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The aim is to present a new relational variant of fixed point result that generalizes various fixed point results of the existing theme
for contractive type mappings. As an application, we solve a periodic boundary value problem and validate all assertions with the
help of nontrivial examples. We also highlight the close connections of the fixed point results equipped with a binary relation to
that of graph related metrical fixed point results. Radically, these investigations unify the theory of metrical fixed points for
contractive type mappings.

1. Introduction

Alber and Guerre-Delabriere [1] presented the notion of
weak contraction in Hilbert spaces and established the com-
patible fixed point results. Afterwards, Rhoades [2] stated
that these results are still valid in the settings of metric
spaces which are complete. Weak contractions are also con-
nected to the mappings of Boyd and Wong [3], Geraghty [4],
and that of Reich [5]. Further, generalizations of these fixed
point results for weakly contractive mappings on this theme
was obtained by Dutta and Choudhury [6]. In this continu-
ation, an ordered analog of results due to Reich [5] and Ger-
aghty [4] were presented by Amini-Harandi and Emami [7].
However, an analog of Banach contraction principle [8] in
the same settings was investigated by Turinici [9] which
was later explored by several authors (see Ran and Reurings
[10], Nieto and Rodríguez-López [11], Sabetghadam and
Masiha [12], Sabetghadam et al. [13], Harjani and Sadaran-
gani [14], Samet and Turinici [15], Alam and Imdad [16,
17], and Prasad [18, 19]) and this process is still on. Mean-
while, Jachymski [20] presented an interesting metrical fixed
point result by incorporating the notion of graphical con-
traction mapping, and there exist detailed generalization of
this settings too (see for instance [21–23]).

Among all these generalizations, we must recite Alam
and Imdad [17] in which the authors utilized relational var-

iants of metrical definitions of continuity, contractions, and
completeness to obtain some interesting generalizations of
the fixed point results. Noticeably, Alam and Imdad [16]
presented a relational variant of fixed point result due to
Boyd and Wong [3] to such settings. The objective of this
work is to investigate a new fixed point theorem in relational
metric spaces and to solve a boundary value problem in the
light of obtained results. Moreover, we highlight the connec-
tion of such findings to the fixed point results obtained
under graphical contraction mappings. In this way, we uti-
lize the contractive assumption enjoying only on those ele-
ments which are associated with either a binary relation or
some graph related structure instead of the entire space.

2. Preliminaries

We use notations R for a nonempty binary relation, ℕ0 for
the the set ℕ0 =ℕ ∪ f0g, and ℝ for the set of real numbers
thoroughly in this paper. Also, the triple ðϝ, ς,RÞ denotes an
R-metric space where R is a binary relation on a nonempty
set ϝ, and ς is a metric on ϝ:

Definition 1 (see [24]). Let ϝ be a nonempty set and R ⊆ ϝ
× ϝ. Then,
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(a) R is a binary relation on ϝ and “ŭ relates v̆ underR”

iff ðŭ, v̆Þ ∈R
(b) ŭ and v̆ are R-comparative, if either ðŭ, v̆Þ ∈R or ð

v̆, ŭÞ ∈R, and denoted by ½ŭ, v̆� ∈R
(c) The inverse of R is defined by R−1 ≔ fðŭ, v̆Þ ∈ ϝ2

: ðv̆, ŭÞ ∈Rg
(d) The symmetric closure of R is defined by Rs ≔R

∪R−1

(e) ðŭ, v̆Þ ∈Rs iff ½ŭ, v̆� ∈R

Definition 2 (see [17]). Consider a binary relation R and a
self-map θ on a nonempty set ϝ. Then, for ŭ, v̆ ∈ ϝ,

(a) R is θ-closed if

ŭ, v̆ð Þ ∈R⇒ θŭ, θv̆ð Þ ∈R, ŭ, v̆ ∈ ϝ: ð1Þ

(b) R is θ-closed iff Rs is θ-closed

Definition 3 (see [17]). Consider a binary relation R and a
sequence fŭng on a nonempty set ϝ. Then, fŭng is an R

-preserving sequence (shortly, R-sequence) if ðŭn, ŭn+1Þ ∈
R, n ∈ℕ0.

Definition 4 (see [17]). Consider an R-sequence fŭng on an
R-metric space ðϝ, ς,RÞ. Then, ðϝ, ς,RÞ is R-complete if
every R-Cauchy sequence converges to a point in ϝ:

Remark 5. Every R-complete metric space is a complete
metric space, and in respect to the universal relation, these
notions are the same.

Proposition 6 ([17]). Consider a binary relation R and a
self-map θ on a nonempty set ϝ. If R is θ-closed, then R is
θn-closed, where n ∈ℕ0 and θn denotes nth iterate of θ.

Definition 7 (see [17]). Consider a self-map θ on an R

-metric space ðϝ, ς,RÞ. Then, θ is R-continuous at ŭ if for
any R-sequence fŭng with ŭn ⟶

ς ŭ, we have θŭn ⟶
ς θŭ.

Moreover, θ is R-continuous if it is R-continuous at each
point of ϝ.

Remark 8. Noticeably, continuity of θ implies R-continuity,
and in respect to the universal relation, these notions are the
same.

Definition 9 (see [17]). Consider anR-metric space ðϝ, ς,RÞ
. Then, R is ς-self-closed if for any R-sequence fŭng ⊂ ϝ
with ŭn ⟶

ς ŭ, there exists a subsequence fŭnkg of fŭng
with ½ŭnk , ŭ� ∈R, k ∈ℕ0.

Definition 10 (see [17]). Consider a binary relation R on a
nonempty set ϝ. A subset E of ϝ is R-connected if for each
pair ŭ, v̆ ∈E; there exists a path in R from ŭ to v̆.

Definition 11 (see [25]). Consider a binary relation R on a
nonempty set ϝ. Then, a subset E of ϝ is R-directed if for
each pair ŭ, v̆ ∈E; there exists w̆ ∈ ϝ so that ðŭ, w̆Þ ∈R and
ðv̆, w̆Þ ∈R.

Definition 12 ([16]). Consider a self-map θ on an R-metric
space ðϝ, ς,RÞ. Then, R is θ-transitive if for any ŭ, v̆, w̆ ∈ ϝ
, ðθŭ, θv̆Þ, ðθv̆, θw̆Þ ∈R⇒ ðθŭ, θw̆Þ ∈R.

Motivated by Turinici [26], Alam and Imdad [16] noti-
fied the subsequent weaker form of transitivity.

Definition 13 ([16]). A binary relation R on a nonempty set
ϝ is locally transitive if for each (effectively) R-sequence f
ŭng ⊂ ϝ (with range U≔ fŭn : n ∈N0g), the binary relation
RjU is transitive, where RjU is the restriction of R to U.

Definition 14 ([16]). Consider a self-map θ on an R-metric
space ðϝ, ς,RÞ. Then, R is locally θ-transitive if for each
(effectively) R-sequence fŭng ⊂ θðϝÞ (with range U≔ fŭn
: n ∈N0g), the binary relation RjU is transitive.

Definition 15 (see [25]). Consider a binary relation R on a
nonempty set ϝ. For ŭ, v̆ ∈ ϝ, a path of length kðk ∈ℕÞ, in
R from ŭ to v̆ is a finite sequence fw̆0, w̆1, w̆2,⋯, w̆kg ⊂ ϝ
satisfying the following:

(i) w̆0 = ŭ and w̆k = v̆

(ii) ðw̆i, w̆i+1Þ ∈R for each ið0 ≤ i ≤ k − 1Þ.
Noticeably, a path of length k has k + 1 elements of ϝ,

though they are not necessarily distinct.

Lemma 16 (see [16, 27]). Consider a sequence fŭng on ametric
space ðϝ, ςÞ. If fŭng is not a Cauchy, then there exist ε > 0 and
two subsequences fŭnkg and fŭmk

g of fŭng so that for k ∈ℕ,

k ≤mk < nk,
ς ŭmk

, ŭnk
� �

> ε,

ς ŭmk
, ŭnk−1

� �
≤ ε:

ð2Þ

(i) Moreover, if limn⟶∞ςðŭn, ŭn+1Þ = 0, then

limk⟶∞ς ŭmk
, ŭnk

� �
= ε,

limk⟶∞ς ŭmk+1, ŭnk+1
� �

= ε:
ð3Þ

Consider a binary relation R and a self-map θ on a non-
empty set ϝ. We use the following notations in the subse-
quent sections:
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(i) FðθÞ≔ fŭ ∈ ϝ : ŭ = θŭg (the set of all fixed points of
θ),

(ii) Mðθ,RÞ≔ fŭ ∈ ϝ : ðŭ, θŭÞ ∈Rg:
Also, C is the class of functions φ : ½0,+∞Þ⟶ ½0, 1Þ

satisfying the assumption φðsnÞ⟶ 1 implies sn ⟶ 0.

3. Main Results

In this section, we first consider the existence and unique-
ness of fixed points for contractive mappings in relational
metric spaces. Secondly, we present results related to graph-
ical structure in the similar metric settings.

Theorem 17. Consider a self-map θ on an R-metric space ð
ϝ, ς,RÞ. Assume that the subsequent assumptions hold:

(a) ðϝ, ς,RÞ is R-complete

(b) R is θ-closed and locally θ-transitive

(c) either θ is R-continuous or R is ς-self-closed

(d) Mðθ,RÞ is nonempty

(e) there exists φ ∈C so that

ς θŭ, θv̆ð Þ ≤ φ ς ŭ, v̆ð Þð Þς ŭ, v̆ð Þ, ð4Þ

for each ŭ, v̆ ∈ ϝ with ðŭ, v̆Þ ∈R. Then, θ has a fixed point.

Proof. In the light of assumption (d), let ŭ0 ∈Mðθ,RÞ:
Define a sequence fŭng of joint iterates with initial point
ŭ0, that is,

ŭn = θnŭ0, n ∈ℕ0: ð5Þ

Since ðŭ0, θŭ0Þ ∈R and R is θ-closed, we have

θŭ0, θ2ŭ0
� �

, θ2ŭ0, θ3ŭ0
� �

,⋯, θnŭ0, θn+1ŭ0
� �

,⋯∈R, ð6Þ

so that

ŭn, ŭn+1ð Þ ∈R, n ∈ℕ0: ð7Þ

So, fŭng is R-sequence.
If there exists n0 ∈ℕ so that ςðŭn0 , ŭn0−1Þ = 0, then ŭn0

= θŭn0−1 = ŭn0−1 is a fixed point of θ, so the proof is
accomplished.

In the other case, assume that ςðŭn, ŭn−1Þ ≠ 0, n ∈ℕ.
From (e), we have

ς ŭn+1, ŭnð Þ = ς θŭn, θŭn−1ð Þ ≤ φ ς ŭn, ŭn−1ð Þð Þς ŭn, ŭn−1ð Þ < ς ŭn, ŭn−1ð Þ:
ð8Þ

Put sn ≔ ςðŭn+1, ŭnÞ: Then, we have

sn ≤ φ sn−1ð Þsn−1 < sn−1: ð9Þ

So, fsng is a nonnegative nonincreasing and bounded
below which possesses the limit s: From the inequality (9),
taking n⟶∞, we have

s ≤ φ sð Þs < s, ð10Þ

implies φðsÞ = 1, and so, s = 0.
Now, we shall show that fŭng is Cauchy. On contrary,

assume that fŭng is not Cauchy. So, by Lemma 16, there
exist ε > 0 and two subsequences fŭnkg and fŭmk

g of fŭng
so that

k ≤mk ≤ nk, ς ŭmk
, ŭnk

� �
> ε ≥ ς ŭmk

, ŭnk−1
� �

, k ∈ℕ: ð11Þ

Next, in view of Lemma 16, we have

lim
k⟶∞

ς ŭmk
, ŭnk

� �
= lim

k⟶∞
ς ŭmk+1, ŭnk+1
� �

= ε: ð12Þ

Since fŭng isR-sequence and fŭng ⊂ θðϝÞ, so the local θ
-transitivity of R gives rise that ðŭmk

, ŭnkÞ ∈R. By triangular
inequality and (e), we obtain

ς ŭmk
, ŭnk

� �
≤ ς ŭmk

, ŭmk+1
� �

+ ς ŭmk+1, ŭnk+1
� �

+ ς ŭnk , ŭnk+1
� �

≤ ς ŭmk
, ŭmk+1

� �
+ φ ς ŭmk

, ŭnk
� �� �

ς ŭmk
, ŭnk

� �
+ ς ŭnk , ŭnk+1
� �

,

ð13Þ

that is,

ς ŭmk
, ŭnk

� �
≤ 1 − φ ς ŭmk

, ŭnk
� �� �� �−1 ς ŭmk

, ŭmk+1
� �

+ ς ŭnk , ŭnk+1
� �� �

:

ð14Þ

Using the facts that limsupk⟶+∞ςðŭmk
, ŭnkÞ > 0 and

limn⟶+∞ςðŭnk , ŭnk+1Þ = 0, we have

limsup
k⟶+∞

1 − φ ς ŭmk
, ŭnk

� �� �� �−1 = +∞, ð15Þ

which implies that limsupk⟶+∞φðςðŭmk
, ŭnkÞÞ = 1: Since φ

∈C , we obtain

limsup
k⟶+∞

ς ŭmk
, ŭnk

� �
= 0, ð16Þ

which is a contradiction in the light of (12). So, fŭng is R-
Cauchy. As ðϝ, ς,RÞ isR-complete, there exists ŭ ∈ ϝ so that
ŭn ⟶

ς ŭ.
Next, we assert that ŭ is a fixed point of θ. At first, we

consider θ is R-continuous. As fŭng is R-sequence with
ŭn ⟶

ς ŭ, R-continuity of θ implies that ŭn+1 = θŭn⟶
ς θ

ŭ. From the uniqueness of the limit, we obtain θŭ = ŭ, that
is, ŭ is a fixed point of θ:

Alternately, assume that R is ς-self-closed. So, there
exists subsequence fŭnkg of fŭng with ½ŭnk , ŭ� ∈R, k ∈ℕ0.
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By using the fact that ½ŭnk , ŭ� ∈R in the light of (e), we have

ς ŭnk+1, θŭ
� �

= ς θŭnk , θŭ
� �

≤ φ ς ŭnk , ŭ
� �� �

ς ŭnk , ŭ
� �

< ς ŭnk , ŭ
� �

:

ð17Þ

Taking limit k⟶∞ and ŭnk ⟶
ς ŭ, we have ŭnk+1

⟶ς θŭ, and hence, θŭ = ŭ.☐

Remark 18. Theorem 17 remains valid if we consider θ
-transitive, locally transitive or simply transitive assumption
in place of the locally θ-transitivity ofR besides retaining all
other assumptions.

3.1. Uniqueness Result

Theorem 19. Along with the assumptions of Theorem 17,
assume that the subsequent assumption holds:

(u) θðϝÞ is Rs-connected. Then, θ has a unique fixed
point.

Proof. Let ŭ and v̆ be two distinct fixed points of θ, that is,
FðθÞ ≠∅ and ŭ, v̆ ∈FðθÞ, then for n ∈ℕ0, we have

θnŭ = ŭ, θnv̆ = v̆: ð18Þ

Noticeably, ŭ, v̆ ∈ θðϝÞ. By assumption (u), there exists a
path (say w̆0, w̆1, w̆2,⋯, w̆k) of finite length k in Rs from ŭ
to v̆ so that

w̆0 = ŭ, w̆k = v̆ and w̆i, w̆i+1½ � ∈R for each i 0 ≤ i ≤ k − 1ð Þ:
ð19Þ

As R is θ-closed, then in the light of Proposition 6, we
obtain

θnw̆i, θnw̆i+1½ � ∈R for each i 0 ≤ i ≤ k − 1ð Þ, n ∈ℕ0: ð20Þ

Now, applying the contractive assumption (e) to (20), we
obtain

ς θnw̆i, θnw̆i+1ð Þ ≤ φ ς θn−1w̆i, θn−1w̆i+1
� �� �

ς θn−1w̆i, θn−1w̆i+1
� ��

:

ð21Þ

For convenience, we put tin = ςðθnw̆i, θnw̆i+1Þ.
We have two cases: Firstly, assume that tin0 = ςðθn0w̆i,

θn0w̆i+1Þ = 0 for some n0 ∈ℕ0, that is, θ
n0w̆i = θn0w̆i+1, which

implies that θn0+1w̆i = θn0+1w̆i+1. In this way, tin0+1 = ςðθn0+1
w̆i, θn0+1w̆i+1Þ = 0. Thus, by induction, we get tin0 = 0 for

every n ≥ n0. Hence, limn⟶∞tin = 0.
Secondly, assume that tin > 0 for n ∈ℕ0, then using (20),

in view of (e) and taking n⟶∞ on the inequality (21), we
have limn⟶∞tin = 0 for each i ð0 ≤ i ≤ k − 1Þ:

Finally, utilizing the triangular inequality of metric ς, in
view of above conclusion, we obtain

ς ŭ, v̆ð Þ = ς θnw̆0, θnw̆kð Þ ≤ t0n + t1n+⋯+tk−1n ⟶ 0, ð22Þ

as n⟶∞. Hence, θ has a unique fixed point.☐

Remark 20. Theorem 19 remains valid if we consider RjθðϝÞ
is complete or θðϝÞ isRs-directed in place of the assumption
(u) besides retaining the all other assumptions.

Example 21. Let ϝ = ½0,+∞Þ equipped with the usual metric
ςðŭ, v̆Þ = jŭ − v̆j for ŭ, v̆ ∈ ϝ. Define a binary relation R = fð
ŭ, v̆Þ: ŭ ≥ v̆ and ŭ, v̆ ∈ ½0, 1�g on ϝ and a mapping θ : ϝ⟶ ϝ
by

θŭ =
ŭ

1 + ŭ
, if ŭ ∈ 0, 1½ �,

3ŭ, if ŭ ∈ 1,+∞ð Þ:

8<
: ð23Þ

Clearly, ðϝ, ς,RÞ is an R-complete metric space and θ is
R-continuous. Let ŭ, v̆ ∈ ϝ. If ðŭ, v̆Þ ∈R, that is, ŭ, v̆ ∈ ½0, 1�,
then ðθŭ, θv̆Þ ∈R. Also, for all ŭ ∈ ½0, 1�, we have θŭ ≤ 1:
This implies that ðŭ, θŭÞ ∈R. Thus, the claim holds. In con-
sequence of the above reasonings, ð0, θ0Þ ∈R: Also, we can
easily verify that R is θ-transitive and locally θ-transitive.

Let ŭ, v̆ ∈ ϝ with ðŭ, v̆Þ ∈R. Define φðtÞ = ð1/ð1 + tÞÞ, t
∈ ½0,+∞Þ, we have

ς θŭ, θv̆ð Þ = θŭ − θv̆j j = ŭ
1 + ŭ

−
v̆

1 + v̆

����
���� = ŭ − v̆

1 + ŭ + v̆ + ŭv̆

≤
ŭ − v̆

1 + ŭ − v̆
= φ ς ŭ, v̆ð Þð Þς ŭ, v̆ð Þ:

ð24Þ

Thus, all the assumptions of Theorems 17 and 19 are sat-
isfied. Hence, θ has a unique fixed point.

Example 22. Let ϝ = ½1, 4� equipped with the usual metric ςð
ŭ, v̆Þ = jŭ − v̆j. Define a binary relation R = fð1, 1Þ, ð3/2, 2Þ,
ð2, 1Þ, ð2, 2Þ, ð5/2, 3Þ, ð3, 3Þ, ð7/2, 4Þg on ϝ and the mapping
θ : ϝ⟶ ϝ by

θŭ =

1, if ŭ ∈ 1, 2½ �,
2, if ŭ ∈ 2, 3ð �,
3, if ŭ ∈ 3, 4ð �:

8>>>>><
>>>>>:

ð25Þ

Let ðŭ, v̆Þ ∈R: Then, ðθŭ, θv̆Þ ∈ fð1, 1Þ, ð2, 2Þ, ð3, 3Þg
which implies that R is θ-closed. Observe that R is not
reflexive, antisymmetric, and neither transitive. So, R is
not partial order.

Now, we shall show R is ς-self-closed. Let fŭng be any
R-sequence with ŭn ⟶

ς ŭ, so that ðŭn, ŭn+1Þ ∈R, n ∈ℕ0
which implies that fŭng ⊂ f1, 2, 3g. As f1, 2, 3g is closed,
we can take a subsequence fŭnkg of fŭng so that ŭnk = ŭ, k
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∈ℕ0, which implies that ½ŭnk , ŭ� ∈R, k ∈ℕ0. Hence, R is ς
-self-closed.

Notice that, for φðtÞ = 1/ð1 + tÞ, t ∈ ½0,+∞Þ, we have

ς θ1, θ3ð Þ = θ1 − θ3j j = 1 > φ ς 1, 3ð Þð Þς 1, 3ð Þ = 2
3 , ð26Þ

that is, θ does not satisfy the contractive assumption (e)
of Theorem 17. However, if ðŭ, v̆Þ ∈R, then the assumption
(e) is satisfied for all ðŭ, v̆Þ ∈R: Also, by usual calculations,
we can easily verify that θðϝÞ is Rs-connected.

So, θ satisfies all assumptions of Theorems 17 and 19.
Thus, θ has a unique fixed point at ŭ = 1.

Remark 23. Noticeably, in Example 22 binary relation R is
nonreflexive, nonsymmetric, nonantisymmetric, and non-
transitive. So, it is not a partial order, quasiorder, and
near-order which indicate the utility of such generalizations
over the corresponding several prominent recent fixed point
results on this theme.

3.2. Fixed Point Result under Graphical Structure. Jachymski
[11] introduced the graphical variant of Banach contraction
principle in metric spaces by transforming the order struc-
ture into a graphical structure on such spaces.

Let ϝ be a nonempty set and Δ denotes the diagonal
points of ϝ × ϝ. Then, G is a directed graph with the vertex
set V ðGÞ which coincides with ϝ, and the edge set EðGÞ
containing its edges with all loops, that is, EðGÞ ⊇ Δ. Addi-
tionally, assuming that G has no parallel edges, so we can
symbolize G as a pair ðV ðGÞ,EðGÞÞ: Also, we assume G

as a weighted graph by assigning to each edge the distance
between its vertices. If ŭ and v̆ are any vertices of a graph
G , then a path in G from ŭ to v̆ of length k ðk ∈ℕÞ is a
sequence fŭigki=0 of k + 1 vertices so that ŭ0 = ŭ, ŭk = v̆ and
ðŭn−1, ŭnÞ ∈EðGÞ for i = 1, 2, 3,⋯, k: Graph G is connected
if there is a path between any two of its vertices, and G is
weakly connected if ~G is connected (see for details [21–23]).

The triple ðϝ, ς,GÞ denotes a G-metric space where G is
a graph on a nonempty set ϝ and ς is a metric on ϝ:

Definition 24 (see [20]). Consider a self-map θ on a G-metric
space ðϝ, ς, GÞ. Then, θ is said to be G-contraction if there
exists k ∈ ð0, 1Þ such that

∀ŭ, v̆ ∈ ϝ,  ŭ, v̆ð Þ ∈E Gð Þ⇒ ς θŭ, θv̆ð Þ ≤ kς ŭ, v̆ð Þ, ð27Þ

and G is θ-closed, that is,

∀ŭ, v̆ ∈ ϝ,  ŭ, v̆ð Þ ∈E Gð Þ⇒ θŭ, θv̆ð Þ ∈E Gð Þ: ð28Þ

Definition 25 (see [20]). Consider a sequence fŭng on a G

-metric space ðϝ, ς, GÞ. Then, fŭng is said to be edge-
preserving sequence (shortly, E-sequence) if ðŭn, ŭn+1Þ ∈E
ðGÞ, n ∈ℕ0.

Also, ðϝ, ς, GÞ is G-complete if every E-Cauchy sequence
converges in ϝ.

Definition 26 (see [20]). Consider a self-map θ on a G-metric
space ðϝ, ς, GÞ. Then, θ is G-continuous at ŭ if for any E

-sequence fŭng with ŭn ⟶
ς ŭ, we have θŭn ⟶

ς θŭ. More-
over, θ is G-continuous if it is G-continuous at each point of
ϝ.

Definition 27. Consider a G-metric space ðϝ, ς, GÞ. Then, G
is ς-self-closed if for any E-sequence fŭng ⊂ ϝ with ŭn ⟶

ς

ŭ, there exists a subsequence fŭnkg of fŭng with ðŭnk , ŭÞ ∈
EðGÞ, k ∈ℕ0.

Definition 28 ([23]). Consider a graph G on a nonempty set
ϝ. Then, G is transitive if, for any ŭ, v̆, w̆ ∈V ðGÞ with ðŭ, v̆
Þ, ðv̆, w̆Þ ∈EðGÞ⇒ ðŭ, w̆Þ ∈EðGÞ:

Definition 29. Consider a self-map θ on a G-metric space ð
ϝ, ς, GÞ. Then, G is θ-transitive if for any ŭ, v̆, w̆ ∈ ϝ, ðθŭ, θv̆
Þ, ðθv̆, θw̆Þ ∈EðGÞ⇒ ðθŭ, θw̆Þ ∈EðGÞ.

Definition 30. A graph G on a nonempty set ϝ is locally tran-
sitive if for each (effectively) E-sequence fŭng ⊂ ϝ (with
range U≔ fŭn : n ∈ℕ0g), the graph G jU is transitive.

Definition 31. Consider a self-map θ on a G-metric space ð
ϝ, ς, GÞ. Then, G is locally θ-transitive if for each (effectively)
E-sequence fŭng ⊂ θðϝÞ (with rangeU≔ fŭn : n ∈ℕ0g), the
graph G jU is transitive.

Theorem 32. Consider a self-map θ on a G-metric space ðϝ
, ς, GÞ. Assume that the subsequent assumptions hold:

(a) ðϝ, ς, GÞ is G-complete

(b) G is θ-closed and locally θ-transitive

(c) either θ is G-continuous or G is ς-self-closed

(d) Mðθ,GÞ is nonempty, that is, there exists ŭ0 in ϝ so
that ðŭ0, θŭ0Þ ∈EðGÞ,

(e) there exists φ ∈C so that

ς θŭ, θv̆ð Þ ≤ φ ς ŭ, v̆ð Þð Þς ŭ, v̆ð Þ, ð29Þ

for all ŭ, v̆ ∈ ϝ with ðŭ, v̆Þ ∈EðGÞ,

(f) G is weakly connected

Then, θ has a unique fixed point.

Proof. Define R = fðŭ, v̆Þ: ðŭ, v̆Þ ∈EðGÞ, ŭ, v̆ ∈ ϝg. Then,
clearly, the contractive assumption (e) is same as in Theo-
rem 17. Similarly, G-completeness of metric space implies
the R-completeness. From (d), we have ðŭ0, θŭ0Þ ∈EðGÞ,
which implies that Mðθ,RÞ is nonempty. For ŭ, v̆ ∈ ϝ with
ðŭ, v̆Þ ∈EðGÞ⇒ ðŭ, v̆Þ ∈R, then in the light of assumption
(b), ðθŭ, θv̆Þ ∈EðGÞ⇒ ðθŭ, θv̆Þ ∈R, that is, if G is θ-closed
and locally θ-transitive, then R is θ-closed and locally θ
-transitive. Also, one can easily verify that G-continuity of
θ implies R-continuity and ς-self-closedness of G implies ς
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-self-closedness of R. Moreover, the assumption (f ) implies
that θðϝÞ is Rs-connected which validates that θ has only
one fixed point.☐

Remark 33. In view of the above discussion, if we define a
binary relation R so that R = fðŭ, v̆Þ: ðŭ, v̆Þ ∈EðGÞ, ŭ, v̆ ∈
ϝg. Then, under this assumption of R, Theorem 32 reduces
to Theorems 17 and 19. This implies that edge preserving
structure of a graph is considered as a particular case of a
binary relation R.

Remark 34. Noticeably, if we define EðGÞ so that EðGÞ = f
ðŭ, v̆Þ: ŭ ≤ v̆, ŭ, v̆ ∈ ϝg: Then, under this assumption of EðG
Þ, Theorem 32 reduces to their corresponding partial
ordered analogous. This implies that partial-order relation-
related metrical notions can be considered as a particular
case of an edge-preserving structure related to a graph.

4. An Application

The theory of boundary value problems is a substantial field
of mathematics, having various applications in numerous
branches of physics, biology, chemistry, engineering, and
other fields related to the real life problems. Based on this
fact, we present a unique solution for the first order periodic
boundary value problem by utilizing the main result. For
this, we consider a periodic boundary value problem of first
order as follows:

ŭ′ sð Þ = q s, ŭ sð Þð Þ, s ∈ J = 0, S½ �, ŭ 0ð Þ = ŭ Sð Þ, ð30Þ

where S > 0 and q : J ×ℝ⟶ℝ is a continuous function.
Let CðJÞ denote the space of all continuous functions

defined on J . We recall the subsequent definitions.

Definition 35 (see [14]). A function β ∈ C1ðJÞ is a lower solu-
tion of (30), if

β′ sð Þ ≤ q s, β sð Þð Þ, s ∈ J ,
β 0ð Þ ≤ β Sð Þ:

ð31Þ

Definition 36 ([14]). A function β ∈ C1ðJÞ is a upper solution
of (30), if

β′ sð Þ ≥ q s, β sð Þð Þ, s ∈ J ,
β 0ð Þ ≥ β Sð Þ:

ð32Þ

Now, we prove the existence of solution for the problem
(30). Let A be a class of functions ϕ : ½0,+∞Þ⟶ ½0,+∞Þ
satisfying the subsequent assumptions:

(i) ϕ is increasing

(ii) for each ŭ > 0, ϕðŭÞ < ŭ

Examples of such functions are ϕðsÞ = μs, s ∈ ½0, 1Þ, ϕðsÞ
= s/ð1 + sÞ and ϕðsÞ = ln ð1 + sÞ:

Theorem 37. In addition to the problem (30), assume that
there exists δ > 0 so that ŭ, v̆ ∈ℝ with ŭ ≤ v̆,

0 ≤ q s, v̆ð Þ + δv̆ − q s, ŭð Þ + δŭ½ � ≤ δϕ v̆ − ŭð Þ, ð33Þ

where ϕ ∈A . Then, the existence of a lower or an upper solu-
tion of problem (30) validates the existence and uniqueness of
a solution of problem (30).

Proof. Problem (30) can be rewritten as

ŭ′ sð Þ + δŭ sð Þ = q s, ŭ sð Þð Þ + δŭ sð Þ, s ∈ J = 0, S½ �, ŭ 0ð Þ = ŭ Sð Þ:
ð34Þ

This can be transformed to the integral equation

ŭ sð Þ =
ðS
0
Q s, rð Þ q r, ŭ rð Þð Þ + δŭ rð Þ½ �dr, ð35Þ

where

Q s, rð Þ =
eδ S+r−sð Þ

eδS − 1 , 0 ≤ r < s ≤ S,

eδ r−sð Þ

eδS − 1 , 0 ≤ s < r ≤ S:

8>>><
>>>:

ð36Þ

Define θ : CðJÞ⟶ CðJÞ by

θŭð Þ sð Þ =
ðS
0
Q s, rð Þ q r, ŭ rð Þð Þ + δŭ rð Þ½ �dr, ð37Þ

and a binary relation

R = ŭ, v̆ð Þ ∈ C Jð Þ × C Jð Þ: ŭ sð Þ ≤ v̆ sð Þ, s ∈ Jf g: ð38Þ

(i) Note that CðJÞ with supmetric, that is, ςðŭ, v̆Þ = sup
jŭðsÞ − v̆ðsÞj for s ∈ J and ŭ, v̆ ∈ CðJÞ, is an R-com-
plete metric space

(ii) For an R-preserving sequence fŭng so that ŭn ⟶
ς

w̆: Then, for s ∈ J , we have

ŭ0 sð Þ ≤ ŭ1 sð Þ ≤ ŭ2 sð Þ ≤⋯ ≤ ŭn sð Þ ≤ ŭn+1 sð Þ ≤⋯ ð39Þ

which converges to w̆ðsÞ. This implies that ŭnðsÞ ≤ w̆ðsÞ, n
∈ℕ0. So, ½ŭn, w̆� ∈R, n ∈ℕ0. Hence, R is ς-self-closed.

(iii) For ðŭ, v̆Þ ∈R, that is, ŭðsÞ ≤ v̆ðsÞ, then in the light
of inequality (33), we have

q s, ŭ sð Þð Þ + δŭ sð Þ ≤ q s, v̆ sð Þð Þ + δv̆ sð Þ, s ∈ J , ð40Þ
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and Qðs, rÞ > 0 for ðs, rÞ ∈ J × J , we have

θŭð Þ sð Þ =
ðS
0
Q s, rð Þ q r, ŭ rð Þð Þ + δŭ rð Þ½ �dr

≤
ðS
0
Q s, rð Þ q r, v̆ rð Þð Þ + δv̆ rð Þ½ �dr

= θv̆ð Þ sð Þ, s ∈ J ,

ð41Þ

so that ðθŭ, θv̆Þ ∈R, that is, R is θ-closed.

(iv) Let β ∈ C1ðJÞ be a lower solution of (30), then we
must have

β′ sð Þ + δβ sð Þ ≤ q s, β sð Þð Þ + δβ sð Þ, s ∈ J: ð42Þ

Multiplying both sides by eδs, we have

β sð Þeδs
� �

′ ≤ q s, β sð Þð Þ + δβ sð Þ½ �eδs, s ∈ J , ð43Þ

so that

β sð Þeδs ≤ β 0ð Þ +
ðs
0
q r, β rð Þð Þ + δβ rð Þ½ �eδrdr, s ∈ J: ð44Þ

As βð0Þ ≤ βðSÞ, we have

β 0ð ÞeδS ≤ β Sð ÞeδS ≤ β 0ð Þ +
ðS
0
q r, β rð Þð Þ + δβ rð Þ½ �eδrdr,

ð45Þ

so that

β 0ð Þ ≤
ðS
0

eδr

eδS − 1 q r, β rð Þð Þ + δβ rð Þ½ �dr: ð46Þ

Using (43) and (45), we have

β sð Þeδs ≤
ðs
0

eδ S+rð Þ

eδS − 1 q r, β rð Þð Þ + δβ rð Þ½ �dr

+
ðS
s

eδr

eδS − 1 q r, β rð Þð Þ + δβ rð Þ½ �dr,
ð47Þ

that is,

β sð Þ ≤
ðs
0

eδ S+r−sð Þ

eδS − 1 q r, β rð Þð Þ + δβ rð Þ½ �dr

+
ðS
s

eδ r−sð Þ

eδS − 1 q r, β rð Þð Þ + δβ rð Þ½ �dr

≤
ðS
0
Q s, rð Þ q r, β rð Þð Þ + δβ rð Þ½ �dr = θβð Þ sð Þ:

ð48Þ

Thus, ðβðsÞ, θβðsÞÞ ∈R, s ∈ J and so Mðθ,RÞ ≠∅:

For ðŭ, v̆Þ ∈R,

ς θŭ, θv̆ð Þ = sup
s∈J

θŭð Þ sð Þ − θv̆ð Þ sð Þj j = sup
s∈J

θv̆ð Þ sð Þ − θŭð Þ sð Þð Þ

≤ sup
s∈J

ðS
0
Q s, rð Þ q r, v̆ rð Þð Þ + δv̆ rð Þ − q r, ŭ rð Þð Þ − δŭ rð Þ½ �dr

≤ sup
s∈J

ðS
0
Q s, rð Þδϕ v̆ rð Þ − ŭ rð Þð Þdr ≤ δϕ ς ŭ, v̆ð Þð Þ sup

s∈J

ðS
0
Q s, rð Þdr

= δϕ ς ŭ, v̆ð Þð Þ sup
s∈J

1
eδS − 1

1
δ
eδ S+r−sð Þ s

0 +
1
δ
eδ r−sð Þ

����
����
S

s

 !

= δϕ ς ŭ, v̆ð Þð Þ 1
δ eδS − 1
� � eδS − 1

� �

= ϕ ς ŭ, v̆ð Þð Þ = ϕ ς ŭ, v̆ð Þð Þ
ς ŭ, v̆ð Þ ς ŭ, v̆ð Þ:

ð49Þ

Define φðŭÞ = ϕðŭÞ/ŭ, then φ ∈C : By the last inequality,
we derive

ς θŭ, θv̆ð Þ ≤ φ ς ŭ, v̆ð Þð Þς ŭ, v̆ð Þ, ŭ, v̆ ∈ C Jð Þwith ŭ, v̆ð Þ ∈R:

ð50Þ

Thus, all assumptions of Theorem 17 are satisfied, so θ
has a fixed point. Finally, in view of the proof of Theorem
19, θ has a unique fixed point, which is indeed a unique solu-
tion of the problem (30).☐

5. Conclusion

In this work, we have proved new relational and graphical
variants of fixed point results and validated all the assertions
with the help of nontrivial examples. We have also provided
a view to connect the theory of fixed point results equipped
with a binary relation with that of graph related metrical
fixed point theory. Further, inspired by the fact that bound-
ary value problems appear in various branches of science
and engineering, we resolve them to verify the genuineness
and utility of the established conclusions.
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