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*e main objective of the paper is to develop an innovative idea of bringing continuous and discrete inequalities into a unified
form.*e desired objective is thus obtained by embeddingmajorization theory with the existing notion of continuous inequalities.
*ese notions are applied to the latest generalized form of the inequalities, popularly known as the Hermi-
te–Hadamard–Jensen–Mercer inequalities. Moreover, the frequently-used Caputo fractional operators are employed, which are
rightly considered critical, especially for applied problems. Both weighted and unweighted forms of the developed results are
discussed. In addition to this, some bounds are also provided for the absolute difference between the left- and right-sides of the
main results.

1. Introduction

*e field of mathematical inequalities contributes to a wide
area of research in mathematics. With the passage of time,
this field has emerged as a separate discipline, despite the fact
that it was being used as a tool earlier. *e addition of the
notion of convexity enriched its literature and stimulated a
new trend among researchers. As a result, many new in-
equalities came to the surface. *ese inequalities are (but not
limited to) Ostrowski inequalities [1], Jensen’s inequalities
[2], the Jensen–Mercer inequalities [3], Fejér inequalities [4],
Hermite–Hadamard inequalities [5], and their various
variants. *e Hermite–Hadamard inequality is believed to
be the most widespread inequality in the literature and has
received much attention in the last few years. *is inequality
is defined as follows:

If ϕ: I⟶ R is a convex function with ϑ, θ ∈ I such that
ϑ< θ then

ϕ
ϑ + θ
2

 ≤
1

θ − ϑ

θ

ϑ
ϕ(u)du≤

ϕ(ϑ) + ϕ(θ)

2
. (1)

*e direction of the inequality given in (1) reverses
whenever the function ϕ is concave. *is inequality has been
established for different generalized convex functions, for
example, s− convex [6], η− convex [7], strongly convex [8],
and coordinate convex function [9]. Research works in this
field have also been extended to the theory of fractional
calculus. As there are multiple numbers of fractional op-
erators but due to our interest, we limit ourselves to the well-
known Caputo fractional operators. *eir definition is given
as follows:

Definition 1 (Caputo fractional derivative
operators). Consider a function ϕ ∈ Cn[ϑ, θ] (the space of
functions whose nth-derivative exist and continuous on

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 6964087, 24 pages
https://doi.org/10.1155/2022/6964087

mailto:zaidmohamm56@gmail.com
https://orcid.org/0000-0001-5373-4663
https://orcid.org/0000-0002-9121-2425
https://orcid.org/0000-0002-0170-5286
https://orcid.org/0000-0002-0545-5333
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6964087


[ϑ, θ]), α> 0, such that α ∉ 1, 2, 3, . . .{ } and n � [α] + 1. *en
the α ordered, Caputo fractional derivative operators are
defined as [10]

c
D

α
ϑ+ϕ(z) �

1
Γ(n − α)


z

ϑ

ϕ(n)
(u)

(z − u)
α− n+1du, z> ϑ,

c
D

α
θ− ϕ(z) �

(− 1)
n

Γ(n − α)

θ

z

ϕ(n)
(u)

(u − z)
α− n+1du, z< θ.

(2)

Where cDα
ϑ+ϕ(z) and cDα

θ− ϕ(z) stand for the left- and
right-sided Caputo fractional derivative operators,
respectively.

It may be noted that if the usual derivative of the
function ϕ of order n exists, then it coincides with cDα

ϑ+ϕ(z)

for α � n ∈ 1, 2, 3, . . .{ }. Also, for n � 1 and α � 0, we have
c
D

α
ϑ+ϕ( (z) �

c
D

α
θ− ϕ( (z) � ϕ(z). (3)

Some research work related to the Caputo fractional
operators can be found in [11–13] and the references therein.

*e associated Hermite–Jensen–Mercer inequality in
terms of Caputo fractional operators is defined as follows
[14]:

Theorem 1 (Hermite–Jensen–Mercer inequality). Consider
a function ϕ defined on the interval [ϑ, θ], such that
ϕ ∈ Cn[ϑ, θ] and ϕ(n) is convex on [ϑ, θ] with
[x1, y1] ⊂ [ϑ, θ], α> 0, then we have

ϕ(n) ϑ + θ −
x1 + y1

2
 ≤

2n− α− 1Γ(n − α + 1)

y1 − x1( 
n− α

c
D

α
ϑ+θ− x1+y1/2( )( )

+ϕ  ϑ + θ − x1(  +(− 1)
n c

D
α
ϑ+θ− x1+y1/2( )( )

− ϕ  ϑ + θ − y1(  

≤ϕ(n)
(ϑ) + ϕ(n)

(θ) −
ϕ(n)

x1(  + ϕ(n)
y1( 

2
.

(4)

*e inequality (1) can be obtained from (4) when n � 1,
α � 0, x1 � ϑ and y1 � θ. Some more work related to
Hermite–Jensen–Mercer inequalities via fractional opera-
tors can be traced in [15–20]. Now, we state the definition of
majorization in terms of which we want to present our
results [21].

Definition 2 (Majorization). Let us consider a � (a1, . . . , al)

and b � (b1, . . . , bl) are two l− tuples of real numbers
arranged in order a[l] ≤ a[l− 1] ≤ · · · ≤ a[1], and
b[l] ≤ b[l− 1] ≤ · · · ≤ b[1], then a is said to majorize b (or b is
said to be majorized by a), if for k � 1, 2, . . . , l − 1, we have



k

s�1
b[s] ≤ 

k

s�1
a[s], and 

l

s�1
as � 

l

s�1
bs. (5)

If a majorizes b, then symbolically it is written as b≺ a.

Niezgoda [22] has used the concept of majorization and
extended the Jensen–Mercer inequality given as follows:

Theorem 2 (Majorized discrete Jensen–Mercer inequality).
Let us consider a convex function ϕ defined on the interval I,
r × l real matrix (xis) , and l− tuple δ � (δ1, . . . , δl) such
that δs, xis ∈ I for all i � 1, 2, . . . , r , s ∈ 1, . . . , l{ } with
σi ≥ 0, 

r
i�1σi � 1. If δ majorizes every row of (xis), then we

have

ϕ 
l

s�1
δs − 

l− 1

s�1


r

i�1
σixis

⎛⎝ ⎞⎠≤ 
l

s�1
ϕ δs(  − 

l− 1

s�1


r

i�1
σiϕ xis( . (6)

*e following lemmas will help us to prove our main
results [23].

Lemma 1. Let us consider a convex function ϕ defined on the
interval I, r × l real matrix (xis), and two l− tuples
δ � (δ1, . . . , δl), p � (p1, . . . , pl), such that δs, xis ∈ I, σi ≥ 0,


r
i�1σi � 1, ps ≥ 0, with pl ≠ 0, η � 1/pl, for all

i � 1, 2, . . . , r, s ∈ 1, . . . , l{ }. If for each i � 1, 2, . . . , r,
(xi1, . . . , xim) is a decreasing l− tuple and satisfying



k

s�1
psxis ≤ 

k

s�1
psδs, for k � 1, 2, . . . , l − 1, 

l

s�1
psδs

� 
l

s�1
psxis,

(7)

Cen

ϕ 
l

s�1
ηpsδs − 

l− 1

s�1


r

i�1
ησipsxis

⎛⎝ ⎞⎠

≤ 
l

s�1
ηpsϕ δs(  − 

l− 1

s�1


r

i�1
ησipsϕ xis( .

(8)

Lemma 2. Let us consider a convex function ϕ defined on the
interval I, r × l real matrix (xis), and two l− tuples
δ � (δ1, . . . , δl), p � (p1, . . . , pl), such that δs, xis ∈ I, σi ≥ 0,


r
i�1σi � 1, ps ≥ 0, with pl ≠ 0, η � 1/pl, for all

i � 1, 2, . . . , r, s ∈ 1, . . . , l{ }. If for each i � 1, . . . , r, (δs − xis)

and xis are monotonically in the same sense and
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l

s�1
psδs � 

l

s�1
psxis, (9)

Cen

ϕ 
l

s�1
ηpsδs − 

l− 1

s�1


r

i�1
ησipsxis

⎛⎝ ⎞⎠

≤ 
l

s�1
ηpsϕ δs(  − 

l− 1

s�1


r

i�1
ησipsϕ xis( .

(10)

*e theory of majorization has been successful in
drawing the attention of researchers working in various
fields. It has been used as a key element in solving com-
plicated optimization problems [24, 25]. Some more recent
applications of majorization theory in signal processing and
communication can be seen in [26, 27]. For further suc-
cessive work carried out via the concept of majorization, one
is referred to [28–34] and the references therein. In the
present era, despite the existence of various diverse research
fields, the shrinking of more than one research field into one
is direly needed. *e reason is that new ideas grow fast when
they attract the attention of a maximum number of re-
searchers. In our case, since inequalities have two main
aspects, one is that of continuous inequalities and the other
is of discrete inequalities. Both subfields have been absorbing
the attention of many researchers at the same time.*e fault
is that the majority of the results are based only on simple
conversions from discrete to continuous or vice versa. *e
concept of adding new ideas or strengthening an existing
one is rarely utilized. In such a situation, there is a need for
the provision of such a platform which can play the role of
bringing researchers from the abovementioned subfields
together and utilize their energies and efforts in one di-
rection. *e present attempt may be considered one of the
endeavors in this regard.

*e present paper is summarized as follows: first of all,
*eorem 3 is devoted to the establishment of a new unified
form of Hermite–Hadamard–Jensen–Mercer inequality.
*is objective is achieved by utilizing the majorized l− tuples
in the context of Caputo fractional operators. A slightly
different variant of *eorem 3 is presented in the form of
*eorem 4. In order to verify and provide proof of the fact
that the newly-obtained results are the unifications and
generalizations of those already existing results, Remark 1
and Remark 2 are presented. In addition to this, weighted
versions of the obtained results are also provided, taking the
weighted generalized Mercer’s inequality into account.
*ese weighted results can be traced to *eorem 5 and
*eorem 6. Moreover, two new identities, connected with
the right- and left-sides of *eorem 3 and *eorem 4, re-
spectively, are discovered. Employing these lemmas, various
bounds associated with the absolute difference of the two
right- and left-most terms in the main results are obtained.
*ese results are discussed in *eorem 7, *eorem 8,
*eorem 9, *eorem 10, and *eorem 11. Remark 5, Re-
mark 6, and Remark 7 show that the newly-derived identities
also generalize those previously-defined identities, while
Remark 8 discusses the previous version of *eorem 10.
Corollary 1 gives details about a previous bound while
Corollary 2, and Corollary 3 provide information about the
classical integral versions of *eorem 9 and *eorem 11. At
the end, conclusion of the overall attempt is presented.

2. Main Results

*e following theorem presents the Hermi-
te–Hadamard–Jensen–Mercer fractional inequality for the
Caputo fractional operators.

Theorem 3. Let us consider a function ϕ ∈ Cn(I) and
δ � (δ1, . . . , δl), x � (x1, . . . , xl), y � (y1, . . . , yl) are three
l-tuples, such that δs, xs, ys ∈ I, for all s ∈ 1, . . . , l{ }, xl >yl,
α> 0. If ϕ(n) is a convex function on I, x ≺ δ, and y ≺ δ, then

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α

·
c
D

α


l

s�1δs− 
l− 1
s�1ys( 

+ϕ  

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(− 1)
n c

D
α


l

s�1δs− 
l− 1
s�1xs( 

− ϕ  

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

≤
ϕ(n)


l
s�1δs − 

l− 1
s�1ys  + ϕ(n)


l
s�1δs − 

l− 1
s�1xs 

2

≤ 

l

s�1
ϕ(n) δs(  −


l− 1
s�1ϕ

(n)
xs(  + 

l− 1
s�1ϕ

(n)
ys( 

2
.

(11)
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Proof. It can be written as

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠ � ϕ(n) 1

2


l

s�1
δs − 

l− 1

s�1
xs + 

l

s�1
δs − 

l− 1

s�1
ys

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭,

� ϕ(n) 1
2

t 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

+ t 
l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎫⎬

⎭.

(12)

Since ϕ(n) is a convex function, therefore (12) gives the
following inequality:

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

1
2

ϕ(n)
t 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

+ ϕ(n)
t 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎫⎬

⎭.

(13)

By multiplying both sides of (13) by tn− α− 1 and then
integrating over t ∈ [0, 1], we get

1
n − α

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠

≤
1
2


1

0
t
n− α− 1ϕ(n)

t 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt
⎧⎨

⎩

+ 
1

0
t
n− α− 1ϕ(n)

t 
l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt
⎫⎬

⎭

�
1

2 
l− 1
s�1 ys − xs(  

n− α 


l

s�1
δs− 

l− 1

s�1
xs


l

s�1
δs− 

l− 1

s�1
ys

ϕ(n)
(u)

u − 
l
s�1δs − 

l− 1
s�1ys  

α− n+1du
⎧⎪⎨

⎪⎩

+ 


l

s�1
δs− 

l− 1

s�1
xs


l

s�1
δs− 

l− 1

s�1
ys

ϕ(n)
(u)


l
s�1δs − 

l− 1
s�1xs  − u 

α− n+1du
⎫⎪⎬

⎪⎭
.

(14)

In order to apply the definition of the Caputo fractional
operators in (14), first, we show that



l

s�1
δs − 

l− 1

s�1
ys < 

l

s�1
δs − 

l− 1

s�1
xs. (15)

By the hypotheses, we have x ≺ δ and y ≺ δ, therefore



l− 1

s�1
ys − 

l− 1

s�1
xs � xl − yl. (16)

Also,

4 Journal of Function Spaces



xl >yl⇒xl − yl > 0. (17)

By substituting (17) in (16), and adding 
l
s�1δs to both

sides, we get



l

s�1
δs − 

l− 1

s�1
ys < 

l

s�1
δs − 

l− 1

s�1
xs. (18)

Now (14) implies

1
n − α

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α)

2 
l− 1
s�1 ys − xs(  

n− α
c
D

α


l

s�1δs− 
l− 1
δs

ys 
+ϕ  

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

+(− 1)
n c

D
α


l

s�1δs− 
l− 1
s�1xs( 

− ϕ  

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎫⎬

⎭,

(19)

and so

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α
c
D

α


l

s�1δs− 
l− 1
s�1ys( 

+ϕ  

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

+(− 1)
n c

D
α


l

s�1δs− 
l− 1
s�1xs( 

− ϕ  

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎫⎬

⎭.

(20)

*us, the first inequality of (11) is completed. Now, using
the convexity of ϕ(n), we obtain the second inequality in the
following manner:

ϕ(n)
t 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(1 − t) 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤ tϕ(n)


l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(1 − t)ϕ(n)


l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠, (21)

ϕ(n)
t 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤ tϕ(n)


l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠ +(1 − t)ϕ(n)


l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠. (22)

Adding (21) and (22), and then applying *eorem 2 for
r � 1 and σ1 � 1, we obtain

ϕ(n)
t 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + ϕ(n)
t 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ ϕ(n)


l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ + ϕ(n)


l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠

≤ 2

l

s�1
ϕ(n) δs(  − 

l− 1

s�1
ϕ(n)

xs(  + 

l− 1

s�1
ϕ(n)

ys( 
⎧⎨

⎩

⎫⎬

⎭.

(23)

By multiplying both sides of (23) by tn− α− 1 and then
integrating over t ∈ [0, 1], we get the second and third in-
equality in (11). □

Remark 1. For the hypothesis of*eorem 3, if l � 2, then we
get the following inequality:
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ϕ(n) δ1 + δ2 −
x1 + y1

2
 ≤

Γ(n − α + 1)

2 y1 − x1( 
n− α

c
D

α
δ1+δ2− y1( )

+ϕ  δ1 + δ2 − x1(  +(− 1)
n c

D
α
δ1+δ2− x1( )

− ϕ  δ1 + δ2 − y1(  ,

≤
ϕ(n) δ1 + δ2 − x1(  + ϕ(n) δ1 + δ2 − y1( 

2

≤ϕ(n) δ1(  + ϕ(n) δ2(  −
ϕ(n)

x1(  + ϕ(n)
y1( 

2
.

(24)

Moreover, for n � 1 and α � 0, we obtain the result of
Kian and Moslehian [35].

Remark 2. If we take x1 � δ1, y1 � δ2, then inequality (24)
reduces to inequality (2.2) in [15].

Another result for the Hermi-
te–Hadamard–Jensen–Mercer fractional inequality is given
as follows:

Theorem 4. Let all the conditions in the hypothesis of
Ceorem 3 hold. Cen,

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

2n− α− 1Γ(n − α + 1)


l− 1
s�1 ys − xs(  

n− α (− 1)
n c

D
α


l

s�1δs− 
l− 1
s�1 xs+ys/2( )( 

− ϕ  

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎨

⎩

+
c
D

α


l

s�1
δs− 

l− 1

s�1
xs+ys/2( ) 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠

⎫⎪⎪⎬

⎪⎪⎭
≤ 

l

s�1
ϕ(n) δs(  −


l− 1
s�1ϕ

(n)
xs(  + 

l− 1
s�1ϕ

(n)
ys( 

2
.

(25)

Proof. Let us consider t ∈ [0, 1]. To prove the required re-
sult, we proceed as follows:

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠ � ϕ(n) 1

2


l

s�1
δs − 

l− 1

s�1
xs + 

l

s�1
δs − 

l− 1

s�1
ys

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭,

� ϕ(n) 1
2



l

s�1
δs −

t

2


l− 1

s�1
xs +

2 − t

2


l− 1

s�1
ys

⎛⎝ ⎞⎠ + 

l

s�1
δs −

t

2


l− 1

s�1
ys +

2 − t

2


l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭.

(26)

Since ϕ(n) is a convex function, therefore (26) gives the
following inequality:

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

1
2

ϕ(n)


l

s�1
δs −

t

2


l− 1

s�1
xs +

2 − t

2


l− 1

s�1
ys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + ϕ(n)


l

s�1
δs −

t

2


l− 1

s�1
ys +

2 − t

2


l− 1

s�1
xs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭.

(27)

By multiplying both sides of (27) by tn− α− 1 and then
integrating over t ∈ [0, 1], we obtain
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1
n − α

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

1
2


1

0
t
n− α− 1ϕ(n)



l

s�1
δs −

t

2


l− 1

s�1
xs +

2 − t

2


l− 1

s�1
ys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠dt
⎧⎨

⎩

+ 
1

0
t
n− α− 1ϕ(n)



l

s�1
δs −

t

2


l− 1

s�1
ys +

2 − t

2


l− 1

s�1
xs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠dt
⎫⎬

⎭

�
1

2 
l− 1
s�1ys − xs/2 

n− α 


l

s�1
δs− 

l− 1

s�1
xs+ys/2( )


l

s�1
δs− 

l− 1

s�1
ys

ϕ(n)
(u)

u − 
l
s�1δs − 

l− 1
s�1ys  

α− n+1du
⎧⎪⎨

⎪⎩

+ 


l

s�1

δ
l

s�1
δss− 

l− 1

s�1
xs


l

s�1
δs− 

l− 1

s�1
xs+ys/2( )

ϕ(n)
(u)


l
s�1δs − 

l− 1
s�1xs  − u 

α− n+1du

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(28)

Following the same procedure, as given in the proof of
*eorem 3, we can show that



l

s�1
δs − 

l− 1

s�1

xs + ys

2
 < 

l

s�1
δs − 

l− 1

s�1
xs, and 

l

s�1
δs − 

l− 1

s�1

xs + ys

2
 > 

l

s�1
δs − 

l− 1

s�1
ys. (29)

Now, from (28), we deduce

1
n − α

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠ �

2n− α− 1Γ(n − α)


l− 1
s�1 ys − xs(  

n− α

× (− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs+ys/2( ) 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

+
c
D

α


l

s�1
δs− 

l− 1

s�1
xs+ys/2( ) 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠

⎫⎪⎪⎬

⎪⎪⎭
.

(30)

So, we have

ϕ(n)


l

s�1
δs − 

l− 1

s�1

xs + ys

2
 ⎛⎝ ⎞⎠≤

2n− α− 1Γ(n − α + 1)


l− 1
s�1 ys − xs(  

n− α

× (− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs+ys/2( ) 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

+
c
D

α


l

s�1
δs− 

l− 1

s�1
xs+ys/2( ) 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠

⎫⎪⎪⎬

⎪⎪⎭
.

(31)
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*is proves the first inequality in (25). In order to prove the second inequality of (25), we use
*eorem 2 for r � 2, σ1 � t/2, and σ2 � 2 − t/2 as follows:

ϕ(n)


l

s�1
δs −

t

2


l− 1

s�1
xs +

2 − t

2


l− 1

s�1
ys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤ 
l

s�1
ϕ(n) δs(  −

t

2


l− 1

s�1
ϕ(n)

xs(  +
2 − t

2


l− 1

s�1
ϕ(n)

ys( ⎛⎝ ⎞⎠, (32)

ϕ(n)


l

s�1
δs −

t

2


l− 1

s�1
ys +

2 − t

2


l− 1

s�1
xs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤ 
l

s�1
ϕ(n) δs(  −

t

2


l− 1

s�1
ϕ(n)

ys(  +
2 − t

2


l− 1

s�1
ϕ(n)

xs( ⎛⎝ ⎞⎠. (33)

Adding (32) and (33), we get

ϕ(n)


l

s�1
δs −

t

2


l− 1

s�1
xs +

2 − t

2


l− 1

s�1
ys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + ϕ(n)


l

s�1
δs −

t

2


l− 1

s�1
ys +

2 − t

2


l− 1

s�1
xs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ 2
l

s�1
ϕ(n) δs(  − 

l− 1

s�1
ϕ(n)

xs(  + 
l− 1

s�1
ϕ(n)

ys( ⎛⎝ ⎞⎠.

(34)

By multiplying both sides of (34) by tn− α− 1 and then
integrating over t ∈ [0, 1], we obtain the second inequality of
(25). □

We establish the following result for the Caputo frac-
tional operators on the basis of Lemma 1.

Theorem 5. Let us consider a function ϕ ∈ Cn(I), such that
ϕ(n) is a convex function on I and δ � (δ1, . . . , δl),
x � (x1, . . . , xl), y � (y1, . . . , yl), and p � (p1, . . . , pl) are
four l-tuples, such that δs, xs, ys ∈ I, ps ≥ 0 with pl ≠ 0 for all
s ∈ 1, . . . , l{ }, η � 1/pl, xl >yl, α> 0. If x and y are decreasing
l-tuples and



k

s�1
psxs ≤ 

k

s�1
psδs, 

k

s�1
psys ≤ 

k

s�1
psδs, for k � 1, . . . , l − 1,



l

s�1
psδs � 

l

s�1
psxs, 

l

s�1
psδs � 

l

s�1
psys,

(35)

then

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1

psxs + psys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α + 1)

2 
l− 1
s�1 ηpsys − ηpsxs(  

n− α
c
D

α


l

s�1ηpsδs− 
l− 1
s�1ηpsys( 

+ϕ  

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠
⎧⎨

⎩

+(− 1)
n c

D
α


l

s�1
ηpsδs− 

l− 1

s�1
ηpsxs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭

≤
ϕ(n)


l
s�1ηpsδs − 

l− 1
s�1ηpsys  + ϕ(n)


l
s�1ηpsδs − 

l− 1
s�1ηpsxs 

2

≤ 
l

s�1
ηpsϕ

(n) δs(  −


l− 1
s�1ηpsϕ

(n)
xs(  + 

l− 1
s�1ηpsϕ

(n)
ys( 

2
.

(36)
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Proof. It can be written as

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1
ps

xs + ys

2
 ⎛⎝ ⎞⎠ � ϕ(n) 1

2


l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs + 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭

� ϕ(n) 1
2

t 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎧⎨

⎩

+t 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠
⎫⎬

⎭

⎫⎬

⎭.

(37)

Since ϕ(n) is a convex function, therefore (37) gives the
following inequality:

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1
ps

xs + ys

2
 ⎛⎝ ⎞⎠≤

1
2

ϕ(n)
t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

+ϕ(n)
t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

⎫⎬

⎭.

(38)

By multiplying both sides of (38) by tn− α− 1 and then
integrating over t ∈ [0, 1], we get

1
n − α

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1
ps

xs + ys

2
 ⎛⎝ ⎞⎠≤

1
2


1

0
t
n− α− 1ϕ(n)

t 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt
⎧⎨

⎩

+ 
1

0
t
n− α− 1ϕ(n)

t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠ +(1 − t) 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt
⎫⎬

⎭,

�
1

2 
l− 1
s�1 ηpsys − ηpsxs(  

n− α 


l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs


l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

ϕ(n)
(u)

u − 
l
s�1ηpsδs − 

l− 1
s�1ηpsys  

α− n+1du
⎧⎪⎨

⎪⎩

+ 


l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs


l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

ϕ(n)
(u)


l
s�1ηpsδs − 

l− 1
s�1ηpsxs  − u 

α− n+1du
⎫⎪⎬

⎪⎭
.

(39)

In order to apply the definition of the Caputo fractional
operators in (39), first, we show that



l

s�1
ηpsδs − 

l− 1

s�1
ηpsys < 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs. (40)

Given that 
l
s�1psδs � 

l
s�1psxs and


l
s�1psδs � 

l
s�1psys, we have



l− 1

s�1
psys − 

l− 1

s�1
psxs � plxl − plyl. (41)

Also,

xl >yl⇒plxl >plyl⇒plxl − plyl > 0. (42)

By substituting (42) in (41), and adding 
l
s�1ηpsδs to

both sides, we get
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l

s�1
ηpsδs − 

l− 1

s�1
ηpsys < 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs. (43)

Now (39) implies

1
n − α

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1
ps

xs + ys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α)

2 
l− 1
s�1 ηpsys − ηpsxs(  

n− α

×
c
D

α


l

s�1
ηpsδs− 

l− 1

s�1
ηpsys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

+(− 1)
n c

D
α


l

s�1
ηpsδs− 

l− 1

s�1
ηpsys 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭
,

(44)

and so

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1
ps

xs + ys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α + 1)

2 
l− 1
s�1 ηpsys − ηpsxs(  

n− α ×
c
D

α


l

s�1ηpsδs− 
l− 1
s�1ηpsys( 

+ϕ  

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠
⎧⎨

⎩

+(− 1)
n c

D
α


l

s�1
ηpsδs− 

l− 1

s�1
ηpsxs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭
.

(45)

*us, we achieved the first inequality of (36). To prove the second inequality, from the convexity of
ϕ(n) we may write that

ϕ(n)
t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤ tϕ(n)


l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ +(1 − t)ϕ(n)


l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠,

(46)

ϕ(n)
t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤ tϕ(n)


l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠ +(1 − t)ϕ(n)


l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠.

(47)

Adding (46) and (47) and then using Lemma 1 for r � 2,
σ1 � t, and σ2 � 1 − t, we obtain

ϕ(n)
t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + ϕ(n)
t 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠ +(1 − t) 
l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ ϕ(n)


l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠ + ϕ(n)


l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠

≤ 2

l

s�1
ηpsϕ

(n) δs(  − 

l− 1

s�1
ηpsϕ

(n)
xs(  + 

l− 1

s�1
ηpsϕ

(n)
ys( 

⎧⎨

⎩

⎫⎬

⎭.

(48)
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By multiplying both sides of (48) by tn− α− 1 and then
integrating over t ∈ [0, 1], we get the second and third in-
equality in (36). □

We establish the following result for the Caputo frac-
tional operators on the basis of Lemma 2.

Theorem 6. Let us consider a function ϕ ∈ Cn(I), such that
ϕ(n) is a convex function on I and δ � (δ1, . . . , δl),

x � (x1, . . . , xl), y � (y1, . . . , yl), and p � (p1, . . . , pl) are
four l-tuples, such that δs, xs, ys ∈ I, ps ≥ 0 with pl ≠ 0 for all
s ∈ 1, . . . , l{ }, η � 1/pl, xl >yl, α> 0. If δ − x, x, δ − y, and y
are monotonically in the same sense and



l

s�1
psδs � 

l

s�1
psxs, 

l

s�1
psδs � 

l

s�1
psys, (49)

then

ϕ(n)


l

s�1
ηpsδs − η

l− 1

s�1

psxs + psys

2
 ⎛⎝ ⎞⎠≤

Γ(n − α + 1)

2 
l− 1
s�1 ηpsys − ηpsxs(  

n− α

·
c
D

α


l

s�1
ηpsδs− 

l− 1

s�1
ηpsys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsxs

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

+(− 1)
n c

D
α


l

s�1
ηpsδs− 

l− 1

s�1
ηpsxs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
ηpsδs − 

l− 1

s�1
ηpsys

⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭

≤
ϕ(n)


l
s�1 ηpsδs − 

l− 1
s�1 ηpsys  + ϕ(n)


l
s�1 ηpsδs − 

l− 1
s�1 ηpsxs 

2

≤ 

l

s�1
ηpsϕ

(n) δs(  −


l− 1
s�1ηpsϕ

(n)
xs(  + 

l− 1
s�1ηpsϕ

(n)
ys( 

2
.

(50)

Proof. By using Lemma 2 and following the procedure given
in the proof of *eorem 5, we can obtain (50). □

Remark 3. *eorem 5 and *eorem 6 provide weighted
forms of *eorem 3.

Remark 4. *e weighted versions of *eorem 4 can be
obtained in a similar fashion.

3. Bounds Associated with the Main Results

In this section first, we discover two new identities associated
with the right- and left-sides of the main results. *en

utilizing these identities, we establish bounds for the ab-
solute difference of the two right- and left-most terms of the
main results.

Lemma 3. Let us consider a differentiable function ϕ defined
on I, such that ϕ ∈ Cn+1(I) and δ � (δ1, . . . , δl),
x � (x1, . . . , xl), and y � (y1, . . . , yl) are three l− tuples,
such that δs, xs, ys ∈ I, for all s ∈ 1, . . . , l{ }, α> 0, t ∈ [0, 1]. If
ϕ(n+1) ∈ L(I), then

ϕ(n)


l
s�1δs − 

l− 1
s�1ys  + ϕ(n)


l
s�1δs − 

l− 1
s�1xs 

2
−
Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α ×
c
D

α


l

s�1δs− 
l− 1
s�1ys( 

+ϕ  

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠
⎧⎨

⎩

+(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭

�


l− 1
s�1 ys − xs( 

2

1

0
t
n− α

− (1 − t)
n− α

( ϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt.

(51)
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Proof. To prove our required result, we consider that

I � 
1

0
t
n− α

− (1 − t)
n− α

( ϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt,

� 
1

0
t
n− αϕ(n+1)



l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt − 

1

0
(1 − t)

n− αϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt

� I1 − I2.

(52)

Assuming that 
l
s�1δs − 

l− 1
s�1ys <

l
s�1δs − 

l− 1
s�1xs and

using integration by parts formula, we obtain

I1 � 
1

0
t
n− αϕ(n+1)



l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt �

tn− αϕ(n) 
l
s�1δs − 

l− 1
s�1 txs +(1 − t)ys(  


l− 1
s�1 ys − xs( 



1

0

−
n − α


l− 1
s�1 ys − xs( 

× 
1

0
t
n− α− 1ϕ(n)



l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt,

�
ϕ(n)


l
s�1δs − 

l− 1
s�1xs 


l− 1
s�1 ys − xs( 

−
Γ(n − α + 1)


l− 1
s�1 ys − xs(  

n− α+1(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠.

(53)

Similarly,

I2 � 
1

0
(1 − t)

n− αϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt

�
(1 − t)n− αϕ(n) 

l
s�1δs − 

l− 1
s�1 txs +(1 − t)ys(  


l− 1
s�1 ys − xs( 



1

0

+
n − α


l− 1
s�1 ys − xs( 

× 
1

0
(1 − t)

n− α− 1ϕ(n)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt

� −
ϕ(n)


l
s�1δs − 

l− 1
s�1ys 


l− 1
s�1 ys − xs( 

+
Γ(n − α + 1)


l− 1
s�1 ys − xs(  

n− α+1
c
D

α


l

s�1
δs− 

l− 1

s�1
ys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠.

(54)
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Now, we have

I �
ϕ(n)


l
s�1δs − 

l− 1
s�1xs  + ϕ(n)


l
s�1δs − 

l− 1
s�1ys 


l− 1
s�1 ys − xs( 

−
Γ(n − α + 1)


l− 1
s�1 ys − xs(  

n− α+1

×
c
D

α


l

s�1
δs− 

l− 1

s�1
ys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(55)

Multiplying both sides by 
l− 1
s�1(ys − xs)/2, we get (51).

□
Remark 5. Lemma 3 gives the following equality for x1 � δ1,
y1 � δ2, and l � 2 proved by Farid et al. [15].

ϕ(n) δ1(  + ϕ(n) δ2( 

2
−
Γ(n − α + 1)

2 δ2 − δ1( 
n− α

c
D

α
δ+
1
ϕ  δ2(  +(− 1)

n c
D

α
δ−
2
ϕ  δ1(  

�
δ2 − δ1

2

1

0
t
n− α

− (1 − t)
n− α

( ϕ(n+1)
tδ2 +(1 − t)δ1( dt.

(56)

Remark 6. If we take α � 0 and n � 1 in Remark 5, then the
equality (56) gives

ϕ δ1(  + ϕ δ2( 

2
−

1
δ2 − δ1


δ2

δ1
ϕ(u)du �

δ2 − δ1
2


1

0
(2t − 1)ϕ′ tδ2 +(1 − t)δ1( dt. (57)

*e equality (57) has been proved by Dragomir and
Agarwal [5].

*e following results have been established on the basis
of Lemma 3:

Theorem 7. Let us consider a differentiable function ϕ de-
fined on I, such that ϕ ∈ Cn+1(I) and δ � (δ1, . . . , δl),
x � (x1, . . . , xl), y � (y1, . . . , yl) are three l− tuples, such
that δs, xs, ys ∈ I, for all s ∈ 1, . . . , l{ }, xl >yl, α> 0. If δ
majorizes x, y, and |ϕ(n+1)| is convex on I, then

ϕ(n)


l
s�1δs − 

l− 1
s�1ys  + ϕ(n)


l
s�1δs − 

l− 1
s�1xs 

2
−
Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α



×
c
D

α


l

s�1
δs− 

l− 1

s�1
ys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭



≤


l− 1
s�1 ys − xs




n − α + 1
1 −

1
2n− α  

l

s�1
ϕ(n+1) δs( 



 −


l− 1
s�1 ϕ

(n+1)
xs( 



 + 
l− 1
s�1 ϕ

(n+1)
ys( 





2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(58)
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Proof. From Lemma 3, it follows that

ϕ(n)


l
s�1δs − 

l− 1
s�1ys  + ϕ(n)


l
s�1δs − 

l− 1
s�1xs 

2
−
Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α



×
c
D

α


l

s�1
δs− 

l− 1

s�1
ys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭



�


l− 1
s�1 ys − xs( 

2

1

0
t
n− α

− (1 − t)
n− α

( ϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt





≤


l− 1
s�1 ys − xs( 

2

1

0
t
n− α

− (1 − t)
n− α

( 


 ϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠




dt.

(59)

Using *eorem 2 for r � 2, σ1 � t, and σ2 � 1 − t in (59)
as a consequence of the convexity of |ϕ(n+1)|, we obtain

≤


l− 1
s�1 ys − xs




2

1

0
t
n− α

− (1 − t)
n− α

( 


 × 
l

s�1
ϕ(n+1) δs( 



 − t 
l− 1

s�1
ϕ(n+1)

xs( 


 +(1 − t) 
l− 1

s�1
ϕ(n+1)

ys( 


⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt.

�


l− 1
s�1 ys − xs




2

1/2

0
(1 − t)

n− α
− t

n− α
(  

l

s�1
ϕ(n+1) δs( 




⎧⎨

⎩
⎡⎣

− t 
l− 1

s�1
ϕ(n+1)

xs( 


 +(1 − t) 
l− 1

s�1
ϕ(n+1)

ys( 


⎛⎝ ⎞⎠
⎫⎬

⎭dt + 
1

1/2
t
n− α

− (1 − t)
n− α

( 

× 
l

s�1
ϕ(n+1) δs( 



 − t 
l− 1

s�1
ϕ(n+1)

xs( 


 +(1 − t) 
l− 1

s�1
ϕ(n+1)

ys( 


⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt⎤⎥⎥⎦.

�


l− 1
s�1 ys − xs




2
C1 + C2( .

(60)

Now finding C1 and C2, we have

C1 � 
1/2

0
(1 − t)

n− α
− t

n− α
(  

l

s�1
ϕ(n+1) δs( 



 − t 
l− 1

s�1
ϕ(n+1)

xs( 


 +(1 − t) 
l− 1

s�1
ϕ(n+1)

ys( 


⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt

� 
l

s�1
ϕ(n+1) δs( 



⎛⎝ ⎞⎠ 

1
2
0

(1 − t)
n− α

− t
n− α

( dt
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠ − 
l− 1

s�1
ϕ(n+1)

xs( 



⎧⎨

⎩

× 

1
2
0

t (1 − t)
n− α

− t
n− α

( dt + 
l− 1

s�1
ϕ(n+1)

ys( 


 
1/2

0
(1 − t)

n− α
− t

n− α
( (1 − t)dt

⎫⎪⎪⎬

⎪⎪⎭

� 
l

s�1
ϕ(n+1) δs( 




1 − 2α− n

n − α + 1
  − 

l− 1

s�1
ϕ(n+1)

xs( 


 
1/2

0
t(1 − t)

n− αdt − 
1/2

0
t
n− α+1dt 

⎧⎨

⎩

+ 
l− 1

s�1
ϕ(n+1)

ys( 


 
1/2

0
(1 − t)

n− α+1dt − 
1/2

0
(1 − t)t

n− αdt 
⎫⎬

⎭
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� 

l

s�1
ϕ(n+1) δs( 




1 − 2α− n

n − α + 1
  − 

l− 1

s�1
ϕ(n+1)

xs( 



⎧⎨

⎩

×
1

(n − α + 1)(n − α + 2)
−

2α− n− 1

n − α + 2
  + 

l− 1

s�1
ϕ(n+1)

ys( 



1

n − α + 2
−

2α− n− 1

n − α + 1
 

⎫⎬

⎭,

C2 � 
1

1/2
t
n− α

− (1 − t)
n− α

(  

l

s�1
ϕ(n+1) δs( 



 − t 
l− 1

s�1
ϕ(n+1)

xs( 


 +(1 − t) 
l− 1

s�1
ϕ(n+1)

ys( 


⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭dt

� 

l

s�1
ϕ(n+1) δs( 



⎛⎝ ⎞⎠ 
1

1/2
t
n− α

− (1 − t)
n− α

( dt  − 

l− 1

s�1
ϕ(n+1)

xs( 



⎧⎨

⎩

× 
1

1/2
t t

n− α
− (1 − t)

n− α
( dt + 

l− 1

s�1
ϕ(n+1)

ys( 


 
1

1/2
t
n− α

− (1 − t)
n− α

( (1 − t)dt
⎫⎬

⎭

� 
l

s�1
ϕ(n+1) δs( 




1 − 2α− n

n − α + 1
  − 

l− 1

s�1
ϕ(n+1)

xs( 


 
1

1/2
t
n− α+1dt − 

1

1/2
t(1 − t)

n− αdt 
⎧⎨

⎩

+ 
l− 1

s�1
ϕ(n+1)

ys( 


 
1
1
2

(1 − t)t
n− αdt − 

1

1/2
(1 − t)

n− α+1dt⎛⎜⎝ ⎞⎟⎠
⎫⎪⎬

⎪⎭

� 
l

s�1
ϕ(n+1) δs( 




1 − 2α− n

n − α + 1
  − 

l− 1

s�1
ϕ(n+1)

xs( 



1

n − α + 2
−

2α− n− 1

n − α + 1
 

⎧⎨

⎩

+ 
l− 1

s�1
ϕ(n+1)

ys( 



1

(n − α + 1)(n − α + 2)
−

2α− n− 1

n − α + 2
 

⎫⎬

⎭.

(61)

Adding C1 and C2, we get

C1 + C2 � 2
1 − 2α− n

n − α + 1
  

l

s�1
ϕ(n+1) δs( 



 −


l− 1
s�1 ϕ

(n+1)
xs( 



 + 
l− 1
s�1 ϕ

(n+1)
ys( 





2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (62)

Inserting (62) in (60), we achieve (58). □ Corollary 1. If we take l � 2, x1 � δ1, and y1 � δ2 in Ce-
orem 7, then inequality (58) reduces to

ϕ(n) δ1(  + ϕ(n) δ2( 

2
−
Γ(n − α + 1)

2 δ2 − δ1( 
n− α

c
D

α
δ+
1
ϕ δ2(  +(− 1)

nc
D

α
δ−
2
ϕ δ1(  




≤

δ2 − δ1




n − α + 1
1 −

1
2n− α 

ϕ(n+1) δ1( 


 + ϕ(n+1) δ2( 




2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(63)

which is proved in [15].

Theorem 8. Let us consider a differentiable function ϕ de-
fined on I, such that ϕ ∈ Cn+1(I) and δ � (δ1, . . . , δl),

x � (x1, . . . , xl), y � (y1, . . . , yl) are three l− tuples,
such that δs, xs, ys ∈ I, for all s ∈ 1, . . . , l{ }, xl >yl,
α> 0. If q> 1, δ majorizes x, y, and |ϕ(n+1)|q is convex on I,
then
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ϕ(n)


l
s�1δs − 

l− 1
s�1ys  + ϕ(n)


l
s�1δs − 

l− 1
s�1xs 

2
−
Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α



×
c
D

α


l

s�1
δs− 

l− 1

s�1
ys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 
l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭



≤


l− 1
s�1 ys − xs




n − α + 1
1 −

1
2n− α  

l

s�1
ϕ(n+1) δs( 




q

−


l− 1
s�1 ϕ

(n+1) xs( 



q

+ 
l− 1
s�1 ϕ

(n+1) ys( 



q

2
⎧⎨

⎩

⎫⎬

⎭

1/q

.

(64)

Proof. From Lemma 3, it follows that

ϕ(n)


l
s�1δs − 

l− 1
s�1ys  + ϕ(n)


l
s�1δs − 

l− 1
s�1xs 

2
−
Γ(n − α + 1)

2 
l− 1
s�1 ys − xs(  

n− α



×
c
D

α


l

s�1
δs− 

l− 1

s�1
ys 

+ϕ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
xs

⎛⎝ ⎞⎠ +(− 1)
n c

D
α


l

s�1
δs− 

l− 1

s�1
xs 

− ϕ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 

l

s�1
δs − 

l− 1

s�1
ys

⎛⎝ ⎞⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭



�


l− 1
s�1 ys − xs( 

2

1

0
t
n− α

− (1 − t)
n− α

( ϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠dt





≤


l− 1
s�1 ys − xs




2

1

0
t
n− α

− (1 − t)
n− α

 ϕ(n+1)


l

s�1
δs − 

l− 1

s�1
txs +(1 − t)ys( ⎛⎝ ⎞⎠




dt.

(65)

By applying power mean inequality to the above integral,
we obtain

≤


l− 1
s�1 ys − xs




2

1

0
t
n− α

− (1 − t)
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(66)

Since |ϕ(n+1)|q is convex, therefore using *eorem 2 for
r � 2, σ1 � t, and σ2 � 1 − t in (66), we obtain
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(67)

By calculating these simple integrals, we get (64). □

Another lemma is established as follows:

Lemma 4. Let all the conditions in the hypothesis of Lemma 3
hold. Cen,
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(68)

Proof. It can be easily proved by following the procedure
given in the proof of Lemma 3. □

Remark 7. When we take l � 2, x1 � δ1, and y1 � δ2 in
Lemma 4, then it reduces to the equality (3.1) in [16].

*e following results have been established on the basis
of Lemma 4.

Theorem 9. Let all the conditions in the hypothesis of
Ceorem 7 hold. Cen,
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(69)

Proof. From Lemma 4, it follows that
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By utilizing *eorem 2 for r � 2, σ1 � 2 − t/2, and σ2 �

t/2 in (70), we obtain
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*is finishes the proof. □ Corollary 2. If we take l � 2, n � 1, and α � 0 in Ceorem 9,
then we get the following inequality:
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Theorem 10. Let us consider a differentiable function ϕ
defined on I, such that ϕ ∈ Cn+1(I) and δ � (δ1, . . . , δl),
x � (x1, . . . , xl), y � (y1, . . . , yl) are three l− tuples, such

that δs, xs, ys ∈ I, for all s ∈ 1, . . . , l{ }, xl >yl, α> 0. If q> 1
such that 1/p + 1/q � 1, δ majorizes x, y, and |ϕ(n+1)|q is
convex on I, then
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Proof. From Lemma 4, it follows that
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By applying Hölder’s inequality to the above integral, we
have
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(75)

Since |ϕ(n+1)|q is convex, therefore using *eorem 2 for
r � 2, σ1 � 2 − t/2, and σ2 � t/2 in (75), we obtain
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By using Minkowski’s inequality, we get

�


l− 1
s�1 ys − xs




16
4

np − αp + 1
 

1/p

41/q · 2
l

s�1
ϕ(n+1) δs( 



 − 31/q + 1  

l− 1

s�1
ϕ(n+1)

xs( 


 + 
l− 1

s�1
ϕ(n+1)

ys( 


⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭. (77)

*is completes the proof. □
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Remark 8. If we choose l � 2 in *eorem 10, then we get
inequality (36) in [14].

Theorem 11. Let all the conditions in the hypothesis of
Ceorem 8 hold. Cen,
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Proof. From Lemma 4, it follows that
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By applying power mean inequality to the above integral,
we get
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Due to the convexity of |ϕ(n+1)|q, using *eorem 2 for
r � 2, σ1 � 2 − t/2, and σ2 � t/2 in (80), we have
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□

Hence, the proof is completed. Corollary 3. For l � 2, n � 1, and α � 0, Ceorem 11 gives
the following inequality:
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Remark 9. We can also obtain weighted versions for all the
results derived in this section.
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4. Conclusion

A new idea in the form of unified inequalities has been put
forward. Tools that helped during the development of the
main results are the notions of some existing inequalities,
majorization theory, and various forms of convex func-
tions. *e results have been put up in the context of
Hermite–Hadamard–Jensen–Mercer inequalities. *e
selection of the present areas of inequalities has been made
on the basis of their consistent attraction for researchers
and their vast applicability in enormous fields. Both the
weighted and unweighted versions of the obtained results
have been presented. Moreover, some new identities for
differentiable functions have been derived. Using these
identities and considering the convexity of |ϕ(n+1)| and
|ϕ(n+1)|q(q> 1), bounds for the absolute difference of the
right- and left-sides of the main results have been
provided.
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