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In general, solving fractional partial differential equations either numerically or analytically is a difficult task. However,
mathematicians have tried their best to make the task easy and promoted various techniques for their solutions. In this regard,
a very prominent and accurate technique, which is known as the new technique of the Adomian decomposition method, is
developed and presented for the solution of the initial-boundary value problem of the diffusion equation with fractional view
analysis. The suggested model is an important mathematical model to study the behavior of degrees of memory in diffusing
materials. Some important results for the given model at different fractional orders of the derivatives are achieved. Graphs
show the obtained results to confirm the accuracy and validity of the suggested technique. These results are in good contact
with the physical dynamics of the targeted problems. The obtained results for both fractional and integer orders problems are
explained through graphs and tables. Tables and graphs support the physical behavior of each problem and the best of physical
analysis. From the results, it is concluded that as the fractional order derivative is changed, the graphs or paths of dynamics
are also changed. Therefore, we now choose the best solution or dynamic of the problem at a particular derivative order. It is
analyzed that the present technique is one of the best techniques to handle the solutions of fractional partial differential
equations having initial and boundary conditions (BCs), which are very rare in literature. Furthermore, a small number of
calculations are done to achieve a very high rate of convergence, which is the novelty of the present research work. The
proposed method provides the series solution with twice recursive formulae to increase the desired accuracy and is preferred
among the best techniques to find the solution of fractional partial differential equations with mixed initials and BCs.

1. Introduction

Fractional Calculus (FC) is the study of derivatives and inte-
gration of fractional orders. The idea was first initiated by
L’Hospital, who wrote a letter to Leibniz about the noninte-

ger order of derivatives in 1665. After that, the devoted work
done by Euler, Lagrange, Abel, and Liouville gives more
extension to the field, which is very popular nowadays
because of its essential applications in the areas of biology,
physics, fluid mechanics, and other sciences [1–3].
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Fractional-order differential equations (FPDEs) have a
great contribution in the modeling of a variety of complex
natural and nonlinear phenomena. FPDEs have made a
significant contribution to various scientific research fields,
including a diverse range of processes and systems, memo-
ries, and various branches of mathematics. The modeling
of FPDEs, whether they are with respect to time or space,
is more convergent, and many natural phenomena are accu-
rately described by them. The researchers in the fields of
anomalous diffusion, dielectric polarization, control theory,
and other problems of physical phenomena are interested
in FPDEs [4–10]. Since the fractional order of the derivative
works more accurately than integer order in describing the
properties related to hereditary and where the future state
is influenced by the past state, FPDEs give the highest contri-
bution to explaining such types of systems. Psychology, biol-
ogy, acoustics, chemistry [11], physics, colored noises [12],
and continuum mechanics [13] are some of the scientific
phenomena and problems that FPDEs are used to model.
Special applications of FPDEs can be found in various
branches of physics and hydrology, including [14–22].
FPDEs have grown in popularity because, by definition, the
fractional derivative is global, whereas the integer order
derivative is local [23–25].

In recent years, the development of numerical and ana-
lytical methodologies for the solution of FPDEs is a hot topic
among the researchers. Obtaining numerical or analytical
solutions to FPDEs is never a simple task for mathemati-
cians. Many researchers, on the other hand, have devised a
number of novel techniques for dealing with FPDE solu-
tions. Some of the important techniques include the Haar
wavelet method (HWM) [26], the Laplace transform method
[27], the Elzaki transform decomposition method (ETDM)
[28], the Adomian decomposition method (ADM) [29], the
finite difference technique [30, 31], the natural transform
decomposition approach [32], the Legendre base method
[33], the homotopy analysis method [34], the differential
transform method [35], the variational iteration approach
[36], and the Bernstein polynomial [37].

Many researchers have studied the time-fractional dif-
fusion equations (TFDEs) because of their various applica-
tions in science and engineering and other branches of
applied sciences. TFDEs are broadly found in physical,
biological, and engineering processes [38–41]. The TFDEs
are used by Nigmatulin [39] to describe diffusion in media
with spectral geometry. The TFDEs are being investigated
by many researchers, both analytically and numerically
[42, 43]. The solution method of the Laplace transform
and a similar method is used to obtain the invariant solu-
tion of TFDEs by Gorenlfo et al. [44, 45], and Lin and Zu
applied a finite difference scheme in the Legendre spectral
method and in space for TFDEs [46]. Dhaigude and
Nikam [13] and Schneider and Wyss [43] worked on
TFDEs and wave equations to obtain the solution. More-
over, the existence and uniqueness of the targeted prob-
lems are shown in [47]. Here, the researchers either used
only one from initial boundary conditions (IBCs) to solve
the problems. In the current research article, a modified
method of ADM is implemented to solve TFDEs with

both IBCs suggested by Ali in [48]. The same procedure is
applied to the problems of having both initial and BCs in
[49] with the homotopy perturbation method, and the results
are excellent. Ali applied this new technique in [50] with a var-
iational iteration method to initial-boundary value problems.
The procedure becomes accurate because there is a new initial
approximate solution with each new iteration. For justifica-
tion, some examples are discussed in this paper.

ADM was first introduced by Adomian [51] in the
1980s, and it was observed that the technique is beneficial
for nonlinear equations. Wazwaz [52] applied the same
method to solve different kinds of differential equations.
Niu and Wang [53] used the decomposition method to find
the solution of fractional heat-like and wave-like equations.
Niu and Wang [53] applied this method to boundary value
problems to calculate a one-step optimal homotopy analysis
method. Pandir and Yildirim used the homotopy perturba-
tion method and ADM in conformable sense [54]. The
mathematicians have made several modifications to ADM
which have improved the accuracy of the technique, and
some of them are [55–57]. Here, a modified technique is
implemented to solve the initial and boundary value prob-
lems (IBVPs) of TFDEs. In the literature, various authors
have used numerical and analytical techniques for the solu-
tion of the initial value problems of FPDEs and their
systems. However, only a few attempts were made to solve
IBVPs of FPDEs and their systems. In this regard, Elaf Jaafar
Ali has made a contribution and developed a new technique
to solve FPDEs. He modified the existing techniques of
ADM to solve IBVPs of FPDEs.

In this paper, we will work on the solution of TFDEs by
using a new technique of the Adomian decomposition
method (ADM). In literature, some important numerical
and analytical techniques have been used for the solutions
of time and space fractional diffusion equations [25, 54]. In
this article, the work of Elaf Jafaar Ali is further extended
to solve IBVPs of TFDEs. The general description of the pro-
posed method is implemented to solve some examples of the
suggested problems. The analytical solutions of FPDEs with
initial and boundary conditions are very difficult to investi-
gate. In the current work, the analytical solutions of TFDEs
are obtained in a very simple and straightforward procedure
and provide the closed-form solutions. The less computa-
tional work and simplicity are the uniqueness of the present
modified technique. The obtained results are displayed
through graphs. The graphical representations have shown
that there is a close contact between the exact and the
approximate solutions of the problems. The solutions are
obtained for various fractional-order problems. The frac-
tional order solutions provide useful information about the
dynamics of the suggested problems. It is observed that the
proposed technique has a very effective procedure for solv-
ing FPDEs and their systems with IBCs. However, some lim-
itations are observed while using the present technique, that
is, if the FPDEs or their systems have a higher number of
IBCs, then the proposed method required a large number
of calculations to achieve the results. Mostly, the suggested
methods have smaller accuracy at a greater time value and
their accuracy increased at a smaller time value. For higher

2 Journal of Function Spaces



nonlinear problems, the solution components are not easy to
compute, so very few terms are calculated to achieve the
required solution.

2. Preliminaries

Some definitions that are related to our study are considered
in this section.

2.1. Definition. The integral operator of Reimann-Liouville
having order δ is given by [40]

Iδσh
� �

σð Þ =
1

Γ δð Þ
ðτ
0
σ − νð Þδ−1dν, δ > 0,

h σð Þ, δ = 0,

8><
>: ð1Þ

where Γ is the gamma function and can be written as

Γ ωð Þ =
ð∞
0
e−σσω−1dτ, ω ∈ℂ: ð2Þ

2.2. Definition. The expression for Caputo for fractional
order δ is as follows:

Dδh
� �

σð Þ = ∂δh σð Þ
∂τδ

=
Im−δ ∂δh σð Þ

∂τδ

" #
, m − 1 < δ ≤m,m ∈ℕ,

∂δh σð Þ
∂τδ

,

8>>>><
>>>>:

ð3Þ

where m ∈ℕ, σ > 0, g ∈ℂτ, and τ ≥ 1.

2.3. Lemma. For j − 1 < δ ≤ j with j ∈ℕ and h ∈ℂτ with
τ ≥ −1, then [58]

IδIb = Iδ+bh σð Þ, b, δ ≥ 0,

Iδσλ = Γ λ + 1ð Þ
Γ δ + λ + 1ð Þσ

δ+λ, δ > 0, λ>−1, σ > 0,

IδDδh σð Þ = h σð Þ − 〠
j−1

k=0
hk 0+ð Þ σ

k

k!
,

8>>>>>>><
>>>>>>>:

ð4Þ

where σ > 0, j − 1 < δ ≤ j.

2.4. Definition. The Mittag-Leffler function EδðρÞ for δ > 0 is

Eδ ρð Þ = 〠
∞

m=0

ρm

Γ mδ + 1ð Þ
� �

, δ > 0, ρ ∈ℂ: ð5Þ

3. Adomian Decomposition Method

This method was discovered by Adomian in 1994 for the
solution of linear and nonlinear differential and integrodif-
ferential equations [29]. To understand the method, let us
consider an equation of the following form:

F ϑ σð Þð Þ = g σð Þ, ð6Þ

where F is a nonlinear differential operator and g is the known
function.Wewill split the linear term in FðϑðσÞÞ into the form
Lϑ + Rϑ, where L is the invertible operator, chosen as the
highest order derivative, R represents the linear operator,
and then, Equation (6) has the representation as follows:

Rϑ + Rϑ +Nϑ = g, ð7Þ

where Nϑ is the nonlinear term of FðϑðσÞÞ. Apply R−1 to
Equation (7) on both sides.

ϑ = φ +R−1 gð Þ −R−1 Rϑð Þ −R−1 Nϑð Þ, ð8Þ

where the constant of integration is φ, and Rφ = 0.
The following infinite series shows the solution of

ADM as

ϑ = 〠
∞

n=0
ζn: ð9Þ

The Nϑ is a nonlinear term represented by An, defined
as follows:

Nϑ = 〠
∞

n=0
An: ð10Þ

Using the following to calculate An,

An =
1
n!

dn

dψn
N 〠

∞

k=0
ψkυk
� � !

, n = 0, 1,⋯: ð11Þ

Equation (6) has a solution in the form of a series
as follows:

ϑ0 = φ +R−1 gð Þ, n = 0,
ϑn+1 =R−1 Rϑnð Þ −R−1 Anð Þ, n ≥ 0:

(
ð12Þ

4. Modification of ADM

To understand the main idea of the proposed technique, we
will take the following one-dimensional equation [48]:

Dδ
τ ϑ σ, τð Þð Þ = ∂2ϑ σ, τð Þ

∂σ2
+w σ, τð Þ, 0 < σ < 1, τ > 0, 0 < δ < 1,

ð13Þ

having the IBCs as follows:

ϑ σ, τð Þ = ℓ0 σð Þ,  ∂ϑ σ, 0ð Þ
∂τ

= ℓ1 σð Þ, 0 ≤ σ ≤ 1,

ϑ 0, τð Þ = ℏ0 τð Þ, ϑ 1, τð Þ = ℏ1 τð Þ, τ > 0:

8<
:

ð14Þ

The source term is represented by wðσ, τÞ.
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The new initial solution ðϑ∗nÞ calculated for Equation
(13) can be written in operator form as

ϑ∗n = ϑn σ, τð Þ + 1 − σð Þ ℏ0 τð Þ − ϑn 0, τð Þ½ � + σ ℏ1 τð Þ − ϑn 1, τð Þ½ �:
ð15Þ

In operator form, Equation (13) can be written as

Rϑ = ∂2ϑ σ, τð Þ
∂σ2

+w σ, τð Þ: ð16Þ

R is

R = ∂δ

∂τδ
, ð17Þ

so R−1 is

R−1 :ð Þ = Iδ :ð Þdτ: ð18Þ

Applying R−1 to Equation (16), we obtained

ϑ σ, τð Þ = ϑ σ, 0ð Þ +R−1 ∂2ϑ σ, τð Þ
∂σ2 +w σ, τð Þ

 !
, ð19Þ

where n = 0, 1,⋯:
The initial approximation can be written as

ϑ0 σ, τð Þ = ϑ σ, 0ð Þ +R−1 w σ, τð Þð Þ, ð20Þ

and hence, the iteration formula is

ϑn+1 σ, τð Þ =R−1 ∂2ϑ∗ σ, τð Þ
∂σ2

 !
: ð21Þ

The initial solutions u∗n of Equation (13) satisfied both
the IBCs, as given in the following:

at τ = 0, ϑ∗n σ, 0ð Þ = ϑn σ, 0ð Þ,
 σ = 0, ϑ∗n 0, τð Þ = ℏ0 τð Þ,
 σ = 1, ϑ∗n 1, τð Þ = ℏ1 τð Þ:

ð22Þ

The proposed technique works effectively for two-
dimensional problems.

5. Numerical Results

In this section, some illustrative examples are solved by the
new technique of ADM.

5.1. Example. Consider TFDE of the following form [59]:

∂δϑ σ, τð Þ
∂τδ

= ∂2ϑ σ, τð Þ
∂σ2

+ Γ 4 + δð Þ
6 σ4 2 − σð Þτ3

− 4σ2 6 − 5σð Þτ3+σ, 0 ≤ σ ≤ 2, 0 < δ ≤ 1,
ð23Þ

having the IBCs as follows:

ϑ σ, 0ð Þ = 0,
ϑ 0, τð Þ = ϑ 2, τð Þ = 0:

ð24Þ

The problem has the analytical solution at δ = 1 as follows:

ϑ σ, τð Þ = σ4 2 − σð Þτ3+δ: ð25Þ

Applying the suggested method of ADM to Equation (23),
we have

ϑ∗n σ, τð Þ = ϑn σ, τð Þ + 1 − σð Þ 0 − ϑn 0, τð Þ½ � + σ 0 − ϑn 2, τð Þ½ �,
ð26Þ

where n = 0, 1,⋯.
Applying R to Equation (23), we have

Rϑ = ∂2ϑ σ, τð Þ
∂σ2

+ Γ 4 + δð Þ
6 σ4 2 − σð Þτ3 − 4σ2 6 − 5σð Þτ3+σ,

ð27Þ

where R = ∂δ/∂τδ and R−1 is

R−1 :ð Þ = Iδ :ð Þdτ: ð28Þ

Operating Equation (23) by mathcalR−1, we have

ϑ σ, τð Þ = u σ, 0ð Þ +R−1

� ∂2ϑ σ, τð Þ
∂σ2

+ Γ 4 + δð Þ
6 σ4 2 − σð Þτ3 − 4σ2 6 − 5σð Þτ3+σ

 !
:

ð29Þ

Using ADM solution, the initial approximation becomes

ϑ0 σ, τð Þ = ϑ σ, 0ð Þ +R−1 Γ 4 + δð Þ
6 σ4 2 − σð Þτ3 − 4σ2 6 − 5σð Þτ3+σ

� �

= 0 + Γ 4 + δð ÞΓ 4ð Þσ4 2 − σð Þτ3+δ
6Γ 4 + δð Þ −

4σ2 6 − 5σð ÞΓ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

= σ4 2 − σð Þτ3+δ − 24σ2 + 20σ3� �
Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ ,

ϑ0 σ, τð Þ = σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ + 20σ3Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ :

ð30Þ

With the help of initial approximation ϑ∗n , the formula
for iterations is
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ϑn+1 σ, τð Þ =R−1 ∂2ϑ∗n
∂σ2

 !
: ð31Þ

Use the IBCs in Equation (26), for n = 0:

ϑ∗0 σ, τð Þ = ϑ0 σ, τð Þ + 1 − σð Þ 0 − ϑ0 0, τð Þ½ � + σ 0 − ϑ0 2, τð Þ½ �

= σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ + 20σ3Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ

= σ4 2 − σð Þτ3+δ − 24σ2 + 20σ3� �
Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ

+ 1 − σð Þ 0 − 0½ � + σ 0 − 0 − −16Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

� �� 	
,

ϑ∗0 σ, τð Þ = σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

+ 20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

16σΓ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ :

ð32Þ

From Equation (31), we have

ϑ1 σ, τð Þ =R−1 ∂2ϑ0∗
∂σ2

 !

=R−1 24σ2 − 20σ3
� �

τ3+δ −
48 − 120σΓ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ
� �

,

ϑ1 σ, τð Þ = 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

−
48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ :

ð33Þ

For n = 1, Equation (26) becomes

ϑ∗1 σ, τð Þ = ϑ1 σ, τð Þ + 1 − σð Þ 0 − ϑ1 0, τð Þ½ � + σ 0 − ϑ1 2, τð Þ½ �

= 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

−
48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ 1 − σð Þ

� 0 + 48Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	

+ σ 0 + 64Γ 4 + δð Þτ3+2δ
Γ 4 + 3δð Þ −

192Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	
,

ϑ∗1 σ, τð Þ = 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

−
120σΓ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 64σΓ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ :

ð34Þ

From Equation (31), we have

ϑ2 σ, τð Þ = L−1
∂2ϑ∗1
∂σ2

 !

= L−1
48Γ 4 + δð Þtau3+2δ

Γ 4 + 2δð Þ −
120σΓ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ
� �

,

ϑ2 σ, τð Þ = 48Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ −

120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ : ð35Þ

For n = 2, Equation (26) becomes

ϑ∗2 σ, τð Þ = ϑ2 σ, τð Þ + 1 − σð Þ 0 − ϑ2 0, τð Þ½ � + σ 0 − ϑ2 2, τð Þ½ �

= 48 − 120σð ÞΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

+ 1 − σð Þ 0 − ϑ2 0, τð Þ½ � + σ 0 − ϑ2 2, τð Þ½ �,

= 48 − 120σð ÞΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

+ 1 − σð Þ 0 − 48Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	

+ σ 0 + 192Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	

= −120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ + 48σΓ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ

+ 192σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ ,

ϑ∗2 σ, τð Þ = 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ : ð36Þ

From Equation (31), we have

ϑ3 σ, τð Þ = L−1
∂2ϑ∗2
∂σ2

 !
,

=R−1 0ð Þ = 0:
⋮

ð37Þ

Thus, the series form of ADM solution is

ϑ σ, τð Þ = ϑ0 σ, τð Þ + ϑ1 σ, τð Þ + ϑ2 σ, τð Þ + ϑ3 σ, τð Þ+⋯

= σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

+ 20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ + 24σ2Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ

−
20σ3Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ −
48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ

+ 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ + 48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ

−
120σΓ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 0+⋯,

ϑ σ, τð Þ = σ4 2 − σð Þτ3+δ: ð38Þ
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5.2. Example. Consider the TFDE of the following form [59]:

∂δϑ σ, τð Þ
∂τδ

= ∂2ϑ σ, τð Þ
∂σ2

+ 3Γ 1/2ð Þ
4 τσ4 σ − 1ð Þ

− 4σ2 5σ − 3ð Þτ3/2, 0 ≤ σ ≤ 1, 0 < δ ≤ 1,
ð39Þ

having the IBCs as follows:

ϑ σ, 0ð Þ = 0,
ϑ 0, τð Þ = ϑ 1, τð Þ = 0:

ð40Þ

With analytical solution at δ = 1/2 as follows:

ϑ σ, τð Þ = σ4 σ − 1ð Þτ3/2: ð41Þ

Apply the suggested method of ADM to Equation (39),
we have

ϑ∗n σ, τð Þ = ϑn σ, τð Þ + 1 − σð Þ 0 − ϑn 0, τð Þ½ � + σ 0 − ϑn 1, τð Þ½ �,
ð42Þ

where n = 0, 1,⋯.
Applying R to Equation (39), we have

Rϑ = ∂2ϑ σ, τð Þ
∂σ2

+ Γ
1
2

� �
4τσ4 σ − 1ð Þ − 4σ2 5σ − 3ð Þτ3/2,

ð43Þ

where R = ∂δ/∂τδ and R−1 is defined as

R−1 :ð Þ = Iδ :ð Þdτ: ð44Þ

Operating Equation (39) by R−1, we have

ϑ σ, τð Þ = ϑ σ, 0ð Þ +R−1 3Γ 1/2ð Þ
4 τσ4 σ − 1ð Þ − 4σ2 5σ − 3ð Þτ3/2

� �
:

ð45Þ

Using ADM solution, the initial approximation becomes

ϑ0 σ, τð Þ = ϑ σ, 0ð Þ +R−1 3Γ 1/2ð Þ
4 τσ4 σ − 1ð Þ − 4σ2 5σ − 3ð Þτ3/2

� �

= 0 + 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

4σ2 5σ − 3ð ÞΓ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ ,

ϑ0 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

20σ3Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ + 12σ2Γ 5/2ð Þτ3/2+δ

Γ 5/2 + δð Þ :

ð46Þ

With the help of initial approximation u∗n , the formula
for iterations is

ϑn+1 σ, τð Þ =R−1 ∂2ϑ∗n
∂σ2

 !
: ð47Þ

For n = 0, put the IBCs into Equation (42).

ϑ∗0 σ, τð Þ = ϑ0 σ, τð Þ + 1 − σð Þ 0 − ϑ0 0, τð Þ½ � + σ 0 − ϑ0 1, τð Þ½ �

= 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

20σ3Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ

+ 12σ2Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ + 1 − σð Þ 0 − 0½ � + σ

� 0 + 8Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ

� 	
,

ϑ∗0 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

20σ3Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ

+ 12σ2Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ + 8σΓ 5/2ð Þτ3/2+δ

Γ 5/2 + δð Þ :

ð48Þ

From Equation (47), we have

ϑ1 σ, τð Þ =R−1 ∂2ϑ∗0
∂σ2

 !

=R−1 3Γ 1/2ð ÞΓ 2ð Þτδ+1 20σ3 − 12σ2
� �

4Γ δ + 2ð Þ

 

−
4 30σ − 6ð ÞΓ 5/2ð Þτ3/2+δ

Γ 5/2 + δð Þ

!
,

ϑ1 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ

−
120σΓ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ + 24Γ 5/2ð Þτ3/2+2δ
Γ 5/2 + 2δð Þ :

ð49Þ

For n = 1 Equation (42), we get

ϑ∗1 σ, τð Þ = ϑ1 σ, τð Þ + 1 − σð Þ 0 − ϑ1 0, τð Þ½ � + σ 0 − ϑ1 1, τð Þ½ �

= 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ −
120σΓ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ

+ 24Γ 5/2ð Þτ3/2+2δ
Γ 5/2 + 2δð Þ + 1 − σð Þ 0 − 24Γ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ
� �

+ σ 0 − 24Γ 1/2ð ÞΓ 2ð Þτ2δ+1
4Γ 2δ + 2ð Þ + 96Γ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ
� �

,

ϑ∗1 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ −
24Γ 1/2ð ÞΓ 2ð Þτ2δ+1

4Γ 2δ + 2ð Þ :

ð50Þ
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From Equation (47), we have

ϑ2 σ, τð Þ =R−1 ∂2ϑ∗1
∂σ2

 !
=R−1 3 120σ − 24ð ÞΓ 1/2ð Þτ2δ+1

4Γ 2δ + 2ð Þ
� �

,

ϑ2 σ, τð Þ = 3 120σ − 24ð ÞΓ 1/2ð Þτ3δ+1
4Γ 3δ + 2ð Þ :

ð51Þ

Equation (42), for n = 2, is

ϑ∗2 σ, τð Þ = ϑ2 σ, τð Þ + 1 − σð Þ 0 − ϑ2 0, τð Þ½ � + σ 0 − ϑ2 1, τð Þ½ �

= 3 120σ − 24ð ÞΓ 1/2ð Þτ3δ+1
4Γ 3δ + 2ð Þ + 1 − σð Þ

� 0 − 72Γ 1/2ð Þτ3δ+1
Γ 3δ + 2ð Þ

� 	
+ σ 0 − 288Γ 1/2ð Þτ3δ+1

Γ 3δ + 2ð Þ
� 	

,

ϑ∗2 σ, τð Þ = 144σΓ 1/2ð ÞΓ 2ð Þτ3δ+1
4Γ 3δ + 2ð Þ −

144Γ 1/2ð ÞΓ 2ð Þτ3δ+1
4Γ 3δ + 2ð Þ :

ð52Þ

From Equation (47), we get

ϑ3 σ, τð Þ =R−1 ∂2ϑ∗2
∂σ2

 !
,

=R−1 0ð Þ = 0:
⋮

ð53Þ

The series form of ADM solution is

ϑ σ, τð Þ = ϑ0 σ, τð Þ + ϑ1 σ, τð Þ + ϑ2 σ, τð Þ

+ ϑ3 σ, τð Þ+⋯ 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ

−
4 30σ − 6ð ÞΓ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ
3 120σ − 24ð ÞΓ 1/2ð Þτ3δ+1

4Γ 3δ + 2ð Þ + 0+⋯:

ð54Þ

6. Results and Discussion

In Figure 1, the 3D graph of exact and approximate solutions
to Example 5.1 is presented. The comparison showed that
the graphs of exact and obtained solutions are in good agree-
ment and confirms the validity of the proposed method. In
Figure 2, the 2D plot of the exact and approximate solution
is constructed and again confirms the validity of the
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Figure 1: 3D plots of the exact and approximate solution for δ = 1 of Example 5.1.
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Figure 2: 2D plots of the exact and approximate solution for δ = 1 of Example 5.1.
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suggested technique. Figure 3 represents the fractional order
solutions of Example 5.1 at δ = 0:3,0:6,0:8,1. The solutions at
different fractional orders of the derivative provide the useful
information about the dynamics of Example5.1. In Figures 4
and 5, 3D and 2D graphs of exact and obtained solutions are

highlighted. From both the presentations, greater accuracy
has been observed and the graphs of the derived results are
found to be identical to the exact solution of Example 5.2.
In Figure 6, the solution of Example 5.2 at different time
levels is calculated and obtained useful dynamics for
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Figure 3: (a) 3D and (b) 2D plots for different fractional value of δ for Example 5.1.
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Figure 4: 3D plots of the exact and approximate solution for δ = 1 of Example 5.2.
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Figure 5: 2D plots of the exact and approximate solution for δ = 1 of Example 5.2.
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Figure 6: 2D plots for approximate solution of Example 5.2 at τ = 0:25,0:5,0:75,1.

Table 1: Absolute error of Example 5.1 at τ = 0:8.

σ
Exact −ADMj j Exact −ADMj j Exact −ADMj j

δ = 0:3 δ = 0:5 δ = 0:7
0.2 6:26 × 10−11 4:41 × 10−10 1:58 × 10−10

0.4 5:3 × 10−10 1:2 × 10−10 6:0 × 10−11

0.6 7:0 × 10−11 8:0 × 10−10 2:8 × 10−10

0.8 4:3 × 10−9 3:3 × 10−9 1:0 × 10−10

1 4.7 × 10−9 2:0 × 10−10 2:0 × 10−10

1.2 1:9 × 10−9 5:1 × 10−9 2:5 × 10−9

1.4 1:6 × 10−8 5:0 × 10−9 2:0 × 10−9

1.6 2:0 × 10−9 6:0 × 10−9 1:0 × 10−9

1.8 2:6 × 10−8 8:6 × 10−9 5:0 × 10−10

2 2:0 × 10−8 1:0 × 10−8 2:0 × 10−9

Table 2: Absolute error of Example 5.2 at δ = 1/2.

σ
Exact −ADMj j Exact −ADMj j Exact −ADMj j

τ = 0:3 τ = 0:5 τ = 0:7
0.1 8:748 × 10−21 3:6348 × 10−20 5:8352 × 10−20

0.2 1:5 × 10−22 2:1 × 10−22 3:9 × 10−22

0.3 1:67 × 10−22 3:20 × 10−20 4:59 × 10−20

0.4 1:60 × 10−20 6:1 × 10−21 1:443 × 10−19

0.5 1:30 × 10−22 1:3 × 10−20 3:00 × 10−19

0.6 1:27 × 10−20 2:1 × 10−20 1:11 × 10−19

0.7 4:2 × 10−20 7:0 × 10−21 4:40 × 10−19

0.8 1:5 × 10−20 1:98 × 10−19 1:17 × 10−19

0.9 3:9 × 10−20 0.000 3:55 × 10−19

1 0.000 1:722 × 10−19 0.000
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Example 5.2. Table 1 shows the solutions at fractional orders
δ = 0:3, 0:5, and 0:7 of Example 5.1. For this purpose, the
modified approach of ADM is applied to obtain the solu-
tions. The results are listed in the table, which has confirmed
that the suggested method gives the solutions that are in
close contact with the analytical solution of the problem.
The absolute errors are given for the given analytical and
ADM solutions in the table. According to the table, the pro-
posed techniques have the desired degree of accuracy in
terms of exact problem solution. In Table 2, the solutions
of Example 5.2 are given at different time levels, that is, τ
= 0:3,0:5,0:7. It is verified from Table 2 that the method pro-
vides excellent results at different time levels.

7. Conclusion

In this article, the Adomian decomposition method is imple-
mented along with some new modifications to solve
fractional partial differential equation boundary value prob-
lems. The proposed technique was found to be very efficient
in handling the solution of fractional-order boundary value
problems. In particular, the suggested procedure is used to
solve some illustrative examples of time-fractional diffusion
equations. The solutions are calculated for both fractional
and integer order problems, and the present method is
observed to be very simple and useful for the solutions to
such problems. A comparison between exact and analytical
solutions is made with the help of plots and tables. The
graphical representation is presented to confirm the validity
of the present technique. The solution graphs have con-
firmed that the derived results are in close contact with the
problem’s actual solution. Figures 1 and 4 represent 3D solu-
tion plots of Example 5.1 and 5.2, respectively, at δ = 1. Both
the graphs displayed a very convincing contact between the
exact and approximate solutions. In Figures 2 and 5, 2D
solution plots are also constructed to confirm the validity
of the proposed method. The fractional-order solutions of
Example 5.1 and 5.2 are represented in Figures 3 and 6.
From the graphical representation of fractional-order prob-
lems, it is confirmed that very accurate and useful informa-
tion is obtained as compared to the integer order of the
problems. It is concluded that the solutions at fractional-
order derivatives are very useful to analyze the dynamics of
the targeted problems of IBVPs. The dual use of initial con-
ditions has made the procedure suitable for using both IBCs
simultaneously, which was not the case in the earlier related
literature. The solution obtained at each fractional order is
found to be converging to the integer order of the targeted
problems. Moreover, the proposed method is more accurate
and competent to find the solution of nonlinear fractional
partial differential equations and, in the future, can be mod-
ified for other important fractional nonlinear partial differ-
ential equations with higher dimensions.
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