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In this article, we will extend the notion of interpolative Kannan contraction by introducing the notions of interpolative Prešić
type contractions and interpolative Prešić type proximal contractions for mappings defined on product spaces. ,rough these
notions, we will derive some results to ensure the existence of fixed points and best proximity points for such mappings.

1. Introduction and Preliminaries

,e Banach contraction principle is the most significant and
basic result of metric fixed point theory.,rough this result, we
can obtain a unique fixed point of a self-map N: L⟶ L,
provided that N is a contraction map on a complete metric
space (L, dL). ,is result motivated Prešić to study about the
existence of fixed points of the operators defined on product
spaces, that is, N: Lk⟶ L, for any fixed k ∈ N. As an out-
come of this motivation, Prešić [1] presented the following
noteworthy extension of the Banach contraction principle.

Theorem 1 (see [1]). Suppose that (L, dL) be a complete
metric space and N: Lk⟶ L be a map, for any fixed k ∈ N,
satisfying the following inequality:

d N l1, l2, . . . , lk( 􏼁, N l2, l3, . . . , lk+1( 􏼁( 􏼁≤ 􏽘
k

j�1
ζjdL lj, lj+1􏼐 􏼑, (1)

for every l1, l2, . . . , lk, lk+1 ∈ L, where ζ1, ζ2, . . . , ζk are the
nonnegative real numbers with 􏽐

k
j�1 ζj < 1. 4en, there exists a

unique point of L that satisfies the equation l � N(l, l, . . . , l􏽼√√√􏽻􏽺√√√􏽽
k

).

,is result is used to discuss the existence of equilibrium
points for the kth-order nonlinear difference equation of the
form

ln+k � N ln, ln+1, . . . , ln+k−1( 􏼁, (2)

where N: Lk ⊂ Rk⟶ L is a continuous map. Note that a
point l∗ ∈ L is known as an equilibrium point of (2) if
l∗ � N(l

∗
, l
∗
, . . . , l

∗
􏽼√√√√√􏽻􏽺√√√√√􏽽

k

). Such a point is also known as a fixed

point ofN: Lk⟶ L. Somewell-known generalizations of this
work have been studied by several authors, for example, [2–5].

Kannan and Chatterjea made a vital contribution in the
development of this field through the fixed point results
derived in [6, 7], respectively. Recently, Karapınar [8]
modified the Kannan contraction by introducing interpo-
lative Kannan contraction, stated as, a map
N: (L, dL)⟶ (L, dL) is called an interpolative Kannan
contraction [8] if

dL(Nk, Nl)≤ ζdL(k, Nk)
ϑ
dL(l, Nl)

1− ϑ
, (3)

for all k, l ∈ L with k≠Nk and l≠Nl, where ζ ∈ [0, 1) and
ϑ ∈ (0, 1).

After that, many existing contraction-type conditions
have been generalized in the sense of interpolative Kannan
contraction, for example, Karapınar et al. [9] studied in-
terpolative Reich-Rus-Ćirić type contraction in partial
metric spaces, Aydi et al. [10] studied interpolative Ćirić-
Reich-Rus type contractions in Branciari metric spaces,
Mohammadi et al. [11] extended the concept of F-con-
tractions by interpolative Ćirić-Reich-Rus type

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 6911475, 10 pages
https://doi.org/10.1155/2022/6911475

mailto:muh_usman_ali@yahoo.com
https://orcid.org/0000-0003-4648-9318
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6911475


F-contractions, Karapınar et al. [12] studied interpolative
Hardy–Rogers type contractions, Debnath and Sen [13]
studied set-valued interpolative Hardy-Rogers and set-val-
ued Reich-Rus-Ćirić-type contractions, Sarwar et al. [14]
presented rational type interpolative contractions, Khan
et al. [15] worked on interpolative (ϕ,ψ)-type Z-contrac-
tions, Altun and Tasdemir [16] presented interpolative
proximal contractions for nonself mappings, Fulga and
Yesilkaya [17] studied interpolative Suzuki-type contrac-
tions, Karapınar et al. [18] defined (α, β,ψ, ϕ)-interpolative
contractions, and Alansari and Ali [19] studied multivalued
interpolative Reich-Rus-Ćirić-type contractions.

Gaba and Karapınar [20] extended the notion of in-
terpolative Kannan contraction through exponential
powers, stated as, a map N: (L, dL)⟶ (L, dL) is called an
(ζ, ϑ1, ϑ2)-interpolative Kannan contraction, if

dL(Nk, Nl)≤ ζdL(k, Nk)
ϑ1dL(l, Nl)

ϑ2 , (4)

for all k, l ∈ L with k≠Nk and l≠Nl, where ϑ1, ϑ2 ∈ (0, 1)

with ϑ1 + ϑ2 < 1 and ζ ∈ [0, 1). Readers can find other similar
generalizations in [21].

Consider OL and ML be nonvoid subsets of a metric
space (L, dL). It is well-known that a fixed point of a map
N: OL⟶ML is a solution of Nl � l. If OL ∩ML � ∅, then
fixed point of N: OL⟶ML does not exist, that is,
dL(Nl, l)> 0 for all l ∈ OL. In this situation, we try to find
l ∈ OL, such that dL(Nl, l) attain the minimum value in
some sense. It is obvious that the smallest value that can be
obtained by dL(Nl, l) for any l ∈ OL will be greater or equal
to DL(OL, ML), that is, distance between OL and ML. A
point l ∈ OL is said to be a best proximity point of
N: OL⟶ML, if dL(Nl, l) � DL(OL, ML). ,e existence of
such points of nonself maps has been discussed by several

researchers in different ways, for example, Caballero et al.
[22] studied the existence of best proximity points for
nonself maps satisfying Geraghty contraction and P-prop-
erty in metric spaces, Bilgili et al. [23], Aydi et al. [24], and
Pitea [25] extended the work of Caballero et al. [22] by
introducing generalized Geraghty contraction, ψ-Geraghty
contraction and generalized almost θ-Geraghty contraction
for nonself maps, Basha and Shahzad [26] and Basha [27]
defined proximal-type contractions to study the existence of
best proximity points, Jleli and Samet [28] defined
α-ψ-proximal contraction to ensure the existence of best
proximity points, Jleli et al. [29] and Aydi et al. [30] defined
generalized α-ψ-proximal contractions to extend the work of
Jleli and Samet [28], Abkar and Gabeleh [31] and Kumam
et al. [32] studied the existence of best proximity points for
multivalued nonself maps in metric spaces, Ali et al. [33]
defined implicit proximal contractions, Sahin et al. [34]
defined proximal nonunique contraction, and Ali et al. [35]
studied the existence of best proximity points for Prešić type
nonself operators satisfying proximal type contractions.

,is article aims to present the notions of interpolative
Prešić type contractions and interpolative Prešić type
proximal contractions for mappings defined on product
spaces. ,rough these notions, we will study the existence of
fixed points and best proximity points for such mappings.

2. Main Results

We begin this section with the following definition.

Definition 1. A map N: L × L⟶ L is called an interpo-
lative Prešić type-I contraction, if for each
s, w, t, v ∈ L∖Fix(N), we get

dL(N(s, w), N(t, v))
min c(s,w),c(t,v){ } ≤ ζdL(w, N(s, w))

ϑ1dL(v, N(t, v))
ϑ2 , (5)

where c: L × L⟶ R∖ 0{ } is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, ζ ∈ [0, 1), and Fix(N) � l ∈ L: l � N(l, l){ }.

,e following theorem is used to study the existence of
fixed points for the above map.

Theorem 2. Consider an interpolative Prešić type-I con-
traction map N: L × L⟶ L on a complete metric space
(L, dL). Also, consider that

(i) If min c(s, w), c(t, v)􏼈 􏼉 � 1, then c(N(s, w),

N(t, v)) � 1.
(ii) 4ere exist two elements s, w ∈ L with

min c(s, w), c(w, N(s, w))􏼈 􏼉 � 1.
(iii) For every sequence lm􏼈 􏼉 in L with

c(lm, lm+1) � 1∀m≥m0 for some natural number
m0 and lm⟶ l, we have c(l, l) � 1.

4en, there exists at least one point of L that satisfies the
equation l � N(l, l).

Proof. Hypothesis (ii) assures that there are two points, say,
l0 and l1 in L with

min c l0, l1( 􏼁, c l1, N l0, l1( 􏼁( 􏼁􏼈 􏼉 � 1. (6)

By using these two points, we can define a sequence lm􏼈 􏼉

with lm+1 � N(lm−1, lm)∀m ∈ N. From hypothesis (i), it can
be concluded that c(lm, lm+1) � 1, ∀m> 1. Hence,

min c lm−1, lm( 􏼁, c lm, lm+1( 􏼁􏼈 􏼉 � 1 ∀m ∈ N. (7)

By (5), we get
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dL N lm−1, lm( 􏼁, N lm, lm+1( 􏼁( 􏼁 � dL N lm− 1, lm( 􏼁, N lm, lm+1( 􏼁( 􏼁
min c lm−1 ,lm( ),c lm,lm+1( ){ },

≤ ζdL lm, N lm− 1, lm( 􏼁( 􏼁
ϑ1dL lm+1, N lm, lm+1( 􏼁( 􏼁

ϑ2∀m ∈ N,
(8)

that is,

dL lm+1, lm+2( 􏼁≤ ζdL lm, lm+1( 􏼁
ϑ1dL lm+1, lm+2( 􏼁

ϑ2 , ∀m ∈ N.

(9)

By (9), we obtain

dL lm+1, lm+2( 􏼁
1− ϑ2 ≤ ζdL lm, lm+1( 􏼁

ϑ1 , ∀m ∈ N. (10)

Since 1 − ϑ2 � ϑ1, thus, by (10), we get

dL lm+1, lm+2( 􏼁≤ ζ1/ 1− ϑ2( )dL lm, lm+1( 􏼁,

≤ ζdL lm, lm+1( 􏼁∀m ∈ N.
(11)

Hence, by (11), we conclude that

dL lm+1, lm+2( 􏼁≤ ζm
dL l1, l2( 􏼁, ∀m ∈ N. (12)

By triangle inequality and (12), for each k, n ∈ N with
k> n, we obtain

dL ln, lk( 􏼁≤ 􏽘
k−1

j�n

dL lj, lj+1􏼐 􏼑≤ 􏽘
k−1

j�n

ζj− 1
dL l1, l2( 􏼁. (13)

In view of the above inequality and the convergence of
􏽐
∞
j�1 ζ

j, we say that the sequence lm􏼈 􏼉 is a Cauchy in L. By the
completeness of (L, dL), we get a point l∗ ∈ L, such that
lm⟶ l∗. Also, by (iii), we get c(l∗, l∗) � 1, since
c(lm, lm+1) � 1, ∀m ∈ N and lm⟶ l∗.

Here, the claim is l∗ � N(l∗, l∗). If the claim is wrong,
then by (5), for each m ∈ N, we get

dL N lm−1, lm( 􏼁, N l
∗
, l
∗

( 􏼁( 􏼁 � dL N lm− 1, lm( 􏼁, N l
∗
, l
∗

( 􏼁( 􏼁
min c lm−1 ,lm( ),c l∗ ,l∗( ){ },

≤ ζdL lm, N lm− 1, lm( 􏼁( 􏼁
ϑ1dL l

∗
, N l
∗
, l
∗

( 􏼁( 􏼁
ϑ2 ,

≤ ζdL lm+1, lm+2( 􏼁
ϑ1dL l

∗
, N l
∗
, l
∗

( 􏼁( 􏼁
ϑ2 .

(14)

By triangle inequality and (14), we obtain

dL l
∗
, N l
∗
, l
∗

( 􏼁( 􏼁≤ dL l
∗
, N lm, lm+1( 􏼁( 􏼁 + dL N lm, lm+1( 􏼁, N l

∗
, l
∗

( 􏼁( 􏼁,

≤ dL l
∗
, lm+2( 􏼁 + ζdL lm+1, lm+2( 􏼁

ϑ1dL l
∗
, N l
∗
, l
∗

( 􏼁( 􏼁
ϑ2 .

(15)

Letting m⟶∞ in (15), we get dL(l∗, N(l∗, l∗)) � 0.
Hence, the claim is true, that is, l∗ � N(l∗, l∗). □

Example 1. Consider L � R equipped with a metric
dL(k, l) � |k − l| for each k, l ∈ L. Define N: L × L⟶ L and
c: L × L⟶ R∖ 0{ } by

N(k, l) �

k + l

2
, if k, l≥ 0,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

and

c(k, l) �
1, if k, l≥ 0.

1/2, otherwise.
􏼨 (17)

,en, one can easily verify that the axioms of ,eorem 2
are satisfied. Hence, there is at least one element l∗ ∈ L, such
that l∗ � N(l∗, l∗).

In the following, we present interpolative Prešić type-II
contraction map and related fixed point result.

Definition 2. A map N: L × L⟶ L is called an interpo-
lative Prešić type-II contraction, if for each
s, w, t, v ∈ L∖Fix(N) with min c(s, w), c(t, v)􏼈 􏼉≥ 1, we get

dL(N(s, w), N(t, v))≤ ζdL(w, N(s, w))
ϑ1dL(v, N(t, v))

ϑ2 ,

(18)

where c: L × L⟶ R is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, ζ ∈ [0, 1), and Fix(N) � l ∈ L: l � N(l, l){ }.

Theorem 3. Consider an interpolative Prešić type-II con-
traction map N: L × L⟶ L on a complete metric space
(L, dL). Also, consider that

(i) If min c(s, w), c(t, v)􏼈 􏼉≥ 1, then c(N(s, w),

N(t, v))≥ 1.
(ii) 4ere exist two elements s, w ∈ L with

min c(s, w), c(w, N(s, w))􏼈 􏼉≥ 1.
(iii) For every sequence lm􏼈 􏼉 in L with

c(lm, lm+1)≥ 1∀m≥m0 for some natural number m0
and lm⟶ l, we have c(l, l)≥ 1.
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Then, there exists at least one point of L that satisfies the
equation l � N(l, l).

Proof. In view of the hypothesis (ii), we get

min c l0, l1( 􏼁, c l1, N l0, l1( 􏼁( 􏼁􏼈 􏼉≥ 1. (19)

For some l0 and l1 in L. ,rough these two points, we can
construct a sequence lm􏼈 􏼉 with lm+1 � N(lm−1, lm)∀m ∈ N.
Also, hypothesis (i) implies that c(lm, lm+1)≥ 1 , ∀m> 1.
Hence,

min c lm−1, lm( 􏼁, c lm, lm+1( 􏼁􏼈 􏼉≥ 1 ∀m ∈ N. (20)

By (18), we get

dL N lm−1, lm( 􏼁, N lm, lm+1( 􏼁( 􏼁≤ ζdL lm, N lm− 1, lm( 􏼁( 􏼁
ϑ1dL lm+1, N lm, lm+1( 􏼁( 􏼁

ϑ2∀m ∈ N. (21)

By performing some calculations, we get

dL lm+1, lm+2( 􏼁≤ ζdL lm, lm+1( 􏼁
ϑ1 ≤ ζm

dL l1, l2( 􏼁, ∀m ∈ N. (22)

Hence, it can be seen that lm􏼈 􏼉 is a Cauchy sequence in L

with lm⟶ l∗ ∈ L. Also, by (iii), we get c(l∗, l∗)≥ 1. Sup-
pose that l∗ ≠N(l∗, l∗). ,en, by (18), for each m ∈ N, we get

dL N lm, lm+1( 􏼁, N l
∗
, l
∗

( 􏼁( 􏼁≤ ζdL lm+1, N lm, lm+1( 􏼁( 􏼁
ϑ1dL l

∗
, N l
∗
, l
∗

( 􏼁( 􏼁
ϑ2 ,

≤ ζdL lm+1, lm+2( 􏼁
ϑ1dL l

∗
, N l
∗
, l
∗

( 􏼁( 􏼁
ϑ2 .

(23)

By triangle inequality and (23), we obtain

dL l
∗
, N l
∗
, l
∗

( 􏼁( 􏼁≤dL l
∗
, N lm, lm+1( 􏼁( 􏼁 + dL N lm, lm+1( 􏼁, N l

∗
, l
∗

( 􏼁( 􏼁,

≤dL l
∗
, lm+2( 􏼁 + ζdL lm+1, lm+2( 􏼁

ϑ1dL l
∗
, N l
∗
, l
∗

( 􏼁( 􏼁
ϑ2 .

(24)

Letting m⟶∞ in (24), we get dL(l∗, N(l∗, l∗)) � 0.
Hence, our supposition is wrong and l∗ � N(l∗, l∗). □

Example 2. Consider L � Z equipped with a metric
dL(k, l) � |k − l| for each k, l ∈ L. Define N: L × L⟶ L and
c: L × L⟶ R by

N(k, l) �
l, if k, l≥ 0,

|k| +|l| otherwise,
􏼨 (25)

and

c(k, l) �
1, if k, l≥ 0.

0, otherwise.
􏼨 (26)

,en, one can easily verify that the axioms of ,eorem 3
are satisfied. Hence, there is at least one element l∗ ∈ L, such
that l∗ � N(l∗, l∗).

Some consequences of the above results can be obtained
in the form of the following listed corollaries. ,e following
corollary is obtained from ,eorem 2 by considering t � w.

Corollary 1. Consider a map N: L × L⟶ L on a complete
metric space (L, dL), such that for each s, w, v ∈ L∖Fix(N),
we get

dL(N(s, w), N(w, v))
min c(s,w),c(w,v){ } ≤ ζdL(w, N(s, w))

ϑ1dL(v, N(w, v))
ϑ2 , (27)
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where c: L × L⟶ R∖ 0{ } is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, and ζ ∈ [0, 1). Also, consider that

(i) If min c(s, w), c(w, v)􏼈 􏼉 � 1, then c(N(s, w),

N(w, v)) � 1
(ii) 4ere exist two elements s, w ∈ L with

min c(s, w), c(w, N(s, w))􏼈 􏼉 � 1
(iii) For every sequence lm􏼈 􏼉 in L with

c(lm, lm+1) � 1∀m≥m0 for some natural number
m0 and lm⟶ l, we have c(l, l) � 1

Then, there exists at least one point of L that satisfies the
equation l � N(l, l).

,e following corollary is a special case of ,eorem 3
which can be obtained by considering t � w.

Corollary 2. Consider a map N: L × L⟶ L on a complete
metric space (L, dL), such that for each s, w, v ∈ L∖Fix(N)

with min c(s, w), c(w, v)􏼈 􏼉≥ 1, we get

dL(N(s, w), N(w, v))≤ ζdL(w, N(s, w))
ϑ1dL(v, N(w, v))

ϑ2 ,

(28)

where c: L × L⟶ R is a map, ϑ1, ϑ2 ∈ (0, 1) with ϑ1 + ϑ2 �

1 and ζ ∈ [0, 1). Also, consider that

(i) If min c(s, w), c(w, v)􏼈 􏼉≥ 1, then
c(N(s, w), N(w, v))≥ 1

(ii) 4ere exist two elements s, w ∈ L with
min c(s, w), c(w, N(s, w))􏼈 􏼉≥ 1

(iii) For every sequence lm􏼈 􏼉 in L with
c(lm, lm+1)≥ 1∀m≥m0 for some natural number m0
and lm⟶ l, we have c(l, l)≥ 1

Then, there exists at least one point of L that satisfies the
equation l � N(l, l).

By defining c(s, w) � 1 for each s, w ∈ L in,eorem 2 or
,eorem 3, we get the following.

Corollary 3. Consider a map N: L × L⟶ L on a complete
metric space (L, dL) that satisfies

dL(N(s, w), N(t, v))≤ ζdL(w, N(s, w))
ϑ1dL(v, N(t, v))

ϑ2 ,

(29)

for each s, w, v ∈ L∖Fix(N), where ϑ1, ϑ2 ∈ (0, 1) with ϑ1 +

ϑ2 � 1 and ζ ∈ [0, 1). 4en, there exists at least one point of L

that satisfies the equation l � N(l, l).

From the above corollary, we can also obtain the fol-
lowing result.

Corollary 4. Consider a map N: L × L⟶ L on a complete
metric space (L, dL) that satisfies

dL(N(s, w), N(w, v))≤ ζdL(w, N(s, w))
ϑ1dL(v, N(w, v))

ϑ2 ,

(30)

for each s, w, v ∈ L∖Fix(N), where ϑ1, ϑ2 ∈ (0, 1) with ϑ1 +

ϑ2 � 1 and ζ ∈ [0, 1). 4en, there exists at least one point of L

that satisfies the equation l � N(l, l).

In the following, we will study about the interpolative
Prešić type proximal contractions and related results.

Let (L, dL) be a metric space and OL, ML be nonvoid
subsets of L. We will use the following notations.

DL OL, ML( 􏼁 � inf dL(o, m): o ∈ OL, m ∈ML􏼈 􏼉,

dL o, ML( 􏼁 � inf dL(o, m): m ∈ML􏼈 􏼉,

OL0 � o ∈ OL: dL(o, m) � DL OL, ML( 􏼁 for somem ∈ML􏼈 􏼉,

ML0 � m ∈ML: dL(o, m) � DL OL, ML( 􏼁 for some o ∈ OL􏼈 􏼉.

(31)

Note that a point o∗ ∈ OL is known as a best proximity
point of N: OL × OL⟶ML if dL(o∗,

N(o∗, o∗)) � DL(OL, ML). ,e collection of all such points
for N: OL × OL⟶ML is denoted by Bes(N).

Definition 3. A map N: OL × OL⟶ML is called an in-
terpolative Prešić type-I proximal contraction, if for each
s, w, t, v, p, q ∈ OL∖Bes(N) with
dL(p, N(s, w)) � DL(OL, ML) � dL(q, N(t, v)), we get

dL(p, q)
min c(s,w),c(t,v){ } ≤ ζdL(w, p)

ϑ1dL(v, q)
ϑ2 , (32)

where c: OL × OL⟶ R∖ 0{ } is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1 and ζ ∈ [0, 1).

,e following theorem is used to ensure the existence of
best proximity points for the above defined maps.

Theorem 4. Consider an interpolative Prešić type-I proximal
contraction map N: OL × OL⟶ML on a metric space
(L, dL). Also, consider that

(i) If min c(s, w), c(t, v)􏼈 􏼉 � 1 and
dL(p, N(s, w)) � DL(OL, ML) � dL(q, N(t, v)),
then c(p, q) � 1.

(ii) 4ere exist elements s, w, p ∈ OL with
dL(p, N(s, w)) � DL(OL, ML) and
min c(s, w), c(w, p)􏼈 􏼉≥ 1.

(iii) N(OL × OL0)⊆ML0.
(iv) OL0 is nonempty and complete with respect to dL.
(v) For every sequence lm􏼈 􏼉 in OL0 with c(lm, lm+1) �

1∀m≥m0 for some natural number m0 and
lm⟶ l, we have c(l, l) � 1.
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Then, there exists at least one point of L that satisfies the
equation dL(l, N(l, l)) � DL(OL, ML).

Proof. From hypothesis (ii), we have l0, l1, and l2 in OL with
min c(l0, l1)c(l1, l2)􏼈 􏼉 � 1 and dL(l2, N(l0, l1)) � DL(OL,

ML). Hypothesis (iii) implies that N(l1, l2) ∈ML0
, and there

is l3 ∈ OL0 satisfying dL(l3, N(l1, l2)) � DL(OL, ML). ,us,
from hypothesis (i), we get c(l2, l3) � 1. Hence, by using
hypotheses (i) and (ii) repeatedly, we conclude that
c(lm−1, lm) � 1 and dL(lm+1, N(lm−1, lm)) � DL(OL, ML) for
all m ∈ N.

Since dL(lm+1, N(lm−1, lm)) � DL(OL, ML) �

dL(lm+2, N(lm, lm+1)) for each m ∈ N and
min c(lm−1, lm), c(lm, lm+1)􏼈 􏼉 � 1 for each m ∈ N, then, by
(32), we get

dL lm+1, lm+2( 􏼁≤ ζdL lm+1, lm+2( 􏼁
min c lm−1 ,lm( ),c lm,lm+1( ){ },

≤ ζdL lm, lm+1( 􏼁
ϑ1dL lm+1, lm+2( 􏼁

ϑ2 , ∀m ∈ N.
(33)

Now, by following the proof of ,eorem 2, we say that
lm􏼈 􏼉m≥ 2 is a Cauchy sequence in OL0. Since OL0 is complete,
we have a point l∗ ∈ OL0, such that lm⟶ l∗. Also, by (v), we
get c(l∗, l∗) � 1, since c(lm, lm+1) � 1 and lm⟶ l∗. Clearly,
N(l∗, l∗) ∈ML0, and there is w∗ ∈ OL0 with
dL(w∗, N(l∗, l∗)) � DL(OL, ML). Here, the claim is w∗ � l∗.
Suppose it is wrong, then by (33), for each m ∈ N, we get

dL lm+1, w
∗

( 􏼁 � dL lm+1, w
∗

( 􏼁
min c lm−1 ,lm( ),c l∗,l∗( ){ },

≤ ζdL lm, lm+1( 􏼁
ϑ1dL l

∗
, w
∗

( 􏼁
ϑ2 .

(34)

Letting m⟶∞ in (34), we obtain dL(l∗, w∗) � 0, and
it contradicts our assumption. Hence, our claim is true, that
is, l∗ � w∗. ,erefore, dL(l∗, N(l∗, l∗)) � DL(OL, ML).

In the following, we present the notion of interpolative
Prešić type-II proximal contraction. □

Definition 4. A map N: OL × OL⟶ML is called an in-
terpolative Prešić type-II proximal contraction, if for each
s, w, t, v, p, q ∈ OL∖Bes(N) with dL(p, N(s, w)) � DL

(OL, ML) � dL(q, N(t, v)) and min c(s, w), c(t, v)􏼈 􏼉≥ 1, we
get

dL(p, q)≤ ζdL(w, p)
ϑ1dL(v, q)

ϑ2 , (35)

where c: OL × OL⟶ R is a map, ϑ1, ϑ2 ∈ (0, 1) with ϑ1 +

ϑ2 � 1 and ζ ∈ [0, 1).
,e existence of best proximity points for above map can

be ensured by the result given.

Theorem 5. Consider an interpolative Prešić type-II proxi-
mal contraction map N: OL × OL⟶ML on a metric space
(L, dL). Also, consider that

(i) If min c(s, w), c(t, v)􏼈 􏼉≥ 1 and dL(p, N(s, w)) �

DL(OL, ML) � dL(q, N(t, v)), then c(p, q)≥ 1.
(ii) 4ere exist elements s, w, p ∈ OL with

dL(p, N(s, w)) � DL(OL, ML) and min c(s, w),􏼈

c(w, p)}≥ 1.
(iii) N(OL × OL0)⊆ML0.
(iv) OL0 is nonempty and complete with respect to dL.
(v) For every sequence lm􏼈 􏼉 in OL0 with c(lm, lm+1)

≥ 1∀m≥m0 for some natural number m0 and
lm⟶ l, we have c(l, l)≥ 1.

Then, there exists at least one point of L that satisfies the
equation dL(l, N(l, l)) � DL(OL, ML).

Proof. ,e proof can be derived on the same steps as the
proof of ,eorem 4 is done. □

2.1. Results for Extended Interpolative Prešić Type Maps.
,is subsection presents the extensions of the above listed
results. ,eorems 6 and 7 can be considered as an extended
version of ,eorem 2 and ,eorem 3, respectively.

Theorem 6. Consider an extended interpolative Prešić type-I
contraction map N: Lk⟶ L, for any fixed k ∈ N, on a
complete metric space (L, dL), that is, for each s1, s2, . . . , sk,
w1, w2, . . . , wk ∈ L∖Fix(N), we get

dL N s1, s2, . . . , sk( 􏼁, N w1, w2, . . . , wk( 􏼁( 􏼁
min c s1 ,w1( ),c s2 ,w2( ),...,c sk,wk( ){ }

≤ ζdL sk, N s1, s2, . . . , sk( 􏼁( 􏼁
ϑ1dL wk, N w1, w2, . . . , wk( 􏼁( 􏼁

ϑ2 ,
(36)

where c: L × L⟶ R∖ 0{ } is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, ζ ∈ [0, 1), and Fix(N) � l ∈ L: l � N(l, l,{

. . . , l)}. Also, consider that

(i) If min c(s1, w1), c(s2, w2), . . . , c(sk, wk)􏼈 􏼉 � 1, then
c(N(s1, s2, . . . , sk), N(w1, w2, . . . , wk)) � 1.

(ii) 4ere exist elements s1, s2, . . . , sk ∈ L, such that

min c s1, s2( 􏼁, c s2, s3( 􏼁, . . . , c sk, N s1, s2, . . . , sk( 􏼁( 􏼁􏼈 􏼉 � 1.

(37)

(iii) For every sequence lm􏼈 􏼉 in L with
c(lm, lm+1) � 1∀m≥m0 for some natural number
m0 and lm⟶ l, we have c(lm, l) � 1∀m≥m0.

,en, there exists at least one point of L that satisfies the
equation l � N(l, l, . . . , l􏽼√√√􏽻􏽺√√√􏽽

k−times

).
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Proof. Hypothesis (ii) implies the existence of elements
l1, l2, . . . , lk in L with

min c l1, l2( 􏼁, c l2, l3( 􏼁, . . . , c lk, N l1, l2, . . . , lk( 􏼁( 􏼁􏼈 􏼉 � 1.

(38)

,rough these points, we can define a sequence lm􏼈 􏼉 with
lm+k � N(lm, lm+1, . . . , lm+k−1) for all m ∈ N. Hence, by

considering hypothesis (i), it can be concluded that
c(lm, lm+1) � 1∀m≥m0. ,en, we say that

min c lm, lm+1( 􏼁, c lm, lm+1( 􏼁, . . . , c lm+k−1, lm+k( 􏼁􏼈 􏼉 � 1∀m ∈ N.

(39)

By (36), we get

dL N lm, lm+1, . . . , lm+k−1( 􏼁, N lm+1, lm+2, . . . , lm+k( 􏼁( 􏼁

� dL N lm, lm+1, . . . , lm+k− 1( 􏼁, N lm+1, lm+2, . . . , lm+k( 􏼁( 􏼁
min c lm,lm+1( ),c lm+1 ,lm+2( ),...,c lm+k−1 ,lm+k( ){ }

≤ ζdL lm+k− 1, N lm, lm+1, . . . , lm+k− 1( 􏼁( 􏼁
ϑ1dL lm+k, N lm+1, lm+2, . . . , lm+k( 􏼁( 􏼁

ϑ2∀m ∈ N,

(40)

that is,

dL lm+k, lm+k+1( 􏼁≤ ζdL lm+k− 1, lm+k( 􏼁
ϑ1dL lm+k, lm+k+1( 􏼁

ϑ2 , ∀m ∈ N. (41)

By (41), we obtain

dL lm+k, lm+k+1( 􏼁
1− ϑ2 ≤ ζdL lm+k− 1, lm+k( 􏼁

ϑ1 , ∀m ∈ N. (42)

Since 1 − ϑ2 � ϑ1, thus, by (42), we get

dL lm+k, lm+k+1( 􏼁≤ ζ1/ 1− ϑ2( )dL lm+k− 1, lm+k( 􏼁
ϑ1 ,

≤ ζdL lm+k−1, lm+k( 􏼁 ∀m ∈ N.
(43)

Hence, by (43), we get

dL lm+k, lm+k+1( 􏼁≤ ζm
dL lk, lk+1( 􏼁, ∀m ∈ N, (44)

that is,

dL lm, lm+1( 􏼁≤ ζm− k
dL lk, lk+1( 􏼁, ∀m≥ k + 1. (45)

From triangle inequality and (45), for each q, n ∈ N with
q> n≥ k + 1, we obtain

dL ln, lq􏼐 􏼑≤ 􏽘

q−1

j�n

dL lj, lj+1􏼐 􏼑≤ 􏽘

q−1

j�n

ζj− k
dL lk, lk+1( 􏼁. (46)

Above inequality yields that lm􏼈 􏼉 is a Cauchy sequence in
a complete space L. Hence, we get a point l∗ ∈ L with
lm⟶ l∗. Also, by (iii), we get c(lm, l∗) � 1, ∀m ∈ N, since
c(lm, lm+1) � 1, ∀m ∈ N and lm⟶ l∗.

Here, the claim is l∗ � N(l∗, l∗, . . . , l∗). If the claim is
wrong, then by (36), for each m ∈ N, we get

dL N lm, lm+1, . . . , lm+k−1( 􏼁, N l
∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁 � dL N lm, lm+1, . . . , lm+k− 1( 􏼁, N l

∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁

min c lm,l∗( ),c lm+1 ,l∗( ),...,c lm+k−1 ,l∗( ){ }

≤ ζdL lm+k− 1, N lm, lm+1, . . . , lm+k− 1( 􏼁( 􏼁
ϑ1dL l

∗
, N l
∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁

ϑ2 ,

≤dL lm+k− 1, lm+k( 􏼁
ϑ1dL l

∗
, N l
∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁

ϑ2 .

(47)

By triangle inequality and (47), for each m, we obtain

dL l
∗
, N l
∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁≤ dL l

∗
, N lm, lm+1, . . . , lm+k−1( 􏼁( 􏼁 + dL N lm, lm+1, . . . , lm+k−1( 􏼁, N l

∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁

≤ dL l
∗
, lm+k( 􏼁 + ζdL lm+k− 1, lm+k( 􏼁

ϑ1dL l
∗
, N l
∗
, l
∗
, . . . , l

∗
( 􏼁( 􏼁

ϑ2 .
(48)

Letting m⟶∞ in(48), we get dL(l∗, N(l∗, l∗, . . . , l∗))

� 0. Hence, the claim is true, that is, l∗ � N(l∗, l∗,

. . . , l∗). □

Theorem 7. Consider an extended interpolative Prešić type-
II contraction map N: Lk⟶ L, for any fixed k ∈ N, on a
complete metric space (L, dL), that is, for each s1, s2, . . . , sk,
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w1, w2, . . . , wk, ∈ L∖Fix(N) with min c(s1, w1),􏼈

c(s2, w2), . . . , c(sk, wk)}≥ 1, we get

dL N s1, s2, . . . , sk( 􏼁, N w1, w2, . . . , wk( 􏼁( 􏼁≤ ζdL sk, N s1, s2, . . . , sk( 􏼁( 􏼁
ϑ1dL wk, N w1, w2, . . . , wk( 􏼁( 􏼁

ϑ2 , (49)

where c: L × L⟶ R is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, ζ ∈ [0, 1), and
Fix(N) � l ∈ L: l � N(l, l, . . . , l){ }. Also, consider that

(i) If min c(s1, w1), c(s2, w2), . . . , c(sk, wk)􏼈 􏼉≥ 1, then
c(N(s1, s2, . . . , sk), N(w1, w2, . . . , wk))≥ 1.

(ii) 4ere exist elements s1, s2, . . . , sk ∈ L, such that

min c s1, s2( 􏼁, c s2, s3( 􏼁, . . . , c sk, N s1, s2, . . . , sk( 􏼁( 􏼁􏼈 􏼉≥ 1.

(50)

(iii) For every sequence lm􏼈 􏼉 in L with
c(lm, lm+1)≥ 1∀m≥m0 for some natural number m0
and lm⟶ l, we have c(lm, l)≥ 1∀m≥m0.

,en, there exists at least one point of L that satisfies the
equation l � N(l, l, . . . , l􏽼√√√􏽻􏽺√√√􏽽

k−times

).

Proof. ,e proof can be obtained on the same steps as the
proofs of ,eorems 6 and 2 are done.

,e following theorems can be considered as an ex-
tended form of ,eorems 3 and 5, respectively. □

Theorem 8. Consider an extended interpolative Prešić type-I
proximal contraction map N: Ok

L⟶ML, for any fixed
k ∈ N, on a metric space (L, dL), that is, for each s1, s2, . . . , sk,
w1, w2, . . . , wk, p, q ∈ OL∖Bes(N) with

dL p, N s1, s2, . . . , sk( 􏼁( 􏼁 � DL OL, ML( 􏼁 � dL q, N w1, w2, . . . , wk( 􏼁( 􏼁, (51)

we get

dL(p, q)
min c s1 ,w1( ),c s2 ,w2( ),...,c sk,wk( ){ } ≤ ζdL sk, p( 􏼁

ϑ1dL wk, q( 􏼁
ϑ2 ,

(52)

where c: OL × OL⟶ R∖ 0{ } is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, ζ ∈ [0, 1), Bes(N) � o ∈ OL: dL(o, N(o, o,􏼈

. . . , o)) � DL(OL, ML)}, and OL, ML are the nonvoid subsets
of L. Also, consider that

(i) If min c(s1, w1), c(s2, w2), . . . , c(sk, wk)􏼈 􏼉 � 1 and
dL(p, N(s1, s2, . . . , sk)) � DL (OL, ML) � dL(q, N

(w1, w2, . . . , wk)), then c(p, q) � 1.
(ii) ,ere exist elements s1, s2, . . . , sk, p ∈ OL with

dL(p, N(s1, s2, . . . , sk)) � DL(OL, ML) and

min c s1, s2( 􏼁, c s2, s3( 􏼁, . . . , c sk, p( 􏼁􏼈 􏼉 � 1. (53)

(iii) N (OL × · · · × OL × OL0)􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
⊆ML0.

(iv) OL0
is nonempty and complete with respect to dL.

(v) For every sequence lm􏼈 􏼉 in OL0
with c(lm, lm+1) �

1∀m≥m0 for some natural number m0 and
lm⟶ l, we have c(lm, l) � 1∀m≥m0.

,en, there exists at least one point of L that satisfies the
equation dL(l, N(l, l, . . . , l􏽼√√√􏽻􏽺√√√􏽽

k−times

)) � DL(OL, ML).

Proof. By hypothesis (ii), we get l1, l2, . . . , lk, lk+1 in OL with
dL(lk+1, N(l1, l2, . . . , lk)) � DL(OL, ML) and

min c l1, l2( 􏼁, c l2, l3( 􏼁, . . . , c lk, lk+1( 􏼁􏼈 􏼉 � 1. (54)

Hypothesis (iii) implies that N(l2, l3, . . . , lk+1) ∈ML0,
and there is lk+2 ∈ OL0

satisfying

dL lk+2, N l2, l3, . . . , lk+1( 􏼁( 􏼁 � DL OL, ML( 􏼁. (55)

,en, from hypothesis (i), we get c(lk+1, lk+2) � 1. Re-
peated use of hypotheses (i), (ii), and (iii) yields c(lm, lm+1) �

1 and dL(lm+k, N(lm, lm+1, . . . , lm+k−1)) � DL(OL, ML) for all
m ∈ N. As

dL lm+k, N lm, lm+1, . . . , lm+k−1( 􏼁( 􏼁 � DL OL, ML( 􏼁, (56)

and

dL lm+k+1, N lm+2, lm+2, . . . , lm+k( 􏼁( 􏼁 � DL OL, ML( 􏼁, ∀m ∈ N,

(57)

and

min c lm, lm+1( 􏼁, c lm+1, lm+2( 􏼁, . . . , c lm+k−1, lm+k( 􏼁􏼈 􏼉 � 1, ∀m ∈ N. (58)

,en, by (52), we get
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dL lm+k, lm+k+1( 􏼁 � dL lm+k, lm+k+1( 􏼁
min c lm,lm+1( ),...,c lm+k−1 ,lm+k( ){ },

≤ ζdL lm+k− 1, lm+k( 􏼁
ϑ1dL lm+k, lm+k+1( 􏼁

ϑ2 , ∀m ∈ N.

(59)

Following the proof of ,eorem 6, we say that lm􏼈 􏼉m≥ k+1
is Cauchy in OL0, and by the completeness of OL0, we get a
point l∗ ∈ OL0 with lm⟶ l∗. Also, by (v), we get
c(lm, l∗) � 1∀m ∈ N, since c(lm, lm+1) � 1 and lm⟶ l∗.
Clearly, N(l∗, l∗, . . . , l∗) ∈ML0, and there is w∗ ∈ OL0 with
dL(w∗, N(l∗, l∗, . . . , l∗)) � DL(OL, ML). Here, the claim is
w∗ � l∗. Suppose it is wrong, then by (52), for each m ∈ N,
we get

dL lm+k, w
∗

( 􏼁 � dL lm+1, w
∗

( 􏼁
min c lm,l∗( ),c lm+1 ,l∗( ),...,c lm+k−1 ,l∗( ){ }

≤ ζdL lm+k− 1, lm+k( 􏼁
ϑ1dL l

∗
, w
∗

( 􏼁
ϑ2 .

(60)

Letting m⟶∞ in (60), we obtain dL(l∗, w∗) � 0, and
it contradicts our assumption. Hence, our claim is true, that
is, l∗ � w∗. ,erefore, dL(l∗, N(l∗, l∗, . . . , l∗)) �

DL(OL, ML). □

Theorem 9. Consider an extended interpolative Prešić type-
II proximal contraction map N: Ok

L⟶ML, for any fixed
k ∈ N, on a metric space (L, dL), that is, for each s1, s2, . . . , sk,
w1, w2, . . . , wk, p, q ∈ OL∖Bes(N) with

dL p, N s1, s2, . . . , sk( 􏼁( 􏼁 � DL OL, ML( 􏼁 � dL q, N w1, w2, . . . , wk( 􏼁( 􏼁, (61)

and

min c s1, w1( 􏼁, c s2, w2( 􏼁, . . . , c sk, wk( 􏼁􏼈 􏼉≥ 1, (62)

we get

dL(p, q)≤ ζdL sk, p( 􏼁
ϑ1dL wk, q( 􏼁

ϑ2 , (63)

where c: OL × OL⟶ R is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, and ζ ∈ [0, 1). Also, consider that

(i) If min c(s1, w1), c(s2, w2), . . . , c(sk, wk)􏼈 􏼉≥ 1 and
dL(p, N(s1, s2, . . . , sk)) � DL(OL, ML) � dL(q, N

(w1, w2, . . . , wk)), then c(p, q)≥ 1.
(ii) 4ere exist elements s1, s2, . . . , sk, p ∈ OL with

dL(p, N(s1, s2, . . . , sk)) � DL(OL, ML) and

min c s1, s2( 􏼁, c s2, s3( 􏼁, . . . , c sk, p( 􏼁􏼈 􏼉≥ 1. (64)

(iii) N (OL × · · · × OL × OL0)􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
k−1 times

⊆ML0.

(iv) OL0
is nonempty and complete with respect to dL.

(v) For every sequence lm􏼈 􏼉 in OL0
with

c(lm, lm+1)≥ 1∀m≥m0 for some natural number m0
and lm⟶ l, we have c(lm, l)≥ 1∀m≥m0.

,en, there exists at least one point of L that satisfies the
equation dL(l, N(l, l, . . . , l􏽼√√√􏽻􏽺√√√􏽽

k−times

)) � DL(OL, ML).

,e proof of the above theorem can be derived by
viewing the proof of ,eorem 8.

3. Conclusion

,is article provides a few results dealing with fixed points
and best proximity points of themappings defined on product
spaces. ,e notions of interpolative Prešić type contractions

and interpolative Prešić type proximal contractions are in-
troduced in the context of metric spaces to discuss the ex-
istence of fixed points and best proximity points of suchmaps,
respectively. ,ese notions are derived by considering the
concept of interpolative Kannan contraction.
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