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The main objective of the paper is to develop an innovative idea of bringing continuous and discrete inequalities into a unified
form. The desired objective is thus obtained by embedding majorization theory with the existing notion of continuous inequalities.
These notions are applied to the latest generalized form of the inequalities, popularly known as the Hermi-
te-Hadamard-Jensen-Mercer inequalities. Moreover, the frequently-used Caputo fractional operators are employed, which are
rightly considered critical, especially for applied problems. Both weighted and unweighted forms of the developed results are
discussed. In addition to this, some bounds are also provided for the absolute difference between the left- and right-sides of the
main results.
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1. Introducti 9+0
ntroduction ¢( + ) 0

0
<9-% ! 3 J ¢(u)dus—¢(9) er ¢(6).
The field of mathematical inequalities contributes to a wide Y

area of research in mathematics. With the passage of time,

this field has emerged as a separate discipline, despite the fact
that it was being used as a tool earlier. The addition of the
notion of convexity enriched its literature and stimulated a
new trend among researchers. As a result, many new in-
equalities came to the surface. These inequalities are (but not
limited to) Ostrowski inequalities [1], Jensen’s inequalities
[2], the Jensen—-Mercer inequalities [3], Fejér inequalities [4],
Hermite-Hadamard inequalities [5], and their various
variants. The Hermite-Hadamard inequality is believed to
be the most widespread inequality in the literature and has
received much attention in the last few years. This inequality
is defined as follows:

If ¢: I — R is a convex function with ¥, 0 € I such that
9<0 then

The direction of the inequality given in (1) reverses
whenever the function ¢ is concave. This inequality has been
established for different generalized convex functions, for
example, s—convex [6], y—convex [7], strongly convex [8],
and coordinate convex function [9]. Research works in this
field have also been extended to the theory of fractional
calculus. As there are multiple numbers of fractional op-
erators but due to our interest, we limit ourselves to the well-
known Caputo fractional operators. Their definition is given
as follows:

Definition 1 (Caputo fractional derivative
operators). Consider a function ¢ € C"[9, 0] (the space of
functions whose #!"-derivative exist and continuous on
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[9,0]), >0, such that « ¢ {1,2,3,...} andn = [«a] + 1. Then
the « ordered, Caputo fractional derivative operators are
defined as [10]

o B 1 z (/)(ﬂ)(u)

Dy ¢(2) = T a) J.s . u)a—n+1du’ z>9,

(n) @
& _ (-1) 0 0 Y (u)

Dy ¢(2) = T a) L e Z)afnﬂdu, z <.

Where °Dg. ¢ (z) and “Dy-¢(z) stand for the left- and
right-sided Caputo fractional derivative operators,
respectively.

(n)<9+9_x1 +y1)<2”“11"(n—(x+ 1)
¢ 2 X))
(n) (n)
(n) g O (x1)+ ¢ (1)
<o (9)+¢(0) 5 :

The inequality (1) can be obtained from (4) when n = 1,
a=0, x;, =9 and y, = 6. Some more work related to
Hermite-Jensen-Mercer inequalities via fractional opera-
tors can be traced in [15-20]. Now, we state the definition of
majorization in terms of which we want to present our
results [21].

Definition 2 (Majorization). Let us considera = (a,,...,q;)
and b= (b;,...,b) are two I-tuples of real numbers
arranged  in  order ap<ay<---<ap, and

by <by_y < -+ <byy), then a is said to majorize b (or b is
said to be majorized by a), if for k = 1,2,...,1 - 1, we have

k k I
Yby< Y ay and ) a
s=1 s=1 s=1

If a majorizes b, then symbolically it is written as b < a.

(5)

[:?N

Il
—_

S

Niezgoda [22] has used the concept of majorization and
extended the Jensen-Mercer inequality given as follows:

Theorem 2 (Majorized discrete Jensen—Mercer inequality).
Let us consider a convex function ¢ defined on the interval I,
r x I real matrix (x;;) , and I— tuple § = (8,,...,8;) such
that 8,x;, €l for all i=1,2,...,r , se{l,...,I} with

>0, Y ,0; = 1. If § majorizes every row of (x;,), then we
have

(3035

s=1 s=11i

Mﬁ

1 -1 r
) T66)-5 S apn) ©

s=1 s=1i=1
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—
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It may be noted that if the usual derivative of the

function ¢ of order # exists, then it coincides with *D§. ¢ (z)
fora =ne€{1,2,3,...}. Also, for n =1 and a = 0, we have
(‘D ¢) (2) = (‘Dy ¢) (2) = ¢ (2). (3)

Some research work related to the Caputo fractional
operators can be found in [11-13] and the references therein.

The associated Hermite-Jensen-Mercer inequality in
terms of Caputo fractional operators is defined as follows
[14]:

Theorem 1 (Hermite-Jensen—Mercer inequality). Consider
a function ¢ defined on the interval [9,0], such that
¢ €C"[9,0] and ¢(") is convex on [9,0] with
[x, y1]1 € [9,0], a>0, then we have

{(CD?9+0—(x1+y1/2))*‘/’> (O+0-x)+ (—l)n(cDOE9+9—(xl+yl/z))’ ‘/’) (O+6- )’1)}

(4)

The following lemmas will help us to prove our main
results [23].

Lemma 1. Let us consider a convex function ¢ defined on the
interval I, rx1 real matrix (x;), and two I- tuples

0= (8,...,0), p= (P1>--.>py) such that 8, x;; € I, 0; >0,
Yi0;=1 p=0, with p+0, n= l/pl, for all
i=12,...,r,se{l,...,1}. If for each i=12,...,r,
(Xi1> - - > Xy,) is a decreasing I-tuple and satisfying
I
zpsxzs—zps s fOI’k—l 2,. l_l’zps(Ss
s=1
l 7)
= Zpsxis’
s=1
Then
1 -1 r
¢<Z rlps s Zﬂaipsxis>
s=1 s=11i=1
(8)

-1 r

ZZI/IGPS zs)

s=1i=1

1
< Z nps$ (3,)

Lemma 2. Let us consider a convex function ¢ defined on the
interval I, rxI1 real matrix (x;), and two I- tuples

6= (8),...,0), p=(p1>--->pp) such that §, x;; € I, 0; 20,
Yi,0,=1 p=0, with p+0, n=1/p, for all
i=12,...,r,se{l,... I} Ifforeachi=1,...,1, (&, — x4

and x;; are monotonically in the same sense and
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1 1
Z P555 = Z psxis> (9)
s=1 s=1

Then
1
(/)(Z ’7P58s -
s=1

I
< > np(8,)
s=1

I—

—

Z NO;PsXis >

i=1

Il
—_

’ (10)
-1 r

Z Z ’101'Ps¢ (xis)'

s=1i=1

The theory of majorization has been successful in
drawing the attention of researchers working in various
fields. It has been used as a key element in solving com-
plicated optimization problems [24, 25]. Some more recent
applications of majorization theory in signal processing and
communication can be seen in [26, 27]. For further suc-
cessive work carried out via the concept of majorization, one
is referred to [28-34] and the references therein. In the
present era, despite the existence of various diverse research
fields, the shrinking of more than one research field into one
is direly needed. The reason is that new ideas grow fast when
they attract the attention of a maximum number of re-
searchers. In our case, since inequalities have two main
aspects, one is that of continuous inequalities and the other
is of discrete inequalities. Both subfields have been absorbing
the attention of many researchers at the same time. The fault
is that the majority of the results are based only on simple
conversions from discrete to continuous or vice versa. The
concept of adding new ideas or strengthening an existing
one is rarely utilized. In such a situation, there is a need for
the provision of such a platform which can play the role of
bringing researchers from the abovementioned subfields
together and utilize their energies and efforts in one di-
rection. The present attempt may be considered one of the
endeavors in this regard.

o < Hrx +y, F(n-a+1)
(/5( )<Z Z( >> 2(21—1 (y, - xs))”—“

s=1 s=1 s=1

{< (5 50)? )(ia )

The present paper is summarized as follows: first of all,
Theorem 3 is devoted to the establishment of a new unified
form of Hermite-Hadamard-Jensen-Mercer inequality.
This objective is achieved by utilizing the majorized I-tuples
in the context of Caputo fractional operators. A slightly
different variant of Theorem 3 is presented in the form of
Theorem 4. In order to verify and provide proof of the fact
that the newly-obtained results are the unifications and
generalizations of those already existing results, Remark 1
and Remark 2 are presented. In addition to this, weighted
versions of the obtained results are also provided, taking the
weighted generalized Mercer’s inequality into account.
These weighted results can be traced to Theorem 5 and
Theorem 6. Moreover, two new identities, connected with
the right- and left-sides of Theorem 3 and Theorem 4, re-
spectively, are discovered. Employing these lemmas, various
bounds associated with the absolute difference of the two
right- and left-most terms in the main results are obtained.
These results are discussed in Theorem 7, Theorem 8,
Theorem 9, Theorem 10, and Theorem 11. Remark 5, Re-
mark 6, and Remark 7 show that the newly-derived identities
also generalize those previously-defined identities, while
Remark 8 discusses the previous version of Theorem 10.
Corollary 1 gives details about a previous bound while
Corollary 2, and Corollary 3 provide information about the
classical integral versions of Theorem 9 and Theorem 11. At
the end, conclusion of the overall attempt is presented.

2. Main Results

The following  theorem  presents the  Hermi-
te-Hadamard-Jensen-Mercer fractional inequality for the
Caputo fractional operators.

Theorem 3. Let us consider a function ¢ € C"(I) and
6= (6,...,0), x=(x1,...,x1), Y= (y1>.-., ;) are three
I-tuples, such that 8, x,, y, € I, for all s € {1,...,1}, x;> y,,
a>0. If ™ is a convex function on I, x< 8, and y < 8, then

-1

) 0 (Dig gy 9) ( Yoy ys> }

¢>(")(Zs 105 — Zs 1}’5) ¢>(")(Zs 105 - Zs 1x)

2

Zi'ﬁsb("’( )+ 30" ()

!
6 ( -
200 z
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Proof. It can be written as

l -1 ! -1
t<2&— x)+ﬂ—ﬂ<2&—2y»} (12)
s=1 s=1

Since </>(") is a convex function, therefore (12) gives the
following inequality:

(13)
l -1 1 -1
+¢(")<lt<26s— ys>+(1—t)<283— x3>}}.
s=1 s=1 s=1 s=1

By multiplying both sides of (13) by " *"! and then
integrating over t € [0, 1], we get

. I -1 1 -1
tn_a_l(P(n){t(Zas_ ys>+(1_t)<265_ xs)}dt} (14)
0 s=1 s=1 s=1 s=1

= 1 { JZZ 18‘ jilxs (p(") (I/l) du
Z(Zi_:ll ( ) Z ZS 1)’5 ( (Zi=165 _ Zi—zllys))a—nﬂ

ng Z; ¢" @) w}
Z Zs e (( ) Zl—l )_ u)a—nﬂ

s:lxs

In order to apply the definition of the Caputo fractional

By the hypotheses, we have x<§ and y < d, therefore
operators in (14), first, we show that . .
! I-1 ! -1 - =x;— . 16)
4 X=X =) (
Zas_ ys<z6s X (15) s=1 ’ s=1 ’
s=1 s=1 s=1 s=1

Also,
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x> y,=x, — ;> 0. (17) ! -1 !
AR Yo~ y< Yo - x. (18)

s=1 s=1 s=1 s=1

By substituting (17) in (16), and adding zizlas to both
sides, we get Now (14) implies

1w ! Hx +y, I'(n-a) (C . > ! _l—lx
—_ (Zés >(55 )> AT { Dist 550,y ¢ )| 2o Ex

s=1 s=1
I -1 (19)
+( 1)”(CD(ZS 15 z’slls) ¢><Szlas 51y5>})
and so
; 1 1 -1
(n) _ Xs+ s T(n-a+1) °p* + -
20

)

(Pl oy “’)(i‘* Zy

s=1 s

Thus, the first inequality of (11) is completed. Now, using
the convexity of ¢, we obtain the second inequality in the
following manner:

1 -1 -1 1 1- 1 -1
¢(”)<t<285— x5> +<1—t)< 8, - x))stgb“”(Zss— xs> t>¢<"’<265 ys>, (21)
s=1 s=1 s=1 s=1 s=1 s=1 s=1
1 -1 1 -1 1 -1 1 -1
¢(")<t<285— y5>+(1—t)<z5s— xs>>§t¢(”)<285— y5> t)¢‘"’(255 x5>. (22)
1 =1 s=1 s=1 s=1 s=1

§= S

—

@
I
—

Adding (21) and (22), and then applying Theorem 2 for
r =1 and o, = 1, we obtain

1
) -1 1
s¢<"><zas—zxs>+¢<">(zas y5> @)
s=1 s=1 s=1 s=1

—_
©
I

—_

Remark 1. For the hypothesis of Theorem 3, if [ = 2, then we

By multiplying both sides of (23) by " %! and then
get the following inequality:

integrating over ¢ € [0, 1], we get the second and third in-
equality in (11). O
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</>(”)<61 o, N J2ry1>  Tn-a+1 {<cDa(6 ) ¢>(51 +8, - x,) + (—1)”<6D?51+52_x1)’¢>(51 +6, —yl)},

2(y: - xl)
¢(n)(81+52_x1)+¢(n)(81+52_y1) (24)
B 2
(n) (n)
. n o (x)+¢ " (y
s¢()(61)+¢()(82)— ( 1)2 ( 1)_
Moreover, for n =1 and a = 0, we obtain the result of Another result for the Hermi-
Kian and Moslehian [35]. te-Hadamard-Jensen-Mercer fractional inequality is given

as follows:

Remark 2. 1f we take x; = §,, y; = §,, then inequality (24)

reduces to inequality (2.2) in [15]. Theorem 4. Let all the conditions in the hypothesis of

Theorem 3 hold. Then,

; I -1 X+ Y, on-e lr(f’l (X+1) "(<p l -1
‘b()(z‘x‘;( 2 )><(z“(y %) 1’“)< (Zape i onm) ><265 szly5>

s=1

1 1-1 1 -1 ,(n) -1 ((n)
°p® [ . . S — < (n) 8) = Zs:l(p (xs) + ZS:I(p (ys)
+( (ZsZI(SS_Zs:l (xs+y5/2)> ¢) <S_ZI s p xs) S:zl(p ( s) 2

(25)
Proof. Let us consider t € [0,1]. To prove the required re-
sult, we proceed as follows:
! I-1 ! I-1 ! I-1
n 'x + yS n 1
#(Sa-3(232)) o1 {Zo- B a0}
s=1 s=1 s=1 s=1 s=1 s=1
(26)
NI e gt ! " 5t
=¢(){§{285_<5 xs+TZys +285 22}/54'729(5 .
s=1 s=1 s=1 s=1 s=1
Since ¢™ is a convex function, therefore (26) gives the
following inequality:
! 1-1 ! I-1 I-1 ! I-1 I-1
X+ Vs 1 (n) t 2-t () t 2-t
<S=Zlas s=1< ))Sz{(p leas_ Eszzlxs"' 2 leys +(p FZI(SS_ Egys"' 2 S=1xs .
(27)

By multiplying both sides of (27) by " %! and then
integrating over t € [0, 1], we obtain
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-

Lo (3o, (B2 H e ; 2-t %)
—¢ <215 27 <31], 215 2t L dt
1 L) 1 tfl I-1
Lo (§o-(8 )b

1 Y Y (xer) ¢ (u) (28)
= 1 - —a J‘Z} s _ZFI ocﬂﬁldu
2y oy, - x,02) LS SIS (u- (318, - 20)))

—

[NSHEN
I
_

l\)
\S)
W

du ¢.

JZSZ oL " ()
Z Z (500.2) (( 5. Zs 1x) u)tx—nJrl

Following the same procedure, as given in the proof of
Theorem 3, we can show that

-1 -1 l -1

ias Z(x +ys><zl:6s— X a\ndZ8S Z(x +y5>>zl:85— Vs (29)
=1

s=1 s=1 s=1 s=1 s=1 s=1 s=1

Now, from (28), we deduce

L s (Xt ys)| 2" T a)
m‘/’ <ZSS_Z< 2 >>_(Zi_=11(J’s_xs))na

X { (-1)" (CDZZilészill (x5+y5/2)>‘ ‘P) <s
! -1
+(DZZI“-ZI (xs+ys/2)>+¢) <s_zl % ;x5> }

M~

I
—_

s=1

-1
85 - Vs > (30)

So, we have

! -1 n—a—1
() Sy (X s 2 R del
¢ <Z‘Ss (%5 )>S(Zi_ﬁ(ys—xs))”_a

X{(_I)H(C (X oY o)) ¢)<263_:y5> (31)
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This proves the first inequality in (25). In order to prove the second inequality of (25), we use
Theorem 2 for r = 2, 0, = t/2, and 0, = 2 — /2 as follows:

., 1 tl—l z_tl—l 1 . tll 2 fl_l ;
¢()<;63_<E xs+T ys>>sz¢() _<E ¢ 2 Z(p()(ys))’ (32)

=1 s=1

@

s=1 s=1

I -1 e 1 -1 -1
¢<n><zss_<gzys+§ x$>>gz¢<"> —<§ 6 (5) zztzqs(”)(xs))- (33)

Adding (32) and (33), we get

o 1 ¢ L 5l o ! ¢ L 5l
¢ Zé\s_ E xS+TZys +¢ Zas_ Ezys-'— P Xs
s=1 s=1 s=1 s=1 s=1 s=1

Z (n) 8) <Z¢(Vl)(x) Z¢(n) y5>

s=1

By multiplying both sides of (34) by " *°! and then =~ Theorem 5. Let us consider a function ¢ € C"(I), such that
integrating over ¢ € [0, 1], we obtain the second inequalityof ¢ is a convex function on I and 8= (8,,...,8),
(25). O x=(x,..%),y=W,..>y), and p=(py,...,p) are

four I-tuples, such that 8., x, y, € I, p, >0 with p, 0 for all

We establish the following result for the Caputo frac-  se{l,...,I}, n =1/p, x>y, > 0. Ifx andy are decreasing
tional operators on the basis of Lemma 1. I-tuples and

k k k
D PXS ) Pba ) Poyes
s=1 s=1 s=1

1 1 l

ZPS8S = Zpsxs’ ZP565 = Zpsys’
s=1 s=1 s=1 s=1

O, fork=1,...,1-1,
(35)

_ i~
S

then

! I-1 ! 1
(n) 5 PsXs + PsYs I(n—a+1) {(CD"‘ ; . + ) 5. —
’ (Zl 15 '72( 2 >> ) 2(X (npeys = npexs)) (SLma-Tinwn)® Zl 15 Z; s

| <p 1 1 56 .
gy e L)}

¢(ﬂ (Zs 1’7P585 Zs 1’7Ps)’s) + ¢( )(25 17/P365 le;llﬂpsxs)
2

1 ; l—_l . (n) x,) + l—_l ) (n) ]
< Y (o) - 2R L2t 1)
s=1

(36)
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Proof. It can be written as

¢(")<§177P55 ’721%( +ys>>: {;{inpsé lzlﬂpsx +Zi1p56 qusys}}

s=1 s=1

I -1 1-1
=¢(“>{§{t<2np565—2npsxs>+<1—t)<2nps6s Zﬂﬂ%) (37)

s=1 s=1

(g ool o))

s=1
Since gb(”) is a convex function, therefore (37) gives the

following inequality:

s=1 s=1

1 -1 1 -1
(n){t<z ”IPS(SS - Z ’7Ps)’s> + (1 - t)(z ”IPs‘Ss - Z ﬂpsxs> } }
s=1 s=1 s=1 s=1

" Y, 1 - 1 -1 1 -1
¢ Zr]ps s_rlzps< ) E (/) t Zrlps(ss_zrlpsxs +(1-1) Zrlps(ss_zrlpsys
s=1 s=1

By multiplying both sides of (38) by " %! and then
integrating over t € [0, 1], we get

X, +y 1 1 l -1 1 -1
</>(”) (Z 1.0, - r]Zps( > )> <5 { Jot”‘““gb(”){t(Z XIEDY npsxs> (1- t)<Z npd =) mx) }

s=1 s=1 s=1 s=1

1 l -1 I -1
+ JO tnalgb(”){t(Z ’7Ps‘§s - Z ’7Ps)’s> +(1- t)<z ﬂpsas - Z 7’]P5x5> }dt }’

s=1 s=1 s=1 s=1

I -1 .. )

| “Z RN $" () N

) Z(Zi;ll (ﬂps}/s VIPS s ) Z np:d; Zl lqp s ( - ( s lﬂpsas - le;ll”lpsys))w_n+1

;1’11’;5;’2: NPpsXs ¢(”) (u)
" J l o 1 -1 oc—n+ldu .
> iy npy. (Zecinpsd, - Yoinpex,) — u)

(39)
I-1 -1
In order to apply the definition of the Caputo fractional z DoV — Z DsXs = PiX; — Py (41)
operators in (39), first, we show that s=1
1 -1 1 — AISO,
NP5 = D NPsYs < ) NPOs = ) npsxs. (40)
2 o .; o s; o Zi o X)> Y11= pixp > Py = pixp — Py > 0. (42)
Given that Spd. =Y px. and By substituting (42) in (41), and adding ¥ #7p 8, to

Y120, = Yoy pyys we have both sides, we get
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I -1 I -1 Now (39) implies
Z ”Ipsas - Z npsys < Z ’1ps8s - Z Npsxs- (43)
s=1 s=1 s=1 s=1

9‘5(")(2’117” ’121%( +ys>>_ ( - I(n-a)

Zs:l (Tlpsys - npsxs))nia

1 -1
ED(X ! -1 M 585 - s's
( (Zﬁwﬁs-zﬂwm> ¢>) <Zl np S:Zlnp x > (44)
1 -1
(_1)” CD“ ! -1 - 585 - s)s >
+ < (Zszlﬂpsf‘s‘zszﬂpsk) ¢> (s; np ;’71’ y ) }

and so

(n) st Vs F(n 06+1) €& ! =
¢ <Z npsd, — 1 Z Ps< )) S prn— o)) X {( Dist s 5 Wsysycb) (; np.d, - ; NP,

-1
(—1)” CD“ 1 -1 585 . ‘
’ ( ( RIS YT ) > <Z s Z npsy ) }

Thus, we achieved the first inequality of (36). To prove the second inequality, from the convexity of
¢™ we may write that

(45)

-1 l -1 -1 l -1
‘/5(”) <t<z rlps(ss - Zr]psxs> +(1- t)<z ’1Ps‘$s - Z rlps)’s)) St(/)(n) <z ’7P555 - Z ’7Psxs> +(1- t)¢(n) (Z rlps(ss - lesys>’
s=1 1

s=1 = s=1 s=1 = s=1 5=
(46)
) 1 -1 1 -1 " 1 -1 " 1 -1
¢(n <t<z 7’]P565 - Z ’7P5)’5> +(1- t)<z ”]PS(SS - Z Wpsxs>> St¢ " <Z ﬂpsas - z ’1P5)’5> +(1- t)¢ " <Z ﬂpsé\s - Z ’1Psxs>-
s=1 s=1 s=1 s=1 s=1 s=1 s=1 s=1
(47)

Adding (46) and (47) and then using Lemma 1 for r = 2,
0, =t, and 0, = 1 —t, we obtain

1 -1 1 -1 l -1 1 -1
¢(n)<t<z77ps S_Zﬂpsx5> 1—t)<211p585—271p5y5>>+¢(")<t<211p565—271p5y5>+(1—t)<271p565—z;1p$x5>>
s=1 s=1 s=1 s=1 s=1 s=1 s=1
1 -1 ] -1
S¢(”’<Z npsés—ansxs)w‘”)(ané anm)
s=1 s=1 s=1 s=1

! I-1 I-1
<2 Zl npd™ (8,) - { Zl npd™ (x;) + Zl nped™ (v }
(48)
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By multiplying both sides of (48) by " %! and then
integrating over t € [0, 1], we get the second and third in-
equality in (36). O

We establish the following result for the Caputo frac-
tional operators on the basis of Lemma 2.

Theorem 6. Let us consider a function ¢ € C"(I), such that
¢™ is a convex function on I and 8= (8,,...,8)

-1

I'(n-

11

X=(x,..5%), V= V-->y), and p= (py,...,p;) are
four I-tuples, such that 8, x, y, € I, p, >0 with p,+0 for all
se{l,.., I, n=1/p, x>y, a>0.If§ —x, X, § -y, and y
are monotomcally in the same sense and

Z 8 _Zps X Zpsé\ _Zpsys’

(49)

then

a+1)

l
(n) 85 — PsXs +psys >S
¢ <§’7PS ) ) 2

s=1

Zi_:ll (’7Ps)’s - rlpsxs))n_a

! -1
385_ X
( (Z 1psds= z npsys> (/))(5;'71) ;WPX>
(50)
(-1)" ‘DY ; -1 0, — .
+ ( ( 5:1’7‘055‘_25:]’7& S) )(;ﬂp ZWP Y >}

¢ (B npd = B0 npoys) + ¢ (T 100 = T npex,)
2

i ¢(n) (S) Zs 1’7PS¢(")( s)+Zs 177p5¢(n) (ys)

Proof. By using Lemma 2 and following the procedure given
in the proof of Theorem 5, we can obtain (50). O

Remark 3. Theorem 5 and Theorem 6 provide weighted
forms of Theorem 3.

Remark 4. The weighted versions of Theorem 4 can be
obtained in a similar fashion.

3. Bounds Associated with the Main Results

In this section first, we discover two new identities associated
with the right- and left-sides of the main results. Then

n)(ZS 15 zs lys) +¢ (ZS 16 ZS 1% )

2

utilizing these identities, we establish bounds for the ab-
solute difference of the two right- and left-most terms of the
main results.

Lemma 3. Let us consider a differentiable function ¢ defined
on I, such that ¢eC" (1) and &= (8,...,0),
X=(xy,...,%), and y= (y,,..., ;) are three - tuples,
such that 8, x,, y, € I, foralls e {1,...,1}, a>0,t € [0,1]. If
¢V € L(I), then

2 23,

+(-1)" (CD()(‘ZZI&ZZIJCJ_ </5) <SZ; 5, — : )’s> }

(s

_le: _xs) ! n—a n—ay . (n+l1) l
R LRI A D8

s=1 s=1

-1

I'n—a+1) o ! =
—a D 1 -1 + 65 - s
DO =) {( (Zeo-Zer) ¢) <Zl = >

(51)

(tx, + (1 - t)y5)>dt
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Proof. To prove our required result, we consider that

1 -1

— ! n-oa _ nzx n+1
_J-O(t (1-1) <Z<55 (tx,+(1 - t)ys>

s=1 s=1

-

,_.

(52)

0 —

1 1 -1 1 1
:I t"“¢<”“’< =Y (tx + (1-1)y,) >dt—J (1—t)”“¢<”“’<z S, -
0 s=1 s=1 0

Il
—_

s=1 s

(tx, + (1 —t)ys)>
—1,-1L,

Assuming that 215:185 - le;llys <ZS 105 — Z x, and
using integration by parts formula, we obtain

,_.

ztn—a(p(n)(zi:l(ss _Zi_:ll (txs+(1 _t)ys))|1 _ n—uo
l_=11 (ys - xs) |o Zi_:ll ()/5 - xs)

-
I, = J’1 (n+1) <Z§s (bx,+ (1 - t)ys)>dt

s=1 s

Il
—_

1 ! -1
xjot"_“_1¢(”)<28s Z (tx,+(1-1)y,) ) (53)

s=1 s=1

_ ¢(n)(zls:165 - le;llxs) [(n—a+1)

-1 - -1 n— oc+1( 1) -1 - 65 3 s |
25:1 (ys _xS) (25:1 ()/5_ xs)) ( <Z Z ) )(Z s:zly >

Similarly,

-1

s=1 s=1

1 l
I, = jo (1—t)”“¢‘"*”<255 (tx,+(1-1)y,) >

— 1)U (Th 0 - Ty (bx + (1 —L‘)ys))|1 L n-a
Zi:ll (ys - xs) '0 Zi;ll (ys - xs)

(54)

1 1
xjou—t)”‘“‘ (Z& Z(tx+(1 t)y5)>dt

#"(Xerd-Tlys)  Tn—a+D) ( . )< Lo )
1 1 n—a+1 D ! -1 +¢ 83 - X5 |-
zi l(ys X ) (Zi;l (ys - xs)) (Zs:165725=1y5> SZZI s=1
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Now, we have

(/)(n)(Zs 16 Zs lx )+ ¢(n)(25 1%s Zs lys) _ r(n_ a+ 1)
=1 (ys - xS) (Zi;ll (ys - xs))n_a+1

(CDZZiIaS—ZZ'ZyJ>*"’)<§‘SS i-1’CS>+(‘”"(C”?z;@s—z;txs) ><25 £)f

Multiplying both sides by Zi_:ll (ys—x,)/2, we get (51).  Remark 5. Lemma 3 gives the following equality for x, = 6,
| y, =6,, and [ = 2 proved by Farid et al. [15].

I=

(55)

—

Il
—

¢ (8,) +¢" (8, ) T(n-—a+1)

2 206, = 5,y Pii#) (%) + (1"(D50) ()} -
_%-9 jl (" = (1 =t)" )"V (16, + (1 - 1)8,)dt.
2 0
Remark 6. If we take « = 0 and n = 1 in Remark 5, then the
equality (56) gives
) ) 1 8, -8, (! ,
$()) ;L d ) 6 s J ¢ (u)du = T jo (2t - 1)¢ (t6, + (1 —1)d,)dr. (57)

The equality (57) has been proved by Dragomir and  Theorem 7. Let us consider a differentiable function ¢ de-
Agarwal [5]. fined on I, such that ¢ € C"'(I) and &= (8,,...,0),
x=(xp,...,%), Y= (y,..., ;) are three |- tuples, such
The following results have been established on the basis  that 6, x,y, €I, for all se{l,...,I}, x;>y, a>0. If §

of Lemma 3: majorizes x, y, and |¢"*V| is convex on I, then

“/’(n) Zs 105 = Zs lys)+</>(")(25 10, - Zs 1x) Fn-a+1)
| 2 (T (- %))

1 -1 1 -1
‘DY 1 o \* 85 - s -1)"| Dy ! =\ 85 - s
( (3 5-500) “’)(Z >‘ )< (¥ 5-50) "’)(Z y) -

Zaily x| (1-55) { S6e (8] - Tl (x) ' Tl () }

n—a+1 -
s=1
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Proof. From Lemma 3, it follows that

¢ (T - Tay) +9”(Tnde - Tax)  Ti-a+))
| 2 23 (- =)

I I i -1
{( D<gglazgah)*¢)<§‘*z ) ( D(zzlsszi;g“")@‘HQH -

I-1 _ 1 d =~
- w jo(t"“—(1—t)"“)¢‘”“’<285 2 (e, +(1_t)ys)>dt

s=1 s=1
1

1-1
(n+1) 5 —

—

I
—

< $ (2 x) J l(tn 06_ t)nfot)|

(tx, + (1 - t)y5)> dt

s=1

Using Theorem 2 forr =2, 0, =t,and 0, = 1 —t in (59)
as a consequence of the convexity of |¢ V], we obtain

n+l)

9" (1)

-1 _ 1 -1

SZszl');s xsl JO|(tn—a_(l_t)n—a)lX{ . —<t;¢( >}dt
=1y 172

_ 25=ll);s x5| |:J ((1 _t)n—zx _tna){s 1 ¢(n+1)(63)

-1 1
(n+1) _ (n+1) n—a 4 \n-a (60)
<ts—zl¢ 1 t)z () >}dt+L/2(t (1-1)"%)

-1
1-1))
s=1

TR

X{Z ¢(n+l) (55) ( Zl ¢(n+1)( S) _ t)zl ¢(n+l) (ys) > }dt:|
- M (C, +Cy).

Now finding C, and C,, we have

(=) =" a){z ¢ (8, ( IZI " (x,) +(1—t)z oy >}dt

1
>( (Q1-p""%- t”‘“)dt) —{Zl

1/2
t((1=t)" % —t" “)dt+z

20(—71
n—o+1
1/2 1/2
(J (1-)"*dr - J (1- t)t"“dt)}
1 0 0

60 (x,)

MN

-]
¢
Y

l
s=1
I-1
+

Il
—_

SN

9 ()

0

((L=t)"%—t" “)(1t)dt}

¢(n+1) xs)

1/2
t(l — )"t - j t”““dt)
0

n+1 (ys)
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(n+1) (n+1)
_Z|¢ (n oc+1) {Z|¢
1 Za—n 1 (nt1) 1 zoc—n—l

((n a+1)(n- oc+2) n-— (x+2) Z|¢ (n a+2 n- (x+l>}

- I-1
Jm — )% {ZI <t2|¢<"+”(x5) #1003 [ (3:)

@ )(ji/z(t’“‘“— o) - {Z\

n—o (n+1)
% Jl/z t(t -(1=9 )dt i Z'¢ )’5 ,[1/2
l (n+1) (n+1) ! n a+l 1 n-o
;| (n oc+1) {Z|¢ (.[1/2 dt - 1/2t(1_t) dt)
-1 1 1
(n+1) oAy, _ pyneatl
YA <j% (-nrde- [ -n dt)}
(n+1) 1 Zoc—n—l
(n oc+1> {Z|¢ (n a+2 n- oc+1>

1 2“ n-1
m-a+)(n-a+2) n-a+2)|

)}

-1 —t)dt]» (61)

1

Z| (n+1) (8

+ |¢("“) (v:)

Adding C, and C,, we get

12"\ | & e Y| ()| + ™ ()
C1+C2=2(n—a+1){;|¢( Y(0)] - == 2 : ’ (62)

Inserting (62) in (60), we achieve (58). O Corollary 1. If we take | = 2, x; = §,, and y, = 6§, in The-
orem 7, then inequality (58) reduces to

#7(8)+¢"(8) Tn-a+1) | e 8,-81 1y [ [0 +[ " (8)]
2 2(8, - 81)”_“{ Dj;$(8:) + (1" Di¢ (4, JIE n- 0c+1<1 2”‘“) 2 ’
(63)
which is proved in [15]. x=(x,...,%), Y= ...,y are three I— tuples,

such that S,x,y, €1, for all se{l,... I}, x>y,
Theorem 8. Let us consider a differentiable function ¢ de-  «>0. If g>1, § majorizes X, y, and lp V)1 is convex on I,
fined on I, such that ¢ € C"'(I) and &= (8,,...,8,), then
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18" (Xerd - X1y) + ¢ (Xend - X0ix)  T(n-a+1)
| 2 225 - %)

1 I-1 1 I-1
CD‘X I -1 * 65 - s -1)" CD“ I -1 - 65 - s (64)
" ( (Zs=165_2s=1y5) (/)) <3=Zl s=1 § > ’ ( ) ( <Zs:15sizs:1x5) ¢) <S=Zl s=1 g >

- _ _ 1/
< le=11l)/$ B xsl <1 _ 1 > Zl: ‘ l=11 ¢(n+1) (xs)lq + Zi:ll ¢(n+1) (ys)|q !
T on-a+l A e

2
Proof. From Lemma 3, it follows that

|¢(n)(z$ 10— ZS lys)+¢ (lezlas_Zi;llxs)_ F(n—a+1)
| 2 AT (- %))

" (CDZZ_ 55_2’_35)*"’) <i o l "5> e (CD“(z’ 3 “’) <i o l y5>

(65)
21;11 (J’ —.X) Jl n—a n— oc (n+1) L =~
=== | (t —t 8- ) (¢t 1-t
5 LT 3002 ) (tx+ (L=
Yeaulys - xd Jl - B R R~
£ el B AR € S Rt | 0N 8- ) (tx,+(1—t dt
ol LARSEUIN TR DX S UCHIELIA
By applying power mean inequality to the above integral,
we obtain
1y 1 1-1/g
sizs:lbls xS'(J |t”"“—(1—t)"_“|dt)
2 0
1 ! -1 9 \14
x(J |t = (1= 1) x ¢(”+1)<265—Z(tx5+(1—t)ys)> dt>
0 s=1 s=1
(66)

1-1/q

_ Zi;llbls B xs| 12 n—-a n—a ! n-ao n—-a
_f“o (1-t"“—t )dt+J1/2(t -(1-1) )dt)

. q 1/q
><<J [ = (1 =) dt> .
0

Since |¢ V|1 is convex, therefore using Theorem 2 for
r=2,0,=t and 0, =1 —t in (66), we obtain

1 -1
¢(Vl+1) (Z 85 - Z(txs + (1 - t)ys)>
s=1 s=1
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-1 _ 12 1 1-1/q
_ Zs:1|); xs|<J0 ((1 t)n—tx e (x t+J (tn « t)n oc)dt)

1/2
1 I-1 1/q
(e (e )
0 s=1
_Zi;11|ys_xs| Jl/z((l_t)n—a_tn o
= 72 .

1 1-1/q
(" -t)" “)dt) (67)
1/2 1
Al @ 3

<~w b
(a3 I

By calculating these simple integrals, we get (64). [  Lemmad4. Letall the conditions in the hypothesis of Lemma 3
hold. Then,

_.

(n+1)

(s

-1
-0 Y [¢" " (5,)
s=1

Another lemma is established as follows:

2" T (n-a+1) ! o
(X (y, - xs))”{( (Zs 8= (vn2) ¢)<SZ<% S_lx5>

(68)
(ys s) {J n—a 4 (n+l) l 2-t =2 t =2
¢ O——— ) x,+= ) y, | |dt
4 ; 2 s=1 2 s=1
n—a , (n+l 2- l_l t =
— J Z ) 2 ; Vs + 5 S:ZI X dt
Proof. It can be easily proved by following the procedure The following results have been established on the basis

given in the proof of Lemma 3. O of Lemma 4.

Remark 7. When we take I =2, x;, =9§,, and y, =6, in  Theorem 9. Let all the conditions in the hypothesis of
Lemma 4, then it reduces to the equality (3.1) in [16]. Theorem 7 hold. Then,
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2" M (n-a+1) (C « ) L =
n—a D -1 * 0= ) x;
o (Pl ez ) (203
-

1 -1 1
1\ e B _ _ (n) _ X + Vs
+( 1) ( D(Z;SFZ:I (xs+ys/2)> ¢)<; 65 szzlys> } ¢ <;8s ;( 2 >>‘ (69)

Zabioxl | T (k) + Tl ()
T2n-a+l) | & 2 '

—

“

¢ (6,

Proof. From Lemma 4, it follows that

2" T (n-a+1) ! 1-1
o (Pt (30-37)
! -1 e Kl 4y
(-1 ‘DY - - 8.-Yy | b0 Vs, - V(2
" ( (ZFI(?S—ZSZI (x5+y5/2)> ¢><5=Zl S=1y > (/) <s; ;( 2 ))
_ Zi;l (ys _xs) ! n—a g (n+1) l 2-t S t
= | 1 2 —- Jot ¢) ;85 T :1x5+§ :1ys dt
t -1
2

S S s (70)
1 (ns1) I 2_¢ -1
—| e 5, —| =— + dt ¢+,
Jrmeo (Yo (5 s 2
Zi_:llbjs - x5| ! n—al| ,(n+l) l 2-t = t =
= 4 Jot ¢ 5;85_ 2 5:1x5+§s:1y5 «
1 I 5yl ¢ Ll
n—a| , (n+l) _ -
+J0t ¢ <;65 <—2 S_Zlys+2$_1xs>>dt}.
By utilizing Theorem 2 for v = 2, 0, =2 -1t/2, and 0, =
t/2 in (70), we obtain
I-1
1s = Xs (n -t n+ n
%{j (Zl M) <2 Yo ) zsb““(m))dt
(n+1) 2-t (n+1) L)
o[ e Z '(6) z 80 ()] + L TJ6 x)]) Ja
-1 s=1
Yy x| [T )] T %) Zale"™ )| Al 0n)
- 4 n—oa+1 n—oa+1 2(n—a+2) 2(n—a+2) (71)

n—a+1 n—a+1 2(n—a+2) 2(n—a+2)

Zalp" )2l o] Zale™ 0a] Zale™ (<) }

-1 n+1) I-1| ( (n+1)
_ s llys x| (n+1) Z ( )+Zs:1 (ys)
T 2(n-a+1) <|Z‘; (6 2 ’
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This finishes the proof. O  Corollary 2. Ifwetakel =2,n=1, and a = 0 in Theorem 9,
then we get the following inequality:

(72)

1 §+0,—x,
J ¢(u)du—¢<81+62—x1;y1)

Y1 =Xy Jé+-y

¢I(x1)' +|¢’ ()’1)| }
5 .

b 1'{|¢ (61416 (6] -

Theorem 10. Let us consider a differentiable function ¢  that &, x,, y, € I, forall s e {1,...,1}, x;>y, a>0. If g>1
defined on I, such that ¢ € C™'(I) and 8 = (8,,...,0;),  such that 1/p+1/q=1, § majorizes x, y, and |¢" V|1 is
X=(x,...,%), Y= (y,...,y,) are three I— tuples, such  convex on I, then

2" T (n-a+1) -1
(2 (- %)™ {< (5055 (ron) ¢)<5=2165 5=1x5>

1 -1 1 -1
+(_1)n cDa 1 L 7¢ < 55 _ ys> } _ < 55 X+ Vs >‘ (73)
( <<Zs:1‘ss‘zs:1 (x$+ys/2)>> ) ; s=1 ‘; 5:21< )
-1 _ 1/p 1 -1 -1
stzll);; xsl(np_ip+ 1) {41/q.2;|¢(n+1)(55)|<(31/‘1+1)<;'¢(n+1) (x,) +S:zl'¢(n+1)(ys) >}

Proof. From Lemma 4, it follows that

2n—0¢—11"(n_(x+1) ( D° 5 ) )( l s _l—l )
|<Zl_l (ys - xs))”’“ { (zs Oy (2t /2)) ¢ SZ; ) s=1 *
I I-1 ! -1
s . ) 5.y | L[ Vo, - 3 (Xt s >
( (ZSZIBS—ZH (x5+y5/2)) ¢> <; s=1 Y ) } (/) <; s,:zl:< 2 )

l—l _ 1 ) 7 _ -1 -1
(ys s) { J e ¢("+1) <Z 5, - < t X, +£ y5> >dt
0 s=1 2 s=1 2 s=1
(74)
l l -1
n a¢(n+l Z(Ss < sz>

s=1

M_
o~

+
SR

|ys B s| ! n—al (n+l) l _ 2-t = =
_74 { , "o S; d, - 2 X, + 2 Vs dt
1 2t -1 ¢ -1
+J t"_‘x(b("ﬂ) 285_ — ys+—2x5 dt ¢.
0 s=1 2 s=1 2 s=1

By applying Holder’s inequality to the above integral, we
have
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75
|y 1 ) e (& 5=t s 1 \a (75)
- (9P gt J " I += dt
X ) (Fe(Zo-(3 g5 20))
L 5 _plt f -1 4 \"
+ JO¢ 265— T;y5+5;x5 dt .
Since |¢ ™V is convex, therefore using Theorem 2 for
r=2,0,=2-1t/2,and g, = t/2 in (75), we obtain
Sy, - x,| ] Up 1/ 1 T R = Va
_ Zs=11)s s i el s +— m dt
4 (np—(xp+l) <Jo<;‘ < 2 ;|¢ s 2;'(/’ ()
1/ 1 o (2t o et o ] Va
([ (2l @ = (25 X ol +5 Xl e ) Jar
0\ =1 2 s=1 2 s=1
(76)

W

-1
)"+ [0 ()
s=1

Yl x 1 e
a 4 (np—ocp+1) {{Z|

1 -1 ;
! ~1 (32 |¢( ()"
s=1

( ZWH

{w e}

By using Minkowski’s inequality, we get

_Zi_:llbjs_xsl 4 1/p 41/q 2 l (n+1) 5 31/q 1 o (n+1) o~ (n+1)
- 16 (np—ocp+1) ' S;|¢ (S)|_( +1) s;|¢ (x +S:Z1'¢ ()

) -

This completes the proof. O
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Remark 8. If we choose I =2 in Theorem 10, then we get ~ Theorem 11. Let all the conditions in the hypothesis of
inequality (36) in [14]. Theorem 8 hold. Then,

o (s o) (35 2)

“'”"( (z z“(xm/z)) )(i‘s 11y>} ‘b()(ié'll(%))‘
e = U (=P
_<2(n— an+_1(;c(;3— a+2) & Z '(p(m

1 I
+<n—a+1;'

2(n oc+2) Z‘

)

-1
1
(n+1)
— x
2(n—oc+2)s;|q5 §

i

n-a+3 S (n+1) q
_<2(”—“+1)(n—a+2);|¢ (s)

(78)
Proof. From Lemma 4, it follows that
2" T(n-a+1) L =~
|(Zi;11 (ys - xs))n_a {( D(Zs 0 Z C(x +y5/2)) ¢> <S_Zl O~ s:1xs
! I-1 o < e +y
(-D*| ‘D = 8= ¥ ! 6. -2\ =5
' (z Y (wﬁ)) (Z = y) ! <Z Z( 2 >>
(ys ) ! n—a (n+1) l 2- tFl t171
2 {Jot (/5 (S_Zl(ss Tszlxs'f'zszlys dt
(79)

1 _t1—1 p Lol
- + = X t el
J £ (D) 283 Z}’s 22 s d}
s=1 =1
Zi;l Vs = Xs ! n—of (n+ l 2-t = t =
S71|4 | Jot ¢( K Szas_ P sz-l'izys

1 (ne1) 1 z_tl—l tl—l
— +
+J I N Z(?S— 5 Zys+£ X,
0 s=1 s=1 s=1

By applying power mean inequality to the above integral,
we get
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. q l/q
Zi:llbjs - xs| e v (n+1) l 2-t ¢ t ¢
<ot j dt j ;as_ = zx5+22y5
1 1-1/g 1 \14
+<J t"‘“dt) < e dt>
0

I _y f L
¢(n+1)<z(§s ( Zys +2 sz>>

(80)
- q 1/q
CTalye-xl 1 ) so(3 1ol
T4 (n—oc+1> Jo 5;85 2 sz+2 Zys
1 ) i s ) 1 y
+ T 1N T +- dr'1 .
(jo ' (z PR }
Due to the convexity of |¢ V|4, using Theorem 2 for
r=2,0,=2-1/2, and 0, = t/2 in (80), we have
:Zi;11|)’s—xs|< 1 )1—1/11 Jlt 2- tl 1|¢(n+1)( q
4 n-a+l 0 2 5
1) q . (n+1 2-t '3 ) 9 tE ) q U
o)) (W (5 _<2 S S o
_ Zi;llbls - xs| ( 1 )1_1/q 1 i |
- 4 n-—a+1l n-a+l4
1/q
n—a+3 fud (n41) q 1 o (n+1) q
_<2(n—oc+1)(n—oc+2)s=zl|¢ (%) +2(n—oc+2)s=zl|¢ ()
1/q
1 ! (n41) q n—a+3 o (n+1) q
+<n—(x+1;'¢ @)1 - 2(n—oc+1)(n—oc+2);|¢ () +2(n 0c+2)Z| '
(81)
O

Hence, the proof is completed. Corollary 3. For =2, n=1, and a =0, Theorem 11 gives
the following inequality:

1 8,+8,—x, X, +
[ s g8, 48,- 2720«

Y1 = X1 J o480,y

- x1|{((cpr(al)]+|¢>/(82)|_z|¢:(x1)|q+|¢r(y1)lq>”q

= (Ga-D/g) 2 2

(82)

2 2

+<|¢>I<al>| +or (6)] _z|¢>r(y1>|q+|¢r<x1)|q>”‘1}'

Remark 9. We can also obtain weighted versions for all the
results derived in this section.
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4. Conclusion

A new idea in the form of unified inequalities has been put
forward. Tools that helped during the development of the
main results are the notions of some existing inequalities,
majorization theory, and various forms of convex func-
tions. The results have been put up in the context of
Hermite-Hadamard-Jensen-Mercer inequalities. The
selection of the present areas of inequalities has been made
on the basis of their consistent attraction for researchers
and their vast applicability in enormous fields. Both the
weighted and unweighted versions of the obtained results
have been presented. Moreover, some new identities for
differentiable functions have been derived. Using these
identities and considering the convexity of |¢™V| and
|¢(”+1)|q (g>1), bounds for the absolute difference of the
right- and left-sides of the main results have been
provided.
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