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Here in this paper, we are using the concepts of q-calculus operator theory associated with harmonic functions and define the q-
Noor integral operator for harmonic functions f ∈H 0: We investigate a new class S0

H ðm, q, αÞ of harmonic functions f ∈H 0. In
this class, we prove a necessary and sufficient convolution condition for the functions f ∈H 0 and also we proved that this
sufficient coefficient condition is sense preserving and univalent in the class S0

H ðm, q, αÞ. It is proved that this coefficient
condition is necessary for the functions in its subclass T S0

H ðm, q, αÞ. By using this necessary and sufficient coefficient
condition, we obtained results based on the convexity and compactness and results on the radii of q-starlikeness and q
-convexity of order α in the class T S0

H ðm, q, αÞ. Also we obtained extreme points for the functions in the class T S0
H ðm, q, αÞ:

1. Introduction and Definitions

A complex-valued function f = u + iv is said to be harmonic
in in open unit disc U = fz ∈ℂ : jzj < 1g if both u and v are
real valued harmonic functions in U: Also the complex-
valued harmonic function f = u + iv can also be expressed
as f = h + �g, where h and g are analytic in U: In particular,
h is called analytic part, and g is called coanalytic part of f :
The Jacobian of the function f = u + iv is given by

J f zð Þ = h′ zð Þ�� ��2 − g′ zð Þ�� ��2: ð1Þ

It is known (see [1]) that every harmonic function f = h
+ �g to be locally univalent and sense preserving in U if and
only if J f ðzÞ > 0 in U which is equivalent to uðzÞ = ðg′ðzÞÞ/
ðh′ðzÞÞ in U such that

u zð Þj j < 1, for all z ∈U: ð2Þ

For detail (see [2]). Let H indicates the class of harmonic
functions inU:Also letH 0 denoted by the family of harmonic
functions f = h + �g ∈H which have the series expansion of

the form:

f zð Þ = z + 〠
∞

n=2
anz

n + 〠
∞

n=1
bnzn, z ∈Uð Þ, ð3Þ

where h and g are analytic functions with the following series
expansion:

h zð Þ = z + 〠
∞

n=2
anz

n,

g zð Þ = 〠
∞

n=1
bnz

n,

b1j j < 1, z ∈Uð Þ:

ð4Þ

The series defined in (3) and (4) are convergent in the
open unit disc U: Also let S represents all functions (say
f ∈ S) which are univalent analytic in U and satisfy the
condition

f 0ð Þ = f ′ 0ð Þ − 1 = 0: ð5Þ
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Further, let SH denotes the class of all harmonic func-
tions f = h + �g ∈H 0 which are sense preserving and univa-
lent in U . The class SH reduces to the class S if coanalytic
part of f is zero.

Clunie and Small [3] and Small [4] studied the class SH

along with some of their subfamilies. Particularly, they
explored and studied the families of starlike harmonic and
convex harmonic functions in U , which are given as follows:

S∗
H = f ∈ SH :

DH f zð Þ
f zð Þ ≺

1 + z
1 − z

, z ∈Uð Þ
� �

,

Sc
H = f ∈ SH : DH f zð Þ ∈ S∗

H z ∈Uð Þf g,
ð6Þ

where

DH f zð Þ = zh′ zð Þ − �zg′ zð Þ: ð7Þ

In [5], Dziok introduced a new family S∗
H ðL,MÞ,

L,M ∈ℂ, and L ≠M of Janowski harmonic functions and
defined by

S∗
H L,Mð Þ = f ∈ SH :

DH f zð Þ
f zð Þ ≺

1 + Lz
1 +Mz

, z ∈Uð Þ
� �

, ð8Þ

where DH f ðzÞ is given by (5). We can see that

S∗
H 1,−1ð Þ = S∗

H : ð9Þ

The convolution of two functions h, g ∈A , is defined by

h ∗ gð Þz = 〠
∞

n=1
anbnz

n, ð10Þ

where

h zð Þ = 〠
∞

n=1
anz

n,

g zð Þ = 〠
∞

n=1
bnz

n:

ð11Þ

Similarly, the convolution of two harmonic functions f
= h + �g and f1 = h1 + �g1 is defined by

f ∗ f1ð Þ zð Þ = h ∗ h1ð Þ zð Þ + �g ∗ g1ð Þ zð Þ: ð12Þ

The function h subordinate to a function g and write
hðzÞ ≺ gðzÞ,z ∈U , if there exists a complex-valued function
v which map U into itself such that vð0Þ = 0 and hðzÞ =
gðvðzÞÞ: In particular, if g is univalent in U , then we have
the following equivalence:

h zð Þ ≺ g zð Þ,
z ∈U ⇔ h 0ð Þ = g 0ð Þ,

h Uð Þ ⊂ g Uð Þ:
ð13Þ

In the nineteen century, several mathematician has
been using q-calculus operator theory in various area of
science, such that fractional calculus, q-difference equation,
optimal control, q-integral equations, and geometric func-
tion theory (GFT). In 1908, Jackson [6] introduced the q
-derivative and q-integral operator and discussed some of
their applications. In the year 1990, Ismail et al. [7] gave
the idea of q-extension of class of q-starlike functions by
implementing the q-calculus theory. Kanas and Raducanu
[8] used q-calculus operator theory and introduced the q
-Ruscheweyh differential operator for analytic functions.
Zhang et. al [9] introduced a generalized conic domain
Ωk,α,q by using the basic concepts of q-calculus and studied
new subclass of q-starlike functions. Arif et al. defined q-
Noor integral operator [10] by using the concept of con-
volution and used it to investigated some new subclasses
of analytic functions. Further, in article [11], Khan et al.
discussed some applications of q-derivative operator for
multivalent functions, while coefficient estimates for a cer-
tain family of analytic functions involving a q-derivative
operator were discussed by Raza et al. [12]. Recently, Sri-
vastava et. al published few articles in which they imple-
mented basic concepts of q-calculus operator theory and
studied class of q-starlike functions from different aspects
(see [13–16]). Additionally, a recently published article
by Srivastava [17] is very suitable for researchers to work
on this topic. For more recently, Khan et al. [18, 19] used
the concepts of q-calculus operator theory to define some
new subclasses of analytic functions. Also for more detail,
we may refer to [20–25].

For, q ∈ ð0, 1Þ, the q-derivative operator ð∂qÞ of f is
defined as follows:

∂q f zð Þ = f zð Þ − f qzð Þ
1 − qð Þz , z ≠ 0, 0 < q < 1,

= 1 + 〠
∞

n=2
n½ �qanzn−1:

ð14Þ

Making use of (3) and (14), and for n ∈ℕ, we have

∂q f zð Þ = ∂qh zð Þ + ∂qg zð Þ,

= 1 + 〠
∞

n=2
n½ �qanzn−1 + 〠

∞

n=2
n½ �qbnzn1, n½ �q

= 1 − qð Þ−1 1 − qnð Þ:

ð15Þ

For more detail (see [26, 27]).

Definition 1 (see [10, 28]). The q-Noor integral operator for
the analytic function h is defined by

Imq h zð Þ = h zð Þ ∗ Tq,m+1 zð Þ� �−1, z ∈U ,m > −1, ð16Þ
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where

Tq,m+1 zð Þ� �−1 = z + 〠
∞

n=2

n½ �q!Γq 1 +mð Þ
Γq n +mð Þ zn,

Tq,m+1 zð Þ� �−1 ∗ Tq,m+1 zð Þ = z∂qh zð Þ:
ð17Þ

Thus, we have

Imq h zð Þ = z + 〠
∞

n=2

n½ �q!Γq 1 +mð Þ
Γq n +mð Þ anz

n

= z + 〠
∞

n=2

n½ �q!
m + 1½ �n−1

anz
n

= z + 〠
∞

n=2
Ψq

nanz
n,

ð18Þ

where

Ψq
n =

n½ �q!
m + 1½ �n−1

: ð19Þ

Clearly,

I0qh zð Þ = z∂qh zð Þ = z
1 − zð Þ 1 − qzð Þ ,

I1qh zð Þ = z
1 − z

:

ð20Þ

Remark 2. When q⟶ 1 − , then q -Noor integral operator
reduces to Noor integral operator (see [29]).

First of all Jahangiri [30] applied certain q-calculus oper-
ators to complex harmonic functions and obtained some
useful results, while Porwal and Gupta discussed some appli-
cation of q-calculus to harmonic univalent functions in [31].
Recently Arif et al. [27] introduced some new families of
harmonic functions associated with the symmetric circular
region. For some more recent investigation about harmonic
univalent functions, we may refer to [32, 33]. By taking the
motivation from the article Arif et al. [27], we define the q-
Noor integral operator for the harmonic function f = h + �g
:

Definition 3. Let the q-Noor integral operator Imq of order
m > −1, for the harmonic function f = h + �g be defined as

Imq f zð Þ = Imq h zð Þ + −1ð Þm �Imq g zð Þ, ð21Þ

where hðzÞ and gðzÞ is given by (4).

In this paper, by using the concepts of q-calculus opera-
tor theory and q-Noor integral operator for harmonic func-
tions f , we define a new class S0

H ðm, q, αÞ of harmonic
functions f ∈H 0: In this class, we prove a necessary and suf-
ficient convolution condition for the functions f ∈H 0 and
prove that this sufficient coefficient condition is sense pre-

serving and univalent in the class S0
H ðm, q, αÞ. It is proved

that this coefficient condition is necessary for the functions
in its subclass T S0

H ðm, q, αÞ. By using this necessary and
sufficient coefficient condition, we obtained results based
on the convexity and compactness and results on the radii
of q-starlikeness and q-convexity of order α and extreme
points for the functions in the class T S0

H ðm, q, αÞ: This
research work will motivate future research to work in the
area of q-calculus operators together with harmonic
functions.

Definition 4. Let S0
H ðm, q, αÞ be the family of harmonic

functions f ∈H 0 that satisfy the subordination condition

Im+1
q f zð Þ
Imq f zð Þ ≺

1 +Qz
1 +T z

, q ∈ 0, 1ð Þ, 0 ≤ α < 1, z ∈Uð Þ, ð22Þ

where

Q = α 1 + qð Þ − 1,
T = q:

ð23Þ

Inequalities (22) is equivalent to the condition

Im+1
q f zð Þ − Imq f zð Þ

T Im+1
q f zð Þ

� �
−QImq f zð Þ

������
������ < 1: ð24Þ

We denote by T S0
H ðm, q, αÞ a subclass of harmonic

functions f = h + �g ∈ S0
H ðm, q, αÞ, where for m, functions h

and g are of the form:

h zð Þ = z − 〠
∞

n=2
anj jzn, g zð Þ = −1ð Þm 〠

∞

n=2
bnj jzn, z ∈U : ð25Þ

2. Main Results

Theorem 5. Let f ∈H 0. Then the function f ∈ S0
H ðm, q, αÞ if

and only if

Imq f zð Þ ∗ ϕ z, γð Þ ≠ 0, γ ∈ℂ, γj j = 1, z ∈U \ 0f gð Þ, ð26Þ

where

ϕ z, γð Þ = T −Qð Þζz − 1 +T ζð Þqz2
1 − zð Þ 1 − qzð Þ

−
�2z + Q +Tð Þζz 1 +T ζð Þqz2

1zð Þ 1qzð Þ
	 


:

ð27Þ

Proof. Let f = h + �g ∈H 0 be of the form (3). Then the func-
tion f ∈ S0

H ðm, q, αÞ if and only if (22) holds or equivalently

Im+1
q f zð Þ
Imq f zð Þ ≠

1 +Qζ

1 +T ζ
, ζ ∈ℂ, ζj j = 1, z ∈ E 0f gð Þ, ð28Þ
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which by (21) is given by

1 +T ζð Þ Imq Iqh zð Þ� �
+ −1ð Þm+1 �Imq Iqg zð Þ� �h i

− 1 +Qζð Þ Imq h zð Þ + −1ð Þm �Imq g zð Þ
h i

≠ 0:
ð29Þ

On using (20), the condition (29) may also be given by

Imq h zð Þ ∗ 1 +T ζð Þ z
1 − z

− 1 +Qζð Þ z
1 − zð Þ 1 − qzð Þ

� �

− −1ð Þm �Imq g zð Þ ∗ 1 +T ζð Þ �z
1 − �z

�

+ 1 +Qζð Þ �z
1 − �zð Þ 1 − q�zð Þ

�
≠ 0:

ð30Þ

Which on using the convolution ∗ between two har-
monic functions, we get

Imq f zð Þ ∗ ϕ z, γð Þ ≠ 0, ð31Þ

where the harmonic function ϕðz, γÞ is given by (27).

Theorem 6. Let f = h + �g ∈H 0 be of the form (3) and q ∈
ð0, 1Þ, 0 ≤ α < 1: If

〠
∞

n=2
Ln anj j +Mn bnj j ≤T −Q, ð32Þ

where

Ln = Ψq
nð Þm Ψq

n 1 +Tð Þ − 1 +Qð Þf g, ð33Þ

Mn = Ψq
nð Þm Ψq

n 1 +Tð Þ + 1 +Qð Þf g, ð34Þ

where Ψq
n is given by (19), then.

(i) the function f is locally univalent and sense-
preserving as q⟶ 1 −

(ii) the function f ∈ S0
H ðm, q, αÞ

Equality occurs for the function

f zð Þ = z + 〠
∞

n=2

T −Q

Ln
γnz

n + 〠
∞

n=2

T −Q

Mn

�βnz
n,

〠
∞

n=2
γnj j + βnj jð Þ = 1:

ð35Þ

Proof. For part (i), it is clear that the theorem is true for the
function f ðzÞ ≡ z: Let f = h + �g and assume that there exist
n ≥ 2 such that an ≠ 0 or bn ≠ 0: Since Ψq

n > 1, we observe
from (33) and (34) that Ln ≥Mn >Ψq

nðT −QÞ, by which
the condition (32) implies the condition

〠
∞

n=2
Ψq

n anj j + bnj jð Þ < 1,

∂qh zð Þ − ∂qg zð Þ�� �� ≥ 1 − 〠
∞

n=2
Ψq

n anj j zj jn−1 − 〠
∞

n=2
Ψq

n bnj j zj jn−1,

>1 − zj j〠
∞

n=2
Ψq

n anj j + anj jð Þ ≥ 1 − zj j > 0,

ð36Þ

in D which implies as q⟶ 1 − that jh′ðzÞj > jg′ðzÞj in D
that is a function f is locally univalent and sense-
preserving in D:

For part (i), to prove that f ∈ S0
H ðm, q, αÞ, we only need

to show that f satisfy the condition (24). Consider for f =
h + �g and for jzj = rð0 < r < 1Þ, we can write (24) as

Im+1
q f zð Þ − Imq f zð Þ

��� ��� − T Im+1
q f zð Þ

� �
−QImq f zð Þ

��� ���
= 〠

∞

n=2
Ψq

nð Þm Ψq
n − 1ð Þanzn − −1ð Þm 〠

∞

n=2
Ψq

nð Þm Ψq
n + 1ð Þ �bnz

n

�����
�����

− T −Qð Þz + 〠
∞

n=2
Ψq

nð Þm T Ψq
nð Þ −Qð Þanzn

�����
�����

− −1ð Þm 〠
∞

n=2
Ψq

nð Þm T Ψq
nð Þ +Qð Þ �bnz

n

≤ 〠
∞

n=2
Ψq

nð Þm Ψq
n − 1ð Þanrn − −1ð Þm 〠

∞

n=2
Ψq

nð Þm Ψq
n + 1ð Þ �bnr

n

+ T −Qð Þr + 〠
∞

n=2
Ψq

nð Þm T Ψq
nð Þ −Qð Þanrn

+ 〠
∞

n=2
Ψq

nð Þm T Ψq
nð Þ +Qð Þ �bnr

n < 〠
∞

n=2
Ln anj j +Mn bnj jð Þrn

− T −Qð Þ ≤ 〠
∞

n=2
Ln anj j +Mn bnj jð Þrn − T −Qð Þ ≤ 0,

ð37Þ

if the condition (32) holds. This proves the condition
(24). This completes the proof of Theorem 6.

Theorem 7. Let f = h + �g ∈H 0 where h and g are given by
(25). Then f ∈T S0

H ðm, q, αÞ if and only if the condition
(32) holds that is

〠
∞

n=2
Ln anj j +Mn bnj j ≤T −Q, ð38Þ

where Ln and Mn are given by (33) and (34).

Proof. If part is proved in Theorem 6. To prove only if part,
let f ∈T S0

H ðm, q, αÞ: Then by the class condition (22), we
have from (24) that for any z ∈ E.
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A T ,Qð Þanzn + B T ,Qð Þ �bnz
n

T −Qð Þz − C T ,Qð Þ anj jzn −D T ,Qð Þ �bnj jzn
�����

����� < 1, ð39Þ

where

A T ,Qð Þ = 〠
∞

n=2
Ψq

nð Þm Ψq
n − 1ð Þ,

B T ,Qð Þ = 〠
∞

n=2
Ψq

nð Þm Ψq
n + 1ð Þ,

C T ,Qð Þ≪ 〠
∞

n=2
Ψq

nð Þm T Ψq
nð Þ −Qð Þ,

D T ,Qð Þ≪ 〠
∞

n=2
Ψq

nð Þm T Ψq
nð Þ +Qð Þ:

ð40Þ

For z = rð0 ≤ r < 1Þ, we obtain

A T ,Qð Þ anj jrn−1 + B T ,Qð Þ �bnj jrn1
T −Qð Þ − C T ,Qð Þ anj jrn−1 −D T ,Qð Þ �bnj jrn1

< 1, ð41Þ

which proves for Ln and Mn defined by (33) and (34) that

〠
∞

n=2
Ln anj j +Mn bnj jð Þrn−1 <T −Q: ð42Þ

Let σn be the sequence of partial sums of the series

〠
∞

n=2
Ln anj j +Mn bnj jð Þ: ð43Þ

Then σn is a nondecreasing sequence, and by (42), it is
bounded above. Thus, as r⟶ 1−, it is convergent and

〠
∞

n=2
Ln anj j +Mn bnj jð Þ = lim

n⟶∞
σn ≤T −Q: ð44Þ

This gives the condition (32).

Remark 8. Theorem 7 gives a necessary and sufficient condi-
tion for the functions f = h + �g ∈H 0, where h and g are
given by (25) to be q-starlike and q-convex of order α in E
if we put m = 0 and m = 1, respectively, in (38) and are given
by

〠
∞

n=2
Ψq

n − αð Þ anj j + Ψq
n + αð Þf g bnj j ≤ 1 − α, ð45Þ

〠
∞

n=2
Ψq

n Ψq
n − αð Þ anj j + Ψq

n + αð Þf g bnj j ≤ 1 − α: ð46Þ

Theorem 9. The class T S0
H ðm, q, αÞ is a convex and com-

pact subclass of the class of functions f = h + �g ∈H 0, where
h and g are given by (25).

Proof. Let i = 1, 2,f i ∈T S0
H ðm, q, αÞ; and let this m is of the

form

f i zð Þ = z − 〠
∞

n=2
ai,n
�� ��zn + −1ð Þm 〠

∞

n=2
bi,n
�� ���zn, z ∈U : ð47Þ

Then for 0 ≤ ρ ≤ 1

F zð Þ = ρf1 zð Þ + 1 − ρð Þf2 zð Þ

= z − 〠
∞

n=2
ρ a1,n
�� �� + 1 − ρð Þ a2,n

�� ��� �
zn

+ −1ð Þm 〠
∞

n=2
ρ b1,n
�� �� + 1 − ρð Þ b2,n

�� ��� �
�zn:

ð48Þ

and by Theorem 7, we get Ln and Mn given by (33) and (34)
that

〠
∞

n=2
Ln ρ a1,n

�� �� + 1 − ρð Þ a2,n
�� ��� �

+Mn ρ b1,n
�� �� + 1 − ρð Þ b2,n

�� ��� � �

= ρ〠
∞

n=2
Ln a1,n
�� �� +Mn b1,n

�� �� �
+ 1 − ρð Þ〠

∞

n=2
Ln a2,n
�� ��

+Mn b2,n
�� ��� ≤ ρ T −Qð Þ + 1 − ρð Þ T −Qð Þ =T −Q:

ð49Þ

Therefore, F ∈T S0
H ðm, q, αÞ: Hence, the class T S0

H ð
m, q, αÞ is convex.

On the other hand, if we consider f i ∈T S0
H ðm, q, αÞ, i

∈N = f1, 2, 3⋯ g of the form (47), and then by Theorem
7, we get for Ln and Mn defined by (33) and (34).

〠
∞

n=2
Ln ai,n
�� �� +Mn bi,n

�� ��� �
≤T −Q: ð50Þ

Hence, for jzj ≤ rð0 < r < 1Þ

f i zð Þj j ≤ r + 〠
∞

n=2
ai,n
�� �� + bi,n

�� ��� �
rn ≤T −Q

≤ r + ∑∞
n=2 Ln ai,n

�� �� +Mn bi,n
�� ��� �

rn

Ψq
2

� �m
Ψq

2 1 +Tð Þ − 1 +Qð Þ �
< r + T −Q

Ψq
2
�� �m

Ψq
2 1 +Tð Þ − 1 +Qð Þ � r2:

ð51Þ

Similarly, we get for jzj ≤ rð0 < r < 1Þ,

f i zð Þj j > r −
T −Q

Ψq
2

� �m
Ψq

2 1 +Tð Þ − 1 +Qð Þ � r2: ð52Þ

Therefore, class T S0
H ðm, q, αÞ is locally uniformly

bounded.
If we assume that f i ⟶ f , then we conclude that jai,nj

⟶ janj and jbi,nj⟶ jbnj as i⟶∞ for any n = 2, 3⋯ :
Hence, from (50), we get
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〠
∞

n=2
Ln anj j +Mn bnj jð Þ ≤T −Q, ð53Þ

which proves that f ∈T S0
H ðm, q, αÞ. Therefore, the class

T S0
H ðm, q, αÞ is closed. This proves that class T S0

H ðm, q,
αÞ is compact:

Corollary 10. Let f ∈T S0
H ðm, q, αÞ: Then for jzj = rðr < 1Þ

r −
T −Q

Ψq
2

� �m
Ψq

2 1 +Tð Þ − 1 +Qð Þ � r2,
< f zð Þj j < r + T −Q

Ψq
2

� �m
Ψq

2 1 +Tð Þ − 1 +Qð Þ � r2:
ð54Þ

Furthermore,

w ∈ℂ : wj j < 1 −
T −Q

Ψq
2

� �m
Ψq

2 1 +Tð Þ − 1 +Qð Þ �
( )

⊂ f Uð Þ:

ð55Þ

Remark 11. The minimum of all values of the radius r ∈ ð0
, 1Þ for functions f ∈T S0

H ðm, q, αÞ such that

f rzð Þ
r

∈H∗
q αð Þ ð56Þ

is called the radius of q-starlikeness of order α and is
denoted by rH∗

q ðαÞT S0
H ðm, q, αÞ:

Now in next theorem, we obtain the radius of q-starli-
keness of order α for functions f ∈T S0

H ðm, q, αÞ:

Theorem 12. Let 0 ≤ α < 1, and Ln and Mn are defined by
(33) and (34). Then

rH∗
q αð Þ T S0

H m, q, αð Þ� �
= inf

n≥2

1 − α

T −Q
min Ln

Ψq
n − α

, Mn

Ψq
n + α

� �� �1/n−1
,

ð57Þ

where Ψq
n defined by (19).

Proof. Let f = h + �g ∈T S0
H ðm, q, αÞ, then by Theorem 7, we

have

〠
∞

n=2
Ln anj j +Mn bnj j ≤T −Q, ð58Þ

where Ln and Mn are defined, respectively, by (33) and (34).
Let r0 be the radius of q-starlikeness of order α. Then
f ðr0zÞ/r0 ∈H∗

q ðαÞ if and only if from (45) that

〠
∞

n=2
Ψq

n − αð Þ anj j + Ψq
n + αð Þf g bnj jf grk−10 ≤ 1 − α, ð59Þ

which is true if

Ψq
n − α

1 − α
rk−10 ≤

Ln
T −Q

, n = 2, 3⋯ ,

Ψq
n + α

1 − α
rk−10 ≤

Mn

T −Q
, n = 2, 3⋯ :

ð60Þ

Or if

r0 ≤
1 − α

T −Q
min Ln

Ψq
n − α

, Mn

Ψq
n + α

� �� �1/ n−1ð Þ
: ð61Þ

It follows that the radius rH∗
q ðαÞðT S0

H ðm, q, αÞÞ in (57).
Similarly, we may find the radius of q-convexity of order

α for functions f = h + �g ∈T S0
H ðm, q, αÞ, which is as below:

Theorem 13. Let 0 ≤ α < 1, and Ln and Mn are defined by
(33) and (34). Then

rH c
q αð Þ T S0

H m, q, αð Þ� �
= inf

n≥2

1 − α

T −Qð ÞΨq
n
min Ln

Ψq
n − α

, Mn

Ψq
n + α

� �� �1/ n−1ð Þ
,

ð62Þ

where Ψq
n is defined by (19).

Theorem 14. f = h + �g ∈T S0
H ðm, q, αÞ be of the form (25).

Then if and only if

f zð Þ = 〠
∞

n=1
xnhn zð Þ + yngn zð Þf g, ð63Þ

where

h1 zð Þ = z,

hn zð Þ = z −
T −Q

Ln
zn,

g1 zð Þ = z,

gn zð Þ = z −
T −Q

Mn
�zn, for n = 2, 3,⋯,

xn, yn ≥ 0,

x1 = 1 − 〠
∞

n=2
xn − 〠

∞

n=2
yn:

ð64Þ

In particular the points hn and gn are called the extreme
points of the closed convex hull of the class T S0

H ðm, q, αÞ,
denoted by clco T S0

H ðm, q, αÞ:
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Proof. Let f be given by (63). Then from (64), it is of the
form

f zð Þ = z − 〠
∞

n=2
xn

T −Q

Ln

	 

zn + −1ð Þm 〠

∞

n=2
yn

T −Q

Mn

	 

�zn,

ð65Þ

which by Theorem 7 proves that f ∈T S0
H ðm, q, αÞ: Since

for this function

〠
∞

n=2
Lnxn

T −Q

Ln

	 

+Mnyn

T −Q

Mn

	 
	 


= T −Qð Þ〠
∞

n=2
xn + ynf g

= T −Qð Þ 1 − x1 − y1ð Þ ≤T −Q:

ð66Þ

Conversely, let f = h + �g ∈T S0
H ðm, q, αÞ and set

xn =
Ln

T −Q
anj j,

xn =
Mn

T −Q
bnj j:

ð67Þ

Then on using (64), we obtain

f zð Þ = z − 〠
∞

n=2
anj jzn + −1ð Þm 〠

∞

n=2
bnj j�zn

= z − 〠
∞

n=2
xn

T −Q

Ln

	 

zn + −1ð Þm 〠

∞

n=2
yn

T −Q

Mn

	 

�zn

= z − 〠
∞

n=2
xn z − hn zð Þð Þ + 〠

∞

n=2
yn gn zð Þ − zð Þ

= 1 − 〠
∞

n=2
xn + ynð Þ

( )
z + 〠

∞

n=2
xnhn zð Þ + yngn zð Þf g,

ð68Þ

which is of the form (63). This proofs Theorem 14.

Corollary 15. Let f ∈T S0
H ðm, q, αÞ be of the form (25).

Then

anj j ≤ T −Q

Ln
,

bnj j ≤ T −Q

Mn
,

n = 2, 3, 4⋯ ,

ð69Þ

where Ln and Mn are defined, respectively, by (33) and (34).
Equality in the inequalities (69) occurs for the extremal func-
tions hnðzÞ and gnðzÞ given in (64) for n = 1, 2, 3:

3. Conclusion

In this paper, we defined a new class S0
H ðm, q, αÞ of har-

monic functions f ∈H 0 associated with newly defined q-
Noor integral operator for harmonic functions f . In this
class, we proved necessary and sufficient convolution condi-
tion for the functions f ∈H 0: We proved that, sufficient
coefficient condition for the functions f ∈H 0 to be sense
preserving and univalent and also this coefficient condition
is necessary for subclass T S0

H ðm, q, αÞ. By using the neces-
sary and sufficient coefficient condition, we obtained results
based on the convexity and compactness and results on the
radii of q-starlikeness and q-convexity of order α in the class
T S0

H ðm, q, αÞ. Also we investigated extreme points for the
functions f ∈T S0

H ðm, q, αÞ:
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