functions with the norm of
uniform convergence

Izl = suplz ()l (19)
3e0
In accordance with Lemma 3, it is obvious that we can
transform our BVP (3) to the following fixed point problem
z = Pz, where P is an operator P: C(0O,R) — C(0O,R)
defined as

F—1

Pz(8)=—
z(9) T (6, + 6,)

g . .
jo (8- &2 (8)dE
s

g . .
jo (8- &1z (8)dE

+

L [e-p a2 (@)
fr(él—é3)Jo B Hise

. H@[ao e JLC AR

(6, +6,-%) Jo

< 1 , N
! j(l—f)“l‘“u(f,z@))df

(6, ) Jo

T Jl (1= (& z(9))dE
(6, -6, -%) o <
1-AEF-1) (! G140y 1

- m JO (1 - f) Z(E)dE

—_ ¥ 1 .,
L-r j (1- &\ (£, 2 (E)dE

(6, -%,) o

_¥ 1 .,
L-r j(1—E)”f"f”flﬁ@,z(o)d&.

(6, -65-%,) o
(20)

Therefore, BVP (3) admits a solution equivalent to
saying that P has a fixed point.

3.1. Banach Principle and Unique Solution. First, we apply
Banach’s principle of contraction mapping to prove our
result of existence and uniqueness. To have computations
with more convenience and clarity, we use these notations:

1-A1-AI

m=

1 11

rT(él +6, + 1) FL(6+ 6, =Y +1) FT(6+6,—%,+1)

(21)

1-AI

b3

1

TG 1) G -+ 1) (6 - %+ 1)

(22)

1-AHI

G -+ 1)

AT (6, — 65— ¥, +1)

. 2
@, -6, 7%+ 1) (23)



Theorem 1. Assume that u,ii: O xR — R are two con-
tinuous functions subject to the following two conditions:

((‘91): |u(§’:Z) - u(ga Z*)l S®1|Z - Z*lx
(&) [1(8,2) -1 (8,27) <O,z - z*|,

for 3 €0, z,z* € R, where ©,,0, are two real positive
constants. If

M+ 011, +Oyn3 <1, (24)

then the supposed BVIP (3) admits a unique solution on O.
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Proof. By fixing u* = sup, ol (8, 0)] and
1" = sup, ol (8,0)| with the choice A, >0, so that

uy + 1+ H|a0|

A2

> , (25)
1=, =011, — Oy

where IT is the positive constant expressed by (11), at first, we
show that the image of the ball Bz by P is included in By ,
where

By ={z € C(O,R): |zl <B,}. (26)

So, for each z € BZI’ we have

_ ¥ 1 .
|Pz(6)|544434412447j (1- Oz (&)dE

AT (6, +6,) Jo

1

1 s
+t—— JO (1= (lu (€ 2(8) - u (& 0)] +u (£ 0))dE

7T (d)

1 s z
+% J (1= (18 (& 2(8) - (& 0)] +]T (£ 0)))dE

F(1-7) J

(6, +6,-7) Jo

1 e
(1= Nz (8)ldE

3 1 s .
! J (1= (Ju (& 2(9) — u(&0)] +[u (& 0))dE

+4
”T(él - 771) 0

[ age

+—
(6, — 65— 9) Jo
(1-H1-7) Jl

T(6,+6,-7,) Jo

LR (E 2 (8) - 6 (E0)] +11(0)))dE

(1§72 Yz (§)|dE

(27)

1-7 ! F— -1
I 1= (Ju(& z(8) — u (&0 +[u (& 0))dE

+7
T (6, -7,) Jo

1-7 ! Gim V=1 = . ~
+,—J- (1-§7 "= n (|11(f>2(f))—11(f,0)|+||11(f,0)|)df]

(6, - 65—, Jo

1-7 (1 -HII

< IIZII[

(6, +6,+1)

(6, +6, - % +1)

1-A1-AI ]

(6, +6,—-7,+1)

r(ouel+ <)

1

N FIT . a-Am
AL(6,+1) FL(6,— % +1) (6, —¥,+1)

711

+(©, Izl +Z*)[,

(1-A)II
T (G, — Gy — ¥, + 1)

] + I|ay|

T (6, — Gy +1) TGy~ Gy — 7 +1)

SA (1 + Oy, + Oy 1) + 'y + 1 15 + l_I|€‘0| <A,
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This implies that | Pz|| < A,. Thus P (BZl) C [EBZI' Next, for
all z,z* € C(O,R) and each 8 € O, we can write

|Pz(8) - Pz* (8)| Sfr(l - J (1= 7% Yz (&) - 2" (§)|dE

1
¢, +0’2) 0

Ay |, 00 @ - u(e 2 @)

1 ! Gy 1| - N
G g Jo 10T R E @ a6 )

F(1-7) ! G+t 7,-1 s
+H|:|a0|+rlr(é1+éz—751) Jo 1-9 |Z(f) z (f)ldf
4 ! d-7-1 *
b | Q- @) - (6 ()]

7T (6, - 7,)

3 1 .,
+;j (1- O G (5, 2(8) - 1 (62" (§)|déu
’/1)

7T (6, — 65— 0

(1-A1-7 [ PPV
mjoﬂ—f) |2(&) - 2" (©)d¢

P el S Jl (1= 9" u(€z(9) - u(E 2" (9)|de
T (6, -7%,) Jo ’ ’

1-7¢ ! &= Gy vy 1| = P *
+m Jo(l—f) lu(faz(f)) u(&Z (f))|d€
<y 1-# (1 - AII
S | Py oy Ay e

(1-H1-AII ]

T (6 + 6y — %, + 1)

PCY e | .
! T (6, +1) 7T(6, - % +1)
(1-AT
t =
T (6, -7, +1)
1 AT

+Oyfle -2 “[fr(él "Gt 1) TG, — 65— 4 1)

. (1-AII
T (6 — 65— ¥, + 1)

] =[m+ O+ ®2’73]"Z - Z*”’

(28a)

(28b)



which means that [|[Pz — Pz*|| <[5, + ©,1, + O,15]llz — 2™
Therefore, from (24), it follows that P is a contraction.
Consequently, the Banach principle of contraction mapping
ensures that P has a fixed point which represents the unique
solution of our BV (3). This ends the argument. O

Example 1. Consider the Liouville-Caputo fractional BVP

((4c 53 1
(50" + )= (9)

_ 21z(3)
(5+8) (1+exp(8)[z(8))

+C[D4/3[exp(—;%)lz(é’»)l]

"1 A +z(8)l

1o 16 3c 12
ZC[DW z(1) + Z;C'DO* z(1) = 5.

z(0) =0,
(29)

In the present example, we have &, =5/3 € (1,2],

G, =1/4 € (0,1], Gy =4/3 € (1,2], ¥ =4/5¢ (0,1]

f=1/4¢€ (0,1], %, =1/6 € (0,1], ¥, = 1/12 € (0,1], gy = 5,
¢ =1, and

>
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[u(8,2) —u(s,2")|

2|z| ~ 2|z*| |
(5+8) (L+exp(8)lzl) (5+8)*(1+exp(8)[z"])|

_ 2 | 2| ) 2| |
(5+8)° |(L+exp(3)lz]) (1 +exp(8)]z"])|

2 N
<—|z-27
25

i (8,2) - 1i(8,2")]

_|exp(—§)|z| ~ exp (8)|z”|
n otz |

_| 7'[2+|Z|

Sizlz—z*L
n

(31)

ie, ©; =2/25=0.0800 and ©, = 1/7* =~ 0.1013. A simple
computation gives us
-1

. , -1
2|z . exp (-8)|z| o= r,_1-7 _ V4 1-(45)
u(8,z) = ,  1u(8,2) = ———"—. — 5 — _ _
5+ g)z(l T exp(3)l2)) 7 Tl r2-9) Ir2-17,) I'(2- (1/6)) T(2- (4/12))
Then, and
¢ F(1- AT (1-A1-A
T (G, +6,+1)  FT(6,+ 6, -9, + 1) FT(6, + 6, +1)
B 1-4/5 + 1/4(1 — 4/5)I1 (1-1/4)(1-4/5)I1
T 4/5T(5/3+1/4+1) 4/5T(5/3+1/4-1/6+1) 4/5T(5/3+1/4-1/12+1)
I S A1 (1-AII
= (6, + 1) TG, -9+ 1) T (6, - ¥, + 1)
(33)

1 1/411

(1-1/4)11

= + + ,
4/5T'(5/3+1) 4/5T(5/3-1/6+1) 4/5I'(5/3-1/12+1)

1 11

(1- AT

13

1 1/411

TG, — 6y +1) TG, G5 —Fy 4 1) L(6y— 63— 7y + 1)

(1-1/4)I1

= + + .
4/5T'(5/3 - 4/3+1) 4/5I'(5/3-4/3-1/6+1) 4/5T'(5/3-4/3-1/12+1)

So, II=0.9607, #,=02766, n, =1.6945  and
#3 = 2.7171 which lead to
m+ 0+ 0,n; =0.6875<1. (34)

Table 1 shows these results. These values are plotted in
Figure 1. By using the result of Theorem 1, we conclude that
our BVP (29) admits only one solution on [0, 1].

3.2. Existence Result Based on Krasnoselskii’s Criterion.

Our existence analysis in this part is a consequence of

Krasnoselskii’s criterion (Lemma 1). For this fact, we in-

troduce two operators P; and P, defined on the ball
Bz ={z € C(O,R): |zl|A,},

3, = (35)

such that, for all 8 € O,
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TaBLE 1: Numerical values of #;, #,, %3, and II, for # € (0, 1], in Example 1.

7 e (0,1]

7 I M U 13 N+ 01, + O3
0.05 0.960 7 21.0209 271126 43.473 4 27.594 6
0.10 0.9607 9.9572 13.556 3 21.7367 13.2441
0.15 0.960 7 6.269 4 9.0375 144911 8.460 6
0.20 0.960 7 4.4254 6.7781 10.868 4 6.0689
0.25 0.960 7 3.3191 5.4225 8.6947 4.6338
0.30 0.960 7 2.5815 45188 7.2456 3.6771
0.35 0.9607 2.0547 3.8732 6.2105 2.9938
0.40 0.960 7 1.6595 3.3891 5.4342 2.4813
0.45 0.9607 1.3522 3.0125 4.8304 2.0826
0.50 0.9607 1.106 4 27113 43473 1.7637
0.55 0.9607 0.9052 2.464 8 3.9521 1.5028
0.60 0.9607 0.7376 2.2594 3.6228 1.2854
0.65 0.9607 0.5957 2.0856 3.3441 1.1014
0.70 0.9607 0.4742 1.9366 3.1052 0.9437
0.75 0.9607 0.3688 1.8075 2.8982 0.8070
0.80 0.9607 0.276 6 1.6945 2.7171 0.687 5
0.85 0.9607 0.1952 1.5949 2.5573 0.5819
0.90 0.9607 0.1229 1.506 3 2.4152 0.4881
0.95 0.9607 0.0582 1.4270 2.2881 0.4042

30 : : : : 0.6885 T T T T T T T T T
25 +
S MmO+ Oy <1

20 0.688

15+

10 + 0.6875

51

0 0.687 1 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1

(b)

FIGURE 1: Graphical representation of #, + ®,7, + ®,#; in Example 1. (a) r € (0, 1], ¥ = 1/4. (b) r = 4/5¢ € (0,1].
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-1

Pz(8) =—"
12(8) T (6, + 6,)

3 .,
jo (8- 2 (§)de

Mer(F—1) (!

—(—)j (1- o (6)de
T(6,+6,-7) Jo

M8(1-A(F-1)
T(6,+6,—7,)

1 , L,
jo (1§12 (e

(36)
and
P,z(8) = % j (8- 9" 'u (& 2(E)dé
1
1 d—d3—
8 j (8- T (E 2 (E)dé
A L.
+H§[ao—m JO (1-9) u (& z(8)d¢
7 ! d—d3—Y -1~
- m Jo (1-%) u (&, z(&))d¢
1-7 ! d—vy—1
T | a-oru @
1-7 ! 1= Gy=vy=1
—m ,[0 (1-9 u (& z(8)déE|.
(37)
Theorem 2. Consider  the  continuous  functions

u, 1: O x R — R which, respectively, satisfy the conditions
( &,) and ( 8,2) of Theorem 1. Furthermore, suppose that
(S$3): u(8,2) <0 (8),
(S 11(8,2) <0, (8),
for (8,2) e OxR, and ¢; € C(O,R"), j=1,2. If n,<1

which is defined in equation (21), then the supposed BVP (3)
admits at least one solution defined on O.

Proof. Put ||gj|| = supéeglgj(é)l, (j = 1,2). We choose A, so
that
s leala +leols +11jao]
I-n

In the first place, we prove that P,z + P,z" € By . So, for
all z,2" € By , we have

(38)

|Pyz(8) + Pzz* (8)|<

(1= Nz (&)|dE

1-7 jl
(6, +6,) Jo

1 011
o Jo 10 e @)l

Hf(l - f) 1 d+d,— -1
m Jo (1-9 |z (&)dE
H(l—r)(l 7) Gty vy 1
P j ) 2 (6)ldé

Journal of Function Spaces

j (1- % [ (& 2 (8))|dé

T (6, -63)

+H[|a0|+ I(6, —V)J (1-O" " u (&2 ()¢

7 G- 03— -1~ .
TG, - 65 - %) J 1= (82" ()|ae
1-# .
v g | a0 e @)
1-7 1 G—d3—vh— 1|~ .
(61— 65 %)) Io (1-9 iz (f))|df]

#(1 - AT
(6, +6, -7, +1)

1-7
<lel| 77— +
T (6, +6, +1)
a1-n1-°1 ]

T (6 + 6, — ¥, +1)

1
+l|91"|:1;1—‘(61 i 1)+r»1"(6-1 —)71 + 1) +r’1“(61 —1;2 + 1)

Joal| s -
THel G, =6, 1) TG, — 6, -7, + 1)

FII (1-AII ]

. a-pm
(6, -6y — vy + 1)] +Ha|
<A, +”91"’72 +“92”’73 + H'a0| <A,.

(39)

Thus, ||P,z+ P,z*||[<A,, which means that
Piz+ Pzz € B; . Now, we establish that P, is a contraction.
For 7,2 € B— we can write

1-7

P - P,z —_—
| lz(g) IZ (§)|S1’T(6'1+62)

1 , s
JO (1 _ E)aﬁoz—llz(%—) _ Z* (E)|df
I (1 - 7) ! PP X
T (6, + 6, —7,) JO (1-¢) |2(8) - 2" (§)]d¢
ma-na-rn
T (61 + 6, —¥,)

<l l| 7

1 / , ’
jo (1- %1 () - 2* (D)|de

1-#
b, +6,+1)

#(1 = AT
(6, +6, -7, +1)

UL, U O DR
TG +6,-v,+1y|  TETE

(40)
Then,

|P.z - Pz*| <y |z - 27 (41)

From the condition #; <1, it follows that P, is a con-
traction mapping. On the other hand, we know that the

continuity of P, occurs immediately from that of the func-
tions 1 and 1. Also, it is simple to establish that for z € Bz ,
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|2z < lle ]2 +[le25- (42)

In other words, P, is uniformly bounded on By . In this
moment, we need to show that P, is equlcontmuous Let

1" = SUp (5 ot (8,2)], and T = sup 5 ) conp |1 (8, 2)]-
(43)

This allows us to write, for any (8,,3,) € 0 x O, where
(8,<8,), and for all z € B :

|qu(§2) - P2U(§1)| =

é2 .

“0 (8, - &) u (& z(§)dE
é1 . 1

—jo (8, - &) u(&z(f»d&]

5 e
+—“ (8, =) " (& z(§))d¢

0
3, .
SNCE s)”l-”rlw,z(s»de] TI(8, - 8,)[ag

—;'jlu—f)”’f”’l‘l (&2 (E)dé
(6, - %) Jo Hisz

; 1 , L,
S S j (1- O G (£, 2 (8)dé

T (6, —65-7;) Jo

1-7 ! d—¥y-1
AT jo (1- O (& 2 ()dé

1-7

1 z s ’
— J (1= 5 (& z(8))dE

T (6, — 65— 7,)

11
+H(§2—§1)[|a0|+ﬁj (1-97 " tag
+mj e (44a)
A ot

(1-Au" Jl

r'r(cf1 — 6, -1,)

(1 _ %—)0'1—0'3—1/2—1d£:|
0

~%

— Q)Jll +11—
rF(cr Y1 (e, - 65)

+11(8, - 8,)[|a| + Fu" T (6, - %, +1)

Gi=ds _ 01=0s
[g B 87 "]

+ AT (6, — 65—V + 1) + (1 - Au'FL (6, — %, + 1)
(1= AR (6, - 65 — ¥, +1)].

(44b)

The right-hand side of the above inequality is not de-
pendent on and converges to 0, as 3, — 3, — 0. This means
that P, is equicontinuous and admits the relative com-
pactness on By . Thus, Arzela-Ascoli theorem ensures that
P, is compact on By . Consequently, our BVP (3) possesses
at least one solutlon on O. The proof is completed. O

Example 2. Consider the following Liouville-Caputo BMP:

2c 1558 1 2/7) sin’8 |z(8)]
— D, + =l 8) =
(23 o gl )2 (8) (r+8)2\lz(8)| +1

+C|D3/2[ 1 ( |z ()] >] (45)
" 3exp(®8) + 1\ + exp(8)z(3)l/ ]

2 3 /
z(0) = O,ECID(I;SZ(I) +§CD(1)+4Z(1) =—

Now, we have ¢, =15/8 ¢ (1,2]., &, =2/7¢€ (0,1],
G5 =3/2 € (0,1], ¥ =22/23 € (0,1], 7 =2/5¢ (0,1],
¥, = 1/8 € (0,1], %, = 1/4 € (0,1], a, = 22/7 € R¥,, T* = 1,
and

.2
1w (8,z) = 03 (|Z|> i(8,2)

(r+8)* \lz| +1
(46)

) 1 ( El )
“3exp(8)+ 1\’ +exp(8)lz] /)

Hence,
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|u(§,z)—u(g,z*)|_| sin’8 ( |z| )

|+ 8)? Izl +1

sin’8 | |z|

_ sin’3 ( |z )
(m+8)* \|z"] +1

"] |

- (n+§)2|lz| +1 |z*] + 1|

1 x
<5lz-2"|
s
(47)
- ok 1 1 z"
88,0 8(8.2)| <] : - B
'3 exp(8) + 1 \7n° +exp(8)lz|]/ 3 exp(8)+1\ 7’ +exp(8)|c”|
_ 1 | lz| ~ 2] |
3exp(8)+1 |7r2 +exp(8)lz| 7°+ exp(§)|z*||
1 *
<= |z -2z,
4
) 5 ) 1(3,2)] = sin’8 |z
ie, ®, =2/n°, ®, = 1/4, and accordingly, uis,z)l = (r+8) Uzl +1
2 )
, , -1 -1 sin“3 | |z| sin“3
_ 7 1-7 _ 2/5 1-2/5 = < =0, (8),
T=lre=%)" 1= ﬁz)] - [r(z— 78) 'T2- 1)) (m+8)[lel+17 (r+ )’
48) a0l ( i )
(%21 =3 exp(8) + 1\ 7” + exp (8)lz]
and ~ 1 I |z] |< 1 0, (3)
By some computations, we get II=0.9325, T3 exp(8) + 1||ﬂ2 +exp(§)|z|| “3exp(8) + A
M = 0.0415<1, 5, ~ 1.2287, 7, = 2.2275, and (50)
N1+ 01, + O,15 = 0.8473 < 1. (49) Table 2 shows these results. These numerical data are
plotted in Figure 2. Then, Theorem 2 states that the Liou-
Also, we get ville-Caputo BVP (45) admits at least one solution on 0.
B 1-# N F(1-AII (1-H1-AII
T =6, +6,+1) T (G, +6, -9y + 1) T(6,+ 6,9, +1)
B 1 . FI1 N (1-AI1
= (6, +1) T AT(6, -9, + 1) T (6, - ¥, + 1)
B 1-22/23 . 2/5(1 - 22/23)11 . (1-25(1-22023)1
B 22/23T(15/8 +2/7 +1)  22/23T(15/8 +2/7 — 1/4+1)  22/23T(15/8 +2/7 - 1/4 + 1)
(51)
B 1 . 2/511 N (1-2/511
B 22/23T(15/8 + 1)  22/23T(15/8 —1/8 +1) 22/23T(15/8 —1/4 + 1)
1 11 (1-AII
N3 =

1 2/511

TG, — 63+ 1) PTGy~ G5 — % +1)  T(6; — 65— ¥, + 1)

(1-2/5)I1

T 22/23T(15/8 —3/2+ 1) | 22/23T(15/8 —3/2— 1/8 + 1)  22/23T (15/8 — 3/2 — 1/4 + 1)’
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TaBLE 2: Numerical values of #;, #,, %3, and II, for r € (0, 1], in Example 2.

7€ (0,1]

7 II M P 13 N+ 01, + O3
0.04 0.9325 20.0781 27.0324 49.004 1 37.8071
0.09 0.9325 9.5828 13.5162 24.5020 18.4472
0.13 0.9325 6.0843 9.0108 16.3347 11.9939
0.17 0.9325 43351 6.7581 12.2510 8.767 3
0.22 0.9325 3.2855 5.406 5 9.8008 6.8313
0.26 0.9325 2.5858 45054 8.167 3 5.5406
0.30 0.9325 2.0860 3.8618 7.000 6 4.6187
0.35 0.9325 1.7112 3.3791 6.1255 3.9273
0.39 0.9325 14197 3.0036 5.4449 3.3895
0.43 0.9325 1.1864 2.7032 49004 29593
0.48 0.9325 0.9956 2.4575 4.4549 2.6073
0.52 0.9325 0.8366 2.2527 4.0837 2.3140
0.57 0.9325 0.7020 2.0794 3.7695 2.0658
0.61 0.9325 0.5867 1.9309 3.5003 1.8531
0.65 0.9325 0.4867 1.8022 3.2669 1.668 7
0.70 0.9325 0.3993 1.6895 3.0628 1.507 3
0.74 0.9325 0.3221 1.5901 2.8826 1.3650
0.78 0.9325 0.2535 1.501 8 2.7224 1.2385
0.83 0.9325 0.1921 1.4228 2.5792 1.1252
0.87 0.9325 0.1369 1.3516 2.4502 1.0233
0.91 0.9325 0.0869 1.2873 2.3335 0.9312
22/23=0.96 0.9325 0.0415 1.2287 2.2275 0.8473
1.00 0.9325 0.0000 1.1753 2.1306 0.7708

(a) (b)

FIGURE 2: Graphical representation of 7, + ®,#, + ®,1; and 7, <1 in Example 2. (a) r € (0,1],7 = 2/5. (b) 5, vsr = 22/23,# = 2/5.
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3.3. Existence Result by Using Nonlinear Alternative of
Leray-Schauder. Another result of existence criterion is
realized by implementing the hypotheses in Lemma 2. The
desired criterion is proved below by the next theorem.

Theorem 3. Assume that u,i: O xR — R are two con-
tinuous functions which satisfy the following assumption.
( &5): there are two continuous nondecreasing functions

©1 02 [0,+00) — (0, +00) and two functions
Ty, h, € C(O,R) provided that

u(8,z)|<h, (3 z|),

lu(8,2)| <hy (8)p, (lzI) (52)

(8, 2)| <1, (8)p, (ll2l),

for all (3,z) € O xR; moreover, the following assumption
holds. B
( 8¢): there exists a positive real constant A; so that
"f’h"((% (43) 1, +||h2||@2 (85) 15 + May|
As (1-1y)

>1,1, <L (53)

Then, the Liouville-Caputo BMP (3) has at least one
solution on O, where I1, #,,1,,#; stand for the same con-

stants introduced, respectively, by expressions (11), (21),
(22), and (23).

Proof. Consider again the operator P expressed as (20).
First, we will prove that P maps bounded sets into bounded
sets in C (O, R). Let

By ={z € C(O,R): |z] <8} (54)

be a bounded set in C(0,R), where § is a real positive
number (8 >0). For each 8 € O, we have

1-7 ! d+d,— 1
Pz 1o jo (1- &%z (8)lde
1 ! d-1
e ), - @ @

1 ,
! j (1- &% 5@ (£ 2 (O)|dE

+7
T (6, -65) Jo

1 s s .
(1= Nz (8)ldE

+H[|a0|+ F(L-7) J
0

AT (6, + 6, — %)

A 1 , ’
! J(1—E)"l’”l’llu(f,z(f))ldf

+7
7T (6, -%) Jo

< 1 , , ,
A J(1—E)"“"f”l"Iﬁ(f,z(f))ldf

TG, -6 -7) o
T

(6, +6,-7,) Jo

Journal of Function Spaces

_ ¥ 1 ,
L7 J(1—f)"l‘”“lu(f,z(E))Idf

1-7 ! by vy 1
by | (10T 6z (0l
(6, -65—-7,) Jo
<lzllp, "'"hl"ﬂ (@)1, +||h2"(@2 (IzI75 + 1_[|‘10|
<omy +||h1||P1 (01, +||h2“(@2 (&)n; + Hl“ol)
(55)
and consequently,

IPz|l < &1y +||h1||p1 (O, +||h2||g72 (On; + H"aO". (56)

The next property is that we prove that the operator P
maps the bounded sets to the equicontinuous sets. Let

U = SUP (5 2)conp, /1 (8, 2)], and " = SUP (5 ;) oxp, |1 (8, 2)].

(57)

So, for 8,8, € O with 3, <3, and z € B;, we have

6(1-7)
|Pz(§2) —Pz(gl)lﬁm

) “j‘ [(gz _E)dlﬂiz—l (3, - &-)dl-ﬂ'i’z—l]dg

+J': 3, _E)J’lﬂfz—ldg]

e[ -0 - e

+

§2 ,

IR O R A

o IR AR RO %

1

F(1-7)8 Jl (1- E)tflﬁ-a’z—v]—lds

(6, + 6, =) Jo

" ! d,-v-1
LS R
T, - ) Jo( 9 J

i ! G=dy=¥-1
1= 1N lg
T (6, - 65— %) .[0( 9 :

(1 _ 5)0’1—0'3—1/2—1d£
(58a)

. (1-H1-7A)§ Jl

T (6, -d5-7,) Jo
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1-Au” (! Gy 1
& oera] MURUA
(1-Aa*

! 01— 3= 1h—1
(6, - 6 —152).[ -9 df]
S5[(1 - - 81) I 1-1)(3,-8))

T (6, + 6, +1) fT(6,+6, -7, +1)
l'[(l—r)(l—r)(é’,2 3)
(6, —65—-7,+1)

Lo mes,-s)  m-n(s,-8)
T(6,+1) FI(6, -7 +1) #IL(6,-%,+1)
o[-t nr'(szz -3)
T (6, —65+1) 7L (6, —65-7% +1)

L O(1-7)(8,-8)
T (6) — 65—, + 1

)] +10|a,| (8, - 8,).
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boundedness of the set of solutions for the operator equation
z = Pz, where £ € O. Let now z be a solution of BVP (3).
With the same arguments used in (56), one can find

lzll < lizlln, +|5 |1 (2D, +[|7a ], (2175 + Tag|,  (59)
and we can also write it as
1 —

”h I|P1 (”Z")ﬂz +||h "@2 (||z||)r]3 + H|ao| -

From assumption ( &), there exists a constant A;>05s0
that A, # ||z||. Consider the set

={z € C(O,R): |zl < As}. (61)

It was proved that P: & — C (0, R) is a continuous and
completely continuous operator. The selection of the set &
allows us to confirm that there is no z €0E which satisfies
z = {Pz, for £ € 0. Hence, the requirements of Lemma 2
ensure that & involves a fixed point z* € E which stands for

(58b) the solution to our Liouville-Caputo BVP (3), and the proof
is completed. O
Note that the second side of the last inequality is not
dependent on z and goes to 0 when 8, — 3, — 0. Hence, by ' o
Arzela-Ascoli theorem, it is figured out that P is completely Example 3. Consider the Liouville-Caputo BVP
continuous. At this moment, we have established the
[ (17¢ 1002 5/12> 2 lz(3)I°
— D, +—I +1
(19 TR S Tryr v e Ey
13/12[ 1 ( Iz ()1’ . 52°(8) )] (62)
" 1103 exp(8) + D\Z*(8)+1 z*(8)+3
5 1/8 6
1(0)=0,2°D z(1)+ C[D(‘fz(n
L 11 o
Now, we have ¢, =19/12 € (1,2], 6, =5/12 € (0,1], Then,
6,=17/12 € (1,2], ¥=17/19€ (0,1], #=5/1¢ (0,1],
*=1,% =1/8 € (0,1], ¥, = 1/7 € (0,1], a, = 4/7, and 2
T v, =1/8 € (0,1], ¥, = 1/7 € (0,1], ay = 4/7, an By (8) = oias )>£01(||Z||) =zl + 1,
2 |Z(§’)|2 65
v = e D\z@+1 ) 1 (69
() =——————, = 5.
(63) 8= 155 @ 1y 22 (0 =1+
_ 1 lz(®)° = 52°(8)
u(8,2) = 5 +— ,
103 exp(8) + ) \z"(8)+1 z°(8)+3 On the other hand
and H_[ A b ]1_[ 500 1-511 ]
“|r(2-9%) Tr(2-7% TIre-18) T2-17)| °
48,21 o (el + D, G LGl re - us TG
(64) (66)
1
z2(8,2)|<—————— 5).
12(3,2)] 10(3 exp(8) +1) (2l +5) and
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TaBLE 3: Numerical values of 4, #,, #3, and II, for and # = 5/11, in Example 3.

7 II m P! 13
0.05 0.9504 18.6505 27.5308 38.8569
0.11 0.9504 8.8072 13.7654 19.428 4
0.16 0.9504 5.5261 9.176 9 129523
0.21 0.950 4 3.8855 6.8827 9.7142
0.26 0.950 4 2.9012 5.5062 7.7714
0.32 0.950 4 2.2450 4.5885 6.4761
0.37 0.9504 1.7762 3.9330 5.5510
0.42 0.950 4 1.4247 3.4413 48571
0.47 0.9504 1.1513 3.0590 43174
0.53 0.9504 0.9325 2.7531 3.8857
0.58 0.9504 0.753 6 2.5028 3.5324
0.63 0.9504 0.604 4 2.2942 3.2381
0.68 0.9504 0.4782 2.1178 2.9890
0.74 0.9504 0.3700 1.966 5 2.7755
0.79 0.9504 0.2763 1.8354 2.5905
0.84 0.9504 0.1943 1.7207 2.428 6
17/19=0.89 0.9504 0.1219 1.6195 2.2857
0.95 0.9504 0.0576 1.5295 2.1587
1.00 0.9504 0.0000 1.4490 2.0451
. 1-7 (1 - A)II (1-/A0-A~II

L=

(6, + 6, +1)  FT(6, 46, — 9y + 1) 7T(6,+6, 7%, +1)

_ 1-17/19 N 5/11(1 — 17/19)11 N
©17/19T(19/12 + 5/12+ 1) 17/19T(19/12 + 5/12 - 1/8 + 1)

(1 - 1—51> (1-17/19)11/17/19T (19/12 + 5/12 — 1/7 + 1),

B LM a-s0
TAT(6, +1) FT(6, -V + 1) FT(6, =7, +1)

~ 1 N 5/1111 N (1-5/11DI1

T 17/19T(19/12+ 1) 17/19T(19/12 - 1/8 +1)  17/19T(19/12 - 1/7 + 1)’

2

1 FI1 (1-AI
= + P P
I(6,-65+1) (6, -63—7% +1) FI(6;,-d5—-7,+1)

13

1 1 1
= # S/UT7/19T(19/12 = 17012 = 1) + (1 = SANTN719T(1912 = 17712 = + 1),
17/19T' (19/12 = 17/12 + 1) 8 ( ) 7
(67)
A simple computation leads to IT = 0.9504, #, = 0.1219,
#, = 1.6195, and n; = 2.2857. By solving the inequality
(Table 3)
_ "h1"K31 (A3)n, +||h2||Pz (83)n; + Mlag|
Ay (1-1y)
(68)
2% 1.6195/101 (A5 + 1) +2.2857/40 (A; + 5) + 0.9504 x 4/7 o1
B (1-0.1219)A, ’
we get A>1.1000> 1. Table 4 shows these data. These nu- Then, the assumption (6) holds for any A; > 0.8456.

merical values are plotted in Figure 3. Consequently, from Theorem 3, we conclude that for
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TabLE 4: Numerical results of A; and A based on Table 3 for #,, #,,

#3, and IT in Example 3.

IT = 0.9504, 1, = 0.1219, 7, = 1.6195, 1, = 2.2857

A, A>1
0.52 0.5357
0.56 0.5720
0.60 0.607 6
0.64 0.6426
0.68 0.6770
0.72 0.7109
0.76 0.7442
0.80 0.776 9
0.84 0.8091
0.88 0.8408
0.92 0.8720
0.96 0.9027
1.00 0.9329
1.04 0.962 6
1.08 0.9919
1.12 1.0207>1
1.16 1.0491
1.20 1.0770
1.24 1.104 6
1.28 1.1317
1.32 1.1584

FIGURE 3: Graphical representation of A>1 for 8 € (0,1) vs.A,

Liouville-Caputo BVP (62), at least one solution is found on
o.

4. Conclusion

In this paper, we considered a Liouville-Caputo BVP and
proved our main results by using three fixed point theorems
due to Banach, Krasnoselskii, and Leray-Schauder. Several
special cases can be extracted from the mentioned BVP (3).
Let us point out them, for example, if # =1, then the
Liouville-Caputo BVP (3) reduces to the following one:

17

DY C2(8) = u(8,2(8)) + D (8,2(8)).8 € O, )
z(0) =0, rchgiu(l) +(1- r’)cl]:bgiuu) = a,.

If # = 0, then the Liouville-Caputo BVMP (3) becomes
(rCDgE +(1- r')ug'i"Z)z(g) = u(8,2(8))+ DL (8,2(3)).8 € 6,

2(0) = 0,°Dy 2 u (1) = a.
(70)

Consequently, some existence and uniqueness results for
this particular case are obtained by exploiting Theorems 1-3.
For future studies, we aim to combine these BVPs with
nonsingular kernels in fractal-fractional operators.
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