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Motivated by q-calculus, subordination principle, and the second Einstein function, we define two families of bi-univalent analytic
functions on the open unit disc of the complex plane. We deduce estimates for the first two Maclaurin’s coeflicients and the
Fekete-Sezgo functional inequalities for the functions that belong to these families of functions.

1. Introduction and Basic Concepts

Let &/ denotes the collection of all functions f with the fol-
lowing series representation:

fly=z+) a2, (1)

which are analytic and univalent in the open unit disc
% ={z:|z|] <1} and satisfy the usual normalization con-
dition f(0)=f'(0)-1=0. Also, an important class of
functions will be called &, & defines the family of func-
tions ¢ with the restrictions that the image domain of ¢
(¢ is a convex function with Re (¢) >0 in %) is symmet-
ric along the real axis and starlike about ¢(0)=1 with
¢'(0) > 0.

In 1980, Gradshteyn and Ryzhik [1] give an expression
of the Bernoulli polynomials which have important applica-
tions in number theory and classical analysis. They appear in
the integral representation of differentiable periodic func-
tions since they are employed for approximating such func-
tions in terms of polynomials. They are also used for
representing the remainder term of the composite Euler-
Maclaurin quadrature rule.

The Bernoulli polynomials B,(x) are usually defined
(see, e.g., [2]) by means of the generating function:

te*
et —1

B,(x)
”n! ", |t] <2m, (2)
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G(x,t) =
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where B, (x) are polynomials in x, for each nonnegative inte-
ger n.

The Bernoulli polynomials are easily computed by recur-
sion since

= \Jj

nz_: (I/f)Bj(x):l’lxn_l, n=273,---. (3)

The first few Bernoulli polynomials are

By(x) =1,
1

B (x)=x- =,
(%) =x 5

1 (4)
Bz(x)=x2—x+—,

6
B(x)=x3—§x2+—x
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Furthermore, Bernoulli numbers B, :=B,(0) are pro-
duced directly by putting x =0 in Bernoulli polynomials.
The first few Bernoulli numbers are

B, =1,
1
Bi=-2,
1
Bz_g) (5)
1
B4:_%3' >
By =0, Vn=1,2,-.

Moreover, Bernoulli numbers B, can be generated by
means of the so-called Einstein function E(z):

z
e —1

gk

:|bc
==
N:

E(z) = (6)

n

In mathematics, the Einstein function is a name occa-
sionally used for one of the functions (see [3-6]):

z
-1
z2e*
Ey(2) = —>
(e —1) (7)

E;(z)=log (1-¢7),

E\(z)=

E,(z) = ‘ I —log (1-¢€7°).

eZ_

It is easily noticed that both E; and E, have these nice
properties, but E; and E, are not (see Figure 1); the range
of E; and E, (E, and E, are convex functions) is symmetric
along the real axis and starlike about E,(0) = E,(0) =1 and
R(E,(2)) >0, R(E,(z)) >0Vz e X.

The series representation is given by (one can type
“Maclaurin series for z/(-1 + ¢%)” in [7])
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Ey(z)=1+ ) e
n

where B, is the n' Bernoulli number.

Fl-Qadeem et al. [8] have introduced some results
related to the first Einstein function E,. Here, we will deal
with the second Einstein function E,. Note that E}(0) # 0

(indeed E.(0)=0), ie., E, ¢ P. Thus, we shall define the
function:

Eu(2) = Ey(2) + pz, ©)

where p € I=[0.28,0.92]. It is obvious that E,,(%) is a con-
vex domain, symmetric along the real axis and starlike about
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!
E,(0)=1and R(E,(z)) > OVz € %; moreover, E,(0) =y > 0.
This proves that E, € 2.

Example 1.

(i) If 4 < 0.28, then E,(z) + uz is not a convex function,
see Figure 2(a)

(ii) If u>0.92, then Jz € U s.t. R(E,(z) + uz) # 0, see
Figure 2(b)

(iii) If 0.28<u<0.92, then R(E,(z)+ puz) >0z € %

also, E,(z) + pz is a convex function, see Figure 2(c)

Now, let & be the subfamily of &/ consisting of all func-
tions of the form (1) which are univalent in %. It is well
known, by using the Koebe one-quarter theorem [9], that
every univalent function f € § containing a disc of radius 1
/4 has an inverse function ™', which is defined by

) ==
flr@)=a(wea=foee: < i)

z€U,
(10)

A function f € & is said to be bi-univalent in % if both f
and ™! are univalent in %. Let X denotes the subfamily of &,
consisting of all biunivalent functions defined on the unit
disc %. Since f € X has the Maclaurin series expansion given
by (1), a simple calculation shows that its inverse g = f has
the series expansion:

g(w)=f(w)=w-aw’ + (24} —az)w’ — . (11)

Examples of functions in the class X are

z
1-z2’

—log (1-2), (12)
11 1+z
2 %\1=2)

and so on. However, the familiar Koebe function is not a
member of %. Other common examples of functions in &
such as

2 (13)
1-22

are also not members of X.
Now, we introduce some notes about the g-difference
operator which uses in investigating our main families. In
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FIGURE 1: The images of unit disc % by the Einstein functions E,, E,, E;, and E,.
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FIGURE 2: E (%) for three different values of p.
view of Annaby and Mansour [10], the q-difference operator ~ where
is defined by
q" -1 Zl :
1] = = > g, neN (16)
q _
fa) =@ . -1 5
3,f(z)={ 2a-1)
f'(O) 0 Definition 1 (see [11, 12]). An analytic function f is said to
bl Z = ;

0af (2) = f(2),
a;f(z) =0,f(2),
9"f(2) =0, (a;"—l f(z)) (meN).

Thus, for the function f € X denoted by (1), we have

aqf(z):1+ i (15)

n=2

[n],a,2"" (2 #0),

be subordinate to another analytic function g, written as f(
z) < g(z)(z € %), if there exists a Schwarz function w, which
is analytic in % with w(0)=0 and |w(z)| < 1(z € %), such
that f(z) = g(w(z)). In particular, if the function g is univa-
lent in %, then we have the following equivalence:

f(2)<g(z) & f(0)=9(0). /(%) cg(%).  (17)

Our aim in this article is to introduce two families of
analytic bi-univalent function related to the modified Ein-
stein function E, (z). Furthermore, we get estimations to |
a,|, |a;], and also the Fekete Sezgd inequalities for the func-
tions that belong to these two families.



Definition 2. Consider 0<8<1,0<A<1,q€(0,1), and p
€[0.28,0.92]. The function f € X is said to be in .#%(5,1;
E,) if it is satisfying

(1-9) %) 17)‘8qf(z) +4

IR N CIC)
<1‘”<ww0 %9l + 05 @y <F

9,(20,/ (2)) <

0,4/ (2)

where g=f" is given by (11) and z, w € %.

Definition 3. Consider 0<a<1,0<fB<1,g€(0,1), and p
€[0.28,0.92]. The function f € X is said to be in SL(a, B;
E,) if it is satisfying

(1—®£g2+m%ﬂa+ﬁdﬁ(@<EA@,
‘ (20)

(1-«a) @ + (xaqg(a)) + ﬁwa;g(w) < [Eﬂ(w),

where g=f"" is given by (11) and z, w € %.

Remark 4. Specializing the parameters 6, A, &, 3, and q in
Definitions 2 and 3, then we have the following subfamilies:

(i) f6=0and g — 17, then Ay (A; E,) is the subfam-
ily of %, consisting of functions f which satisfy the
following conditions:

G%QHf@<@@,

(ﬁ%yddmeww

where g=f" is given by (11), E, is defined by (9), and z,
weU

(21)

(i) If §=1, =0, and g — 17, then let F .4+ (E,) be
the family of bi-univalent convex functions with
respect to Einstein function, consisting of the func-
tions f which satisfy the following conditions:

where g =f" is given by (11), E, is defined by (9), and z,
we¥U
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(iii) If 6 =A=0and g — 17, then let S*.#(E,) be the
family of bi-univalent starlike functions with respect
to Einstein function, consisting of functions f which
satisty the following conditions:

zf'(2)
f(2)

< [E#(z),

where g =f" is given by (11), E, is defined by (9), and z,
we¥U

(iv) if a=B=1and ¢— 17, then H5(E,) is the sub-
family of X, consisting of functions f which satisfy
the following conditions:

f'(2) +2f"'(2) < Ey(2),
, / (24)
g (@) +wg (@) < E,(w),

where g=f"" is given by (11), E, is defined by (9), and z,
weU

(v) Ifa=1,=0,and ¢ — 17, then S(E,) is the sub-
family of %, consisting of functions f which satisfy
the following conditions:

f'(2) <Ey(2), (25)
9' (@) <E, (),

where g=f"" is given by (11), E, is defined by (9), and z,
weU

Lemma 5 (see [13, 14]). Let I;,1, e R and p,, p, € C. If |p,],
|p,| <, then

241G L] = L),

Ku+ew-wh—ems{ (26)
! R | AT A1)

Lemma 6 (see [9]). Suppose that x(z) is analytic in the unit
open disc U with x(0) =0, |x(z)| < 1, and that

x(2)=p,z+ Z p,Z" forallze %, (27)

n=2
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then

lpi <1,
lpul S1=|py|* (e N\{1}).

2. Main Results

(28)

Unless otherwise mentioned, we assume in the remainder of
this article that 0<6<1,0<A<1,0<a<1,0<pB<1, g€
(0,1), p€[0.28,0.92], and z, w € %.

K, =(1- 5)([z]q +A- 1) + 5[2]q([z]q -1

K,=(1-8)(A- 1)([2]q+ % - 1> -9[2),

Proof. Let f and g be in #L(5, 7 ; E,) then, they satisfy (18)
and (19), respectively. But according to Definition 1 and
Lemma 6, there exist two functions u(z) and v(w) of the
form

o0 (31)
v(w)= ) d,o",
such that
z \'™* 3,(20,f(2))
(1-9) (/<z)) 04f(2) + 8520 = )+ Ex(u(2),
(32)
(=9 (g(w)> Q9@ gy W) B0
(33)
After some simple calculations, we deduce
ui(z) + Ey (u(z)) = 1 + pu(z) - (u(lzz)) . (uz(:())) .
=1+ucz+ (!"Cz— 1%>22+ ,
(34)

5
Theorem 7. Let f € /%%(8, A [Eﬂ), then
e o
PN K+ K+ (K36p?) | + (2u)K3 9)
o] B+ )
K;|K, + Ky
where
(30)
_ _(v@)® | (v(w))
(@) + Ey(v(@) =1 + () - L O
d2
=1+udw+ (ydz - 1—5) w’+
(35)

9,(20,f(2))

z 1-A
(1-9) Qﬁ) WETTZIG )

=1+K,ayz+ (Kyas + Kya3) 2"+

o< TG o) 4 620 09(@)
< ‘”(g(w)) %9(@)+ 05 4 w) (37)

=1-K,a,0+ (K,a; - Kya3)w’+--,

where K;:j=1,2,3,4are stated in (30).

By substituting from (34), (35), (36), and (37) into (32)
and (33) with comparing the coefficient in both sides, we
obtain

Kya, = pcy, (38)

2
Kia; + Kzag = Uc, — 1—12, (39)
-Kya, = ud,, (40)

d

-1 (41)
12

~Ksa; + K,a5 = pd, ~



6
As a direct result of equations (38) and (40), we get
¢ =—dy, (42)
and also,
G+dl= %K%a; (43)

By adding (39) to (41), then using (43), we obtain

2
1

K
(Kz +K, + @) a5 =u(c, +d,). (44)

Equations (42) and (44) together with using Lemma 6
implies that
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By using (46) into (45), we obtain

a5 < 2 (47)
a,| < .
2 K, + K, + (Ki/6p2) | + (2K} /)

Further, from (39) and (41) with using (42), we get

a
K5(K, + Ky)as = u(e,K, = Kyd,) = 12 (Ky-Ky).  (48)
Thus, by virtue of Lemma 6, we find
1

Kol + K o] 5 (1K) (s e (35 ) ) 49

Since (1/12) — u < 0 for all y € [0.28,0.92]. Then, we con-
clude

K3 2 . e 2
Ko kyr Gaflal s 2u(=lal).— (49) o< ML+ K] 50
o Ky|Ky + K|
But from equation (38), we can deduce
5 Thus, the proof is completed. O
al = L af’ (46)
W Theorem 8. Let f € S%(a, B; E,) then
2p
la,| < 5
J Y(a Bopsa) + (2/)(1+a([2],- 1) + B2),)
) | (1+a(i2),-1) +p2,) . o
o 1+ a(p]q - 1) +B[2],[3], /,t(l + oc([3]q - 1) +,8[2]q[3]q)
as| < 5
p (1+(x([2]q—1> +/3[2]q)
bt t+a((3],-1) +B,B), w(1+e(Bl,-1)+A2,B,) -
where
Y(a Bopsq) = 2(1 + a<[3]q - 1) + ﬁ[z}qmq) + 121#2 (1 + oc([2]q - 1) +ﬁ[2}q)2, (52)
o fo ) - 2y<1+(x([3]q— 1) +/3[2]q[3}q> —2(1+oc([2]q— 1) +/3[2]q>2 .

(1 +oc([3]q - 1) +ﬁ[2]q[3]q) (Y(a,ﬁ,y;q) + (2/(4)(1 +rx([2]q _ 1) +ﬁ[2]q)2) :
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Proof. Suppose f and g be in §%(a, B5E,), then it satisfies
(18) and (19). According to Definition 1 and Lemma 6, there
exist two functions u(z) and v(w) of the form

- (54)
v(w) = Zi d,w",
such that
(1-a)—= + ocaqf ) + fBz0 f pu(z) + E,(u(z)),
(55)
(1-a) @ + ocaqg(w) + ﬁa)a;g(a)) =w(w) + E, (v(w)).
(56)

With some simple calculations, we get

(l—oc)f(z)

=1+2 <1+oc([n]q—

+ad,f(z) + /p’zaqf

1) +Bn- l]q[n]q)anz”,

(57)

(l—a)?+ g(w )+ﬁwa

g(
:1—(1+(x( —1>+ﬁ q)azw (58)
+ (1 +(x([ l,- 1) + B2 ]q[3]q)a2w2+~--.
By substituting from (34), (35), (57), and (58) into (55)

and (56) with comparing the coefficient in both sides, we
conclude

)

(1+oc([2]q— 1) +[3[2]q)a2=‘ucl, (59)

(1+(x([3]q— 1) +ﬁ[2]q[3]q)a3:yc2— f—i (60)
—(1+¢x([2]q—1) +ﬁ[2]q)a2=wl1, (61)

7
d2
(1 + a([3]q - 1) +ﬁ[2]q[3]q> (263 - a3) = udy + 1.
(62)
From (59) and (61), we obtain
¢, =—d,, (63)

and also,

(1 + (x([Z]q - 1) + ﬁ[z]q)z i o

G+d= e a;.
By adding (60) to (62) with using (64), we get

Y(a Byt q)as = p(c, +dy). (65)

In view of Lemma 6, equation (65) together with (63)
implies that

Y(a, Bous ‘D|“2|2 < 21‘(1 - |C1|2)- (66)

On the other hand, from equation (59), we can write

(1+a(p, —1)+/3[])

o= 7 |, (67)
By using (67) into (66), we get
2
|a,| < = 5
V(o Bopsq) + (20p) (1+ (2, - 1) + B2 )
(68)

where Y(a, 3, 43 q) is defined in (52).
Further, by subtracting (62) from (60) and using (63), we
have

ay=a + Gy ‘
21+ (3], -1) + B2,

In view of Lemma 6, equation (69) together with (67)
implies that

(69)

| + : (70)
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By the virtue of (68), we can get the desired result. Thus, Thus,
we complete the proof. O
K,-K, -2yK -d
Theorem 9. Suppose f € ML(5, A5 E,) and n € C, then a; —na; = ( 4”22 72 3)51% + e —d)) . (74)
2K, 2K,
@ 6) A‘) > ;
w, | DS, A, u159)| = 1, As a result of subsequent computations performed by
|a3 - 17a§| < u y using (44), we obtain
K, [P, A w15 q)| <1,
[
(1) |- na]< G| (@O A s q) + Doy + (B0 A s 4) ~ D)
(75)
where
where @(8, A, 4, 175 q) given by (72).
K,-K,- 21K But in view of Kanas et al. [15] and (28), we can obtain
OB q) = ———— e, (72)
K, + K, + (Kj/6u?)
6| <1—|¢* <1,
el <1 e )
and K, K,, K;, and K, are given by (30). [daf 1= [dy[" <1.
Proof. To investigate the desired result, we first subtract (41) Now, applying Lemma 5 to (75), we can obtain the
from (39) with using (42), we get desired result directly. Thus, we complete the proof. O
a, = Ky-K, a+ e _dz)' (73) Theorem 10. Let us consider f € S%(a,ﬁ;[EM) and neC,
2K, 2K, then
2u|1 - 1| 1-n 1
Y(a,Bousq) Y(a, Bopsq) _ ’
2 (@ Bout39) (@ B3 9) 2(1+rx([3]q 1) +ﬁ[2}q[3]q)
as —na;| < (77)
a3 a3
u L-n 1
1+ oc([?)]q - 1) +p2,p], Y@Busq) 2(1 + rx([3]q - 1) + ﬁ[z}q[a]q)
where Y(a, 3, 45 q) is defined by (52).
Proof. In order to investigate the desired result (77), we first p 1-7 1
subtract (62) from (60) with taking in consideration (63), we +ua, % S :
oo (@ Bopt39) 2(1 + 0(([3]q - 1) + ﬁ[z]qp]q)
(79)
21 N2 u(c, = dy) 78 . . . .
as —nay = (1-m)a, + : (78) By applying Lemma 5 to (79) with using (76), we obtain
2(1 + “([3}11 B 1) +B [Z]qmq) the required result which completes the proof. O

3. Set of Corollaries
By virtue of (65), we can get that

In this part, we introduce some corollaries by specializing
the values of the given parameters A, §, a, and f3, and taking
, ( 1-1 1 the limit when ¢ — 17, in our main results.
3 ~ 1y = HGy I Put § =0 and g — 17in Theorems 7, 9, then we have
Y(o fopt59) - q > 9,
2<1 * “(Mq 1) P mqp]q) the following corollary:
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Corollary 11. Let f(z) belong to Mx(A;E,), then

123

22| < \/(/\ +1)[A(6p2 + 12p+ 1) + 1202 + 12u + 1]

2u|1 - 7| TR A+ 1) (A+2+ ((A+1)/6p7))
> _’7 = >
2 A+1D)(A+2 A+1)/6u? 2A+4

s 2o gat| < B D2 68) : o)

A +31+2 u . <()L+1)(/\+2+(()L+1)/6”2))

A+2° -l 20 +4 '

Put §=1=0and g — 17in Theorems 7, 9, then we get ~ Corollary 14. Let f(z) belong to K 5(E,,), then
the following corollary:
3u?
Corollary 12. Let f(z) belong to S* M 5(E ), then @] < 27u% + 48u+ 2’
U
|| < 9 53)
83
12p3

a5] < 4|t i Lk BRI G

por gt i 54+ 4 =27y

|as| < i, a5 =nec] < I 5447 + 4

3 2 (81) . -7 < ——5—

12471 -] - 2" + 1 9 27u?
, 22 +1° [1=nl= 24u?
- <
’a3 11a2| B 7 1242+ 1 Puta=1,8=0,and g — 1™ in Theorems 8, 10, then we
> |I-n|< 24,72 have the following corollary:

Put §=1,A=0, and g — 17in Theorems 7, 9, then we
obtain the following:

Corollary 13. Let f(z) belong to F M 5 (E,,), then

3
PRy —
o+ 12u+1

- 5
a =
3 |as] ITls 2 (82)
w5 - 61| |5—6|>9M +1
, 2092 +1)° T
|a3—r]a2‘S 04 1
+
£ 5-6n)< 222
6 3u

Put a=B=1 and q— 17in Theorems 8, 10, then we
have the following corollary:

Corollary 15. Let f(z) belong to Sx(E,), then

3
PRy S —
18u? +24p + 1

u
|as] < 3

84)

64|11 -1 N 18u” + 1

, 182 +1° =l 182

|a; —na3| <p X
1 - 1847 +1
3 | 18u2
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