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This research utilizes the generalized integral transform and the Adomian decomposition method to derive a fascinating explicit pattern
for outcomes of the biological population model (BPM). It assists us in comprehending the dynamical technique of demographic
variations in BPMs and generates significant projections. Besides that, generalized integral transforms are the unification of other existing
transforms. To investigate the closed form solutions, we employed a fractional complex transform to deal with a partial differential
equation of fractional order and a generalized decomposition method was applied to analyze the nonlinear equation. Several aspects of the
Caputo and Atangana-Baleanu fractional derivative operators are discussed with the aid of a generalized integral transform. In
mathematical terms, the variety of equations and their solutions have been discovered and identified with various novel features of the
projected model. To provide additional context for these ideas, numerous sorts of illustrations and tabulations are presented. The precision

and efficacy of the proposed technique suggest that it can be used for a variety of nonlinear evolutionary problems.

1. Introduction

Historically, a framework of nonlinear developmental
equations was designed to model the proportion of a de-
mographic in particular domains [1, 2]. Several scholars
have examined analytical, semiautomatic, and numerical
solutions to fractional systems in a variety of fields, in-
cluding virology, chaos, bifurcation, thermodynamics,
neural networks, random walks, image processing, aquifer
and anomalous spreading, and so on [3-5]. These behaviors
have been described by expounding fractional numerical
simulations compared with experimental findings in order
to assert their nonlocal features, when this sort of char-
acteristic [6-10] cannot be articulated using nonlinear
PDEs of integer order.

Numerous efficient and comprehensive approaches,
such as the tan-cot function method [11], the Adomian
decomposition method [12], the homotopy perturbation
method [13], the homotopy analysis method [14], the
wavelet method [15], and the Lie symmetry analysis [16],
have been constructed determined by the flexibility to form
complex nonlinear phenomena in diversified disciplines
such as diseases, optical fibers, fluid flow, thermodynamics,
electrostatics, reaction-diffusion, and plasma physics.

Population dynamics simulations are being used to
comprehend, interpret, and forecast the movements and
permanence of biodiversity. Such frameworks are used to
evaluate a population’s welfare, evaluate the reasons for
population decreases or rapid expansion, recommend cor-
porate agendas, and assess the forecasting of a population’s
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anticipated reactions to diverse organizational processes
from a managerial perspective.

Leading up to delving into the step-by-step methodol-
ogies for formulating and interpreting continuously BPMs,
we will take a look at population genetic sculpting in the
past, granting us an overview of the key figures in the field of
ecology and evolution as well as the techniques they formed
to comprehend population systems from a physics
perspective.

In this study, we investigate a fundamental model in
biology. The degenerate parabolic equation appears in the
spatial diffusion of biological populations [17, 18]:

Q. =a,, +@,., +0(Q),

wiwy

¢=0,w;,w, €R, (1)

subject to initial condition (IC) @ (w,,w,,0), where @ sig-
nifies the population density and o denotes the population
supply due to births and deaths.

Certain specific features of (1), for instance, Holder
estimates of its solutions, are investigated in [19]. Fur-
thermore, two basic examples of constitutive formulations
for ¢ are the Malthusian law [17],

o =7@, (v= constant), (2)

and the Verhulst law [19],

0=v0-y@, (vy = constant). (3)
Thus, we assume the more generic version of o as 0 (@) =

h@*(1 - rléﬁ) which is held for porous media [20, 21] as

follows:

a, =a,, +0,

o, +h@“(1 —rlﬁﬁ), ¢=0,w,w, € R,

(4

where a, 8, i, and r, are real constants.

It is noted that Malthusian and Verhulst laws are the
particular cases that can be attained by inserting # = v, =
I,andr, =0 and h=v,a=p=1,andr, =v/v,
respectively.

FDEs are remarkably appropriate for simulating bio-
chemical mechanisms because they are specifically appre-
hensive about biological analytical models’ memory, which
appears to be a substantial advancement over traditional in-
teger-order mathematical methodologies, and it is associated
with chaotic systems, which are prevalent in BPMs. Rashid et al.
[22] recently considered the fractional spatial diffusion of
a BPM via a new integral transform in the singular and
nonsingular kernel settings. Zellal and Belghaba [23] reported
the variational iteration method to find an accurate algorithm
for solving BPM. Singh [24] expounded the analysis of the
fractional blood alcohol model with a composite fractional
derivative. An epidemic model SEI, I, R for the transmission of
HIV epidemics by the mean value theorem was investigated by
Naik et al. [25]. A homotopy decomposition method was
employed by investigating the HIV infection of C D4* by
Atangana and Alabaraoye [26]. For more details on BPM, see
[27, 28] and the citations therein.

Amidst George Adomian’s massive boost in 1980, the
Adomian decomposition method introduced a well-noted
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terminology. It has been intensively implemented for a di-
verse set of nonlinear PDEs, for instance, the Korteweg-De
Vries model [29], Fisher’s model [30], Zakharov-Kuznetsov
equation [31], and so on. The ADM was determined to be
significantly related to a variety of integral transforms, in-
cluding Laplace, Swai, Mohand, Aboodh, Elzaki, and others.
Very recently, Jafari [32] propounded a well-known integral
transform which is known to generalized integral transform.
The dominant feature of this transformation is that it has the
ability to recapture several existing transformations (see
Remark 1).

Motivated by the above propensity, we aim to establish
a semianalytical approach by mingling the generalized in-
tegral transform with the Adomian decomposition method.
With the assistance of fractional derivative operators, we
constructed the approximate analytical solution to BPM.
Furthermore, the convergence and uniqueness analysis is
carried out in the Caputo fractional derivative framework.
The proposed findings are in close harmony with the exact
solutions. Sketching and comparison analysis solutions are
drafted with a powerful and pragmatic approach. Both
operators consistently behave according to the projected
method.

2. Preliminaries

In this section, we evoke some essential concepts, notions,
and definitions concerning fractional derivative operators
depending on power and Mittag-Leffler as a kernel, along
with the detailed consequences of the generalized integral
transform.

Definition 1 (see [6]). The Caputo fractional derivative
(CFD) is described as follows:

c (r)
! J @ (w1+)17r dw,, r—-1<y<r,
F(r=x) Jo(¢—w)
‘DY = (5)
d?’
d—cr@(C), X=7

Definition 2 (see [7]). The Atangana-Baleanu fractional
derivative operator in the Caputo form (ABC) is stated as

follows:
1 ) :| > (6)

sepie@ =12 [ aon,)-

—X
where @ € #"'(a,,a,) (Sobolev space), a, < a x € 0,1],
and A(y) signifies a normalization function as A(y) =
A0)=A()=1.

x(s—
1-

Definition 3 (see [7]). The fractional integral of the ABC
operator is described as follows:

X@(c) X

ABC g B
n T @) = 10 e Aty

[ @) (- w)aw,
(7)



Journal of Function Spaces

Definition 4 (see [32]). Consider an integrable mapping
@ (¢) defined on a set &; then,

P ={C@(¢): IM >0,k>0,|Q(c)| <M exp(kg), if¢>0}.

(8)

Definition 5 (see  [32]). Suppose the mappings
$(8),¥(8): R"—R" such that ¢(8)#0V3 e R". The
generalized integral transform of the mapping @(¢) pre-
sented by Q(8) is described as

HO©).81 = Q®) = 9(s1) [ @@y @ds. (9)

Theorem 1 (see [32]) (convolution property). For gener-
alized integral transform, the subsequent holds true:
1

LJ]{@l * @2} - ¢(§)

Q, (8) * Q, (8). (10)

Definition 6. The generalized integral transform of the CFD
operator is stated as follows:

x-1
JEDI(@(<), 8} = v (8)Q(s1) - () Y ' (s)@™ (0),
k=0

r—1<y<r,¢,y>0.
(11)

Remark 1. Definition 6 leads to the following conclusions:

(1) Taking ¢ (8) = 1 and y(8) = 3, then we acquire the
Laplace transform [33]

(2) Taking ¢(3)(1/8) and y(8) = (1/8), then we ac-
quire the a-Laplace transform [34]

(3) Taking ¢(8) = (1/8) and y(8) = (1/8), then we
acquire the Sumudu transform [35]

(4) Taking ¢ (8) = (1/8) and y(3) = 1, then we acquire
the Aboodh transform [36]

(5) Taking ¢ (8) = 8 and y(8) = 82, then we acquire the
Pourreza transform [37, 38]

(6) Taking ¢(3) = 3 and y (8) = (1/3), then we acquire
the Elzaki transform [39]

(7) Taking ¢(8) =w, and y(3) = (3/w,), then we
acquire the natural transform [40]

(8) Taking ¢ (8) = 8? and ¥/ (8) = 8, then we acquire the
Mohand transform [41]

(9) Taking ¢(8) = (1/8%) and y(8) = (1/8), then we
acquire the Swai transform [42]

(10) Taking ¢(8) = 1 and y(8) = (1/3), then we get the
Kamal transform [43]
(11) Taking ¢(8) = 8* and y(8) = (1/8), then we ac-

quire the G_ transform [44, 45]

Definition 7 (see [46]). The generalized integral trans-
form of the ABC fractional derivative operator is de-
scribed as

(Q(é)—@@m)).

X
DY (@(9), 8} () = — WV (3) o

T+ -pvt(9)
(12)

Remark 2. Definition 7 leads to the following conclusions:

(1) Taking ¢(8) = 1 and y(3) = 3, then we acquire the
Laplace transform of ABC fractional derivative op-
erator [7, 47]

(2) Taking ¢(3) = 8 and y(8) = (1/8), then we acquire
the Elzaki transform of ABC fractional derivative
operator [48]

(3) Taking ¢(8) = y(8) = (1/8), then we get the
Sumudu transform of ABC fractional derivative
operator [49]

(4) Taking ¢(8) =1 and y(8) = 8/w,, then we get the
Shehu transform of ABC fractional derivative op-
erator [49]

Definition 8 (see [50]). The Mittag-Lefller function for single
parameter is described as

[ee] ZK
E = —1’ > > = V. 1
. (2) ;F(KX“) 1.z, €C,R())=0 (13)

3. Description of the Generalized
Decomposition Method

Consider the generic fractional form of PDE:

D!@(w), ) + L@ (wy,¢) + NGQ(w),¢)

(14)
= F (W1, 6)s

¢>0,0<x<1,

with ICs
Q(w;,0) = G (w,), (15)

where DY = (Y@ (w,, ¢)/d¢¥) symbolizes the Caputo and
ABC fractional derivative of order y € (0, 1], while & and N
denote the linear and nonlinear factors, respectively. Also,
F (wy, ¢) represents the source term.

Taking into account the generalized integral transform to
(14), we acquire

J[DY@(w), <) + L@ (W, ) + NQ(wy,¢)] = I[F (w, ).
(16)

First, by applying the differentiation rule of generalized
integral transform with respect to CFD, we apply the ABC
fractional derivative operator as follows:
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VB (W), 8) = ¢(8) Y vy M (8)@™ (0) + I[Z@(wy,6) + N@(wy, )] + I[F (wy,6)], (17)
k=0
Y (3)A 3 3)A -
)% (wp,8) = ‘pig;w‘”(l( )X)I(;Q(g)@(m+J[3)@(w1,<)+m(wl,q)]+J[9(w1,<)]. (18)

The inverse generalized integral transform of (17) and
(18) yields

o1 1 B
@(WI’C)ZJ]1|:¢(§)’;)w(§)xxl@(x>(o)+ 7@ [g(wl,c)]] [wx(é)J][EQ(wl, )+N@(w1,c)]], (19)
O(wpy<) = I [‘W’) (o) + XUV B g ,c)]] C OOV g 4 R (e ,q)]]. (20)

' (8) v (3)A (Y ' Y (3)A (Y : :
The generalized decomposition method solution  where
@ (w,, ) is represented by the following infinite series: -~
o A, (G, Gy, ..) q; , €>0. (23
@(Wl’c) = Z Q, (erc)- (21) E( v €' [dx <JZ(:)X >]x—0 2
=0

Thus, the nonlinear term N (w,,¢) can be evaluated by
the Adomian decomposition method prescribed as
)= A, (@, C,,...),
=0

Na(wy,¢ 2=0,1,..., (22)

Inserting (21) and (22) into (19) and (20), respectively,
we have

1

Z@e (wy,¢) = C(w,) + & (w,) - 1{ e [gé(wl,g) ZA,_,H (24)
£=0
o0 _ B 1_ X g o0 _
5 60,9 = 500 £ - %J[gmwm ; ZAH 2s)
Consequently, the recursive technique for (24) and (25)
is established as follows:

Q(Wi,6) = G (wy) + & (wy), £=0,

Byt (w1, = 0 [w . [ (@ (w ) + ZA,ZH, e21, o
P AAC)

1
Q1 (W156) = -0t [X +

A(y*(8)

J]|:8(@€(w1,c))+2;&€:|:|, =1,



Journal of Function Spaces

4. Some New Mathematical Aspects of
Generalized Decomposition Method

The subsequent subsections will highlight how the sufficient
requirements guarantee the emergence of a unique solution.
Our anticipated existence of solutions in the case of GDM is
followed by [51].

Qg1 (W1, 6) = Q(wp, ) + 07

1
v (8)

where £[Q(w,,¢)] = 83@(w1,c)/aw% and P[Q(w,,q)] =
0@ (wy,¢)/ow,. Here, suppose that R[@(w,¢)]

and IM[@(wy,¢)] are also Lipschitzian with

!’ [w"(@)
l%e-%a| =

max
ceJI

< max
ce S

- %IJ_I[WC

1
+H,J [ T3)

1
+%3J [‘I’X 3

< rg¥(21+%2+%3)

< (H + FHy+ H;3)I!

o

J[R[@ (w1, )] + P[@ (w1, )] + N[@, (w, )] |,

J[2[a(w, )] - 2[@(wpc)]]]
+J]1|:w ) JJ[P[@ (W156)] P[é(wl,c)]]]

+Jl[ﬁj[ﬁ[@(w1,c)] - N[@(wl,c)]]]

J|@(wy,9) @(wl, )|]
J|@(wy,q) Zﬁ(wl,c)|]
e 0n,9) - 809 |

7w

Theorem 2 (uniqueness theorem). Equation (26) has
a unique  solution  whenever 0<e<l1,  where
€= ((H,+Hy+H3)W/(T(x+1)).

Proof. Assume all continuous functions on the Banach space
are denoted by Q = (C[.7], ]| - |I). Also, suppose that .7 =
[0,9] has the norm | -]. Now, we define a function
U: Q. Q such that

£>0, (27)

PG -PO|<H,|@-G] and |26 -06|<H,|0-a),
where %, and %’ , are Lipschitz constant, respectively, and
@and @ are distinct functional values.

J[R[a(wi )] + P[@(wy )] + N[@(WM)]]]

r [w— E [@(wl,a]+P[é(w1,<>]+N[@<me]

(28)

J|@(wy,0) )= G(w,, )|}

a9 - 2w

=(H +H,+ H) I [1//((6 [@(wy, ) - G( wl,c)”]

_ ((%1+%2+%3)
I(x+1)

||@(W1>C) @ W1>C)”
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Since 0<e<1, the mapping is contraction. Conse- We acquire by considering a new form of Adomian
quently, by Banach contraction fixed point theorem, (14) has ~ polynomials:
a unique solution. This gives the desired result. O o1
, R(W,) =%+ Y %,
Theorem 3 (convergence analysis). The general form solu- =0 (29)
tion of (14) will be convergent. -1
N(W,) = %, + 3 7.

Proof. Assume that W, be the nth partial sum, ie.,
WAe = Z 0 @¢ (W1, 6). Here, we prove a Cauchy sequence
{We} in Banach space U. Now,

c=0

e~ W] = max{, - |

= max @w
ceS Z 1C

o 1 &
< max| +J [WX(Q)J][ Z Pla,, (W1>C)]H

ceS

-1 1
" [‘VX(Q) [mzqﬂ T 1 (W156) ]
1] 1
[ L e

= max +J7! [@ [Z p[él(wl’c)]:ﬂ

(30)

-1
< max +J7! WJ[ P(We,l)—P(wq,l)”

1
< max| +J

| 407y POV - () |

<H, rgg(fl‘[mj[(wkl) 7(Wq*1)]”
1

-1
+ %, max|J
ceS

+ H 3 max|J
ces

=(H |+ F,+ H3)d [‘;ﬁi; ” 1~ q—l”
T )y

T D wil
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Consider n = g + 1; then,

W< <l W, W, (3D

where (#, + %, + %3)g(X)/(I“(X +1)). Now, from tri-
angular inequality, we have

"W‘f - Wq” < “Wqﬂ - Wq" + HWW -w

g o [We = We

< [eq +eflp g €e—1]“W1 - Wy

1-¢1
£€q< . )||@1||.

Since 0 <e< 1, we have (1 —€*9)<1; then, 5. Application of Generalized Integral
Transform for Biological Population Model

(32)

el

max| @], (33)

"We B Wq" = 1-€ cer

In what follows, we illustrate the technique described in

Therefore, |@,|<co (since @(w,¢) is bounded). Fur-  Section 3 by considering three numerical tests to validate the
thermore, as g co, then |W, - Wq” — 0. Thus, W1} is  supremacy and efficacy of the generalized decomposition
a Cauchy sequence in K. Consequently, the series ) > @, is method.
convergent and this yields the immediate consequence. [

) Example 1 (Malthusian law [17]). Assume the time-frac-

Theorgm 4 (se? [51]) (error ?stlmate). The absolute error of  ;onal BPM (4) having @ = 1and r, = 0; then,
the series solution (14)-(26) is calculated as

q &l
- < .
max|@(w), <) e; Qe (Wi 6) <7 r:leajxn@l” (34)
D?@(prz’c) = @ilwl (Wi, W2, 6) + @izwz (W1, W2, 6) + 1@ (W1, W, ), (35)
with IC Case IFirst, we apply the Caputo fractional derivative
Gy (W), W, 0) = 37, F W, TWIW,. (36) operator coupled with the generalized integral transform

and Adomian decomposition method. Applying the gen-
eralized integral transform for Example 1,

Proof. Foremost, we provide the solution of (35) in two
general cases.

m—1
Y (B)U (W, 8) — ¢(8) Z yr ! (8)@™ (0) = J [szlwl (W, wy6) + Q‘zvzwz (W, wy6) + h@(wl,wz,q)]. (37)
k=0

Taking into consideration the IC given in (36), we have
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ve) I
o@ (w0 + oy

U(wy,8) = J][@Z (W1, Wy, 6) + @fvzwz (W, Wy 6) + h@(wl,wz,c)]. (38)

wiwy

Employing the inverse generalized integral transform,
we obtain

(é)

Q(wy,wy6)=J" [gb(é’»)

(wl’WZ’O) )((5) [@wlw1 ( 1,W2, ) + @‘zﬂzwz (w17w2’ C) + h@(wl’WZ’ C)]:| (39)

Thanks to the generalized decomposition method, we

find
y(3) ] [w(é)
Qy (W, wy,6)=J" [ Q(w;,w,,0 —— Wt W, tW W
0( 1> "2 ) ¢(§) ( W2 ) ¢(§) 1 2 12 (40)
= W, T W, + W W,.
Here, we surmise that the unknown function F(Q) = @fvlwl = Zde’
@ (wy, W5, ¢) can be written by an infinite series of the form =0 (42)
\ F(Q) =0, =) B
@(Wsz, C) = Z@g(wl,wz,c). (41) ( ) WoW, ;} 4
=0

where @, (w;, w,, ¢) will be evaluated recurrently and &/, and
B, are the so-called polynomials of @, @,,...,Q, estab-
lished by [52].

Also, the nonlinearity % (@) can be decomposed by an
infinite series of polynomials represented by

Z@Hl(wl’wbc):‘u |:WX(§) [Z ('Q{)g'f'Z(%)g'i'hZ(@)e:H £=0,1,2,.... (43)
£=0

- 1
The first few Adomian polynomials are presented as @, (w1, wy,6) = J 1[1//)((5)“&{0 + By + h@o]]
follows:
- ~ ¢
(@O)W]w]’ =0, = hA\/W T W, T W W, T e 1)
2 -1 (oe,6 , t=1, o 1
d‘(@ )wlwl (2@, @, (Wy, Wy ¢) = J7" wx(g)J][szfl + B, +h]
L (@% * ZQOQI)WIWI’ t=2 CZX (45)
(44) = AW T W FWW, To
(@3),, . £=0, F2x+1)
waw, |
Q5 (Wyy Wy, 0) = I | J [, + B, + 1@
‘%Z(QZ)WZWZ =1 2@Q))y,u,» =1, 3 (W1, W,) [‘I/X(Q) [+ By + 2]]
3x
@ +20,6,). , €=2. 33 ¢
{ ( 1 )w2w2 n VW + Wy + W W, F(3X " 1),

For ¢=0,1,2,3,...,
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The approximate solution for Example 1 is expressed as
follows:

Q (W1, Wy, 6) = D (W, W, 6) + @y (W1, Wi, 6) + Dy (W1, W3, 6) + Dy (W, Wi, )+

ik B2 B3 (46)
= 1 I
VWL W W\ S T ) Ty + ) TGxt D)

Case 2. Here, we surmise ABC fractional derivative operator =~ Adomian decomposition method. Applying the generalized
coupled with the generalized integral transform and  integral transform for Example 1,

v (3)A ()

m-1
m%(wl, 3)—¢(3) KZ:;) v (8)a™ (0) = J [@fvlwl (W, Wy 6) + @3"2‘”2 (W1, Wy, 6) + 1@ (wl,wz,c)]. (47)

Taking into consideration the IC given in (36), we have

v (8) X+ -y () 2
U (W,8) = Q(W,W,,0) + "1 @ |, (W, Wy,6) + @, , (W, W,,6) +7Q (W, Wy, 6) | (48)
( 1 ) ¢(§) ( 172 ) V/X(g)A(X) [ 11( 172 ) 22( 2 ) ( 2 )]
Employing the inverse generalized integral transform,
we obtain
fw(®) + (1 -y (8)
@ (wy, wy,¢) = J7 ! %@(prz’oﬁ)%ﬂ@im (wl,w2,c)+@i,zw2 (wl,wz,c)+h@(w1,w2,c)]:|. (49)

Thanks to the generalized decomposition method, we

find
@ (W, Wy, 6) = 07 1//(g)@(wpwz’o)] =J [VJ(SI) W Wy T WiW, ]
4() ON (50)
= /W + W, + W{W,.

Here, we surmise that the unknown function F1(Q) = @\zvlwl = Z Ay,
@ (w,, W5, ¢) can be written by an infinite series of the form =0 (52)

o0 F,(Q) =@, = By,

Q (W, Wy,6) = Z @, (W1, Wy, 6). (51) =0

=0 where @, (W, W,, ¢) will be evaluated recurrently and &, and

Also, the nonlinearity & ;(@), j = 1,2, can be decom- %, are the so-called polynomials of @, @, .. ., @, defined in
posed by an infinite series of polynomials represented by (44).
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For ¢=0,1,2,3,...,
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fx+ = pyt(8)
@1 (Wl,wz,(:):\ﬂ I[WJ[MO‘F%O‘FILQO]]
Wi F W ww, [yt ~
A [F(X+1)+(1 X)],

@, (W1>W2,q) =J! [M

J[o, + B, +h@1]]

v (8)A (x)
) 2 2y
) w1+2w2+W1W2[ X -y ¢ ca-pl, (53)
A (x) ry+1) IF'(x+1)
Sfx+ A=yt (8)
@5 (Wyo W)y 6) = J I[X—J],Qf + B, + 1@
3( 1 2 ) wX(g)A(X) [ 2 2 2]
hSVW1+W2+W1W2[ X3C3X 2 ZX 2 3
= +3°0 (1) ———+3y(1 - +(1-x°1,
A% (y) TGy +1) X X>F(2x+1) x(1=) T(x+1) (=0
The approximate solution for Example 1 is expressed as
follows:
@ (W1, W5, 6) = Dy (Wi, W5, 6) + Dy (Wi, Wy, 6) + Dy (Wi, Wy, 6) + Dy (W), Wy, 6) + -
W, + 1+ n +(1-x)
= /W] T W, T WW, — == -
1 2 1W2 A \T(+1) X
B2 2 2 (54)
+2(“+2x(1—x) ¢ +(1—X)2>
A (x) IF'2y+1) I'(y+1)
1’ P ) ¢ 2 3)
+ A>3 (- —————+3y(1 - +(1=x) |+
A3(X)(F(3x+1) a X)r(2X+1) x(1-p) T(y+1) -2 )

For y = 1, we obtained the exact solution of Example 1 as

G (W, Wy, 6) = /W + W, + WyW, exp (7). (55)

The analytical approximate solutions including certain
random initialization produced by the proposed method-
ology are shown in Table 1. The VIMHP is employed to
perform the comparative analysis, which forecasts the
precision of the proposed methodology based on its lower
error. The findings in this study are tremendously helpful in
comprehending the internal components of natural di-
sasters. We will describe the scientific clarification of the
solutions for the BP model in this paragraph of the article.
The exact and numerical solution for « = 1,7, = 0,¢ = 0.01,
and y =1 is shown in Figure 1.

Furthermore, the absolute error for the aforementioned
assumptions is depicted in Figure 2(a). Figure 2(b) dem-
onstrates the behavior of the findings in three-dimensional
simulation for different fractional orders by employing the
Caputo fractional derivative operator.

Finally, Figure 3 represents the two-dimensional be-
havior of exact, approximate by Caputo, and approximate
solutions derived by ABC fractional operators with varying
fractional orders. These solutions have a distinctive char-
acteristic that allows them to interact with other solutions
derived by [23]. The proposed findings have particle-like
geometries in their solutions. The synthesized trajectory is
either a success or a descent from one asymptotic state to the
next. The accuracy of the proposed method can be enhanced
by increasing the recursive terms. O
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TaBLE 1: Exact @5 and approximate solutions @cpp and @Q,pc of @ (W, w,, ¢) of Example 1 having absolute errors E; = |@; — Qcppll and
E, = |@g — Qppcll when y =1,¢=10.2,r, =0, and % = 1/2 for different values of w; and w,.

(W, wy) @ sol. Qcpp sol. @ ppc SOl VIMHP sol. [23] Error = E, Error = E,
(-10, 10) 11.051709 11.051666 11.051666 11.051344 4.2510e -5 4.2510e -5
(-8, 8) 8.841367 8.841333 8.841333 8.841600 3.4008e -5 3.4008e -5
(-6, 6) 6.631025 6.631000 6.631000 6.631555 2.5506e -5 2.5506e -5
(-4, 4) 6.631025 6.631000 6.631000 6.667890 2.5506e -5 2.5506e -5
(-2, 2) 2.210341 2.210333 2.210333 2.226699 8.5020e - 6 8.5020e -6
(0, 0) 0.000000 0.000000 0.000000 1.008975 0.000000 0.000000
2, 2) 3.125800 3.125800 3.125800 3.998500 1.2024e -5 1.2024e -5
4, 4) 5.414100 5.414100 5.414100 6.889200 2.0826e-5 2.0826e -5
(6, 6) 7.657100 7.657100 7.657100 8.100650 2.9453e -5 2.9453e -5
(8, 8) 9.885100 9.885100 9.885100 9.987890 3.8023e-5 3.8023e-5
(10, 10) 1.210600 1.210600 1.210600 1.9823 4.6567e -5 4.6567e -5
Exact Approximate
2.5 2.5
SO < 3
% 154 % 154
£ £
o 1 o 1
0.5+ 0.5 4
g g
0.5 1 ~ 0.5 0.5 1 ~ 0.5
wy . 270 ¢ Wi : 270 {

@ (®)

FIGURE 1: Three-dimensional illustration of the exact and approximate solution of Example 1 when o = 1,7, =0,¢=10.01, and y = 1.

Absolute Error
Q (Wp W), O

Bl Exact B x=09
I x=1 Bl y=08

(a) (b)

FIGURE 2: Three-dimensional illustration of the absolute error and multiple surface of various fractional orders for Example 1 when
a=1,r, =0, and ¢=0.01.
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Q (Wl) WZ) O

L "
0.9 ss/'/u
Y

0.8 - .
0 01 02 03 04 05 06 07 08 09 1
Wi
—=— Exact Sol. -- x=09
—<— ABC Sol. -%- x=0.8
x=1 -+ x=0.7

FIGURE 3: Two-dimensional illustration of Example 1 for various fractional orders when a = 1,7, =0, and ¢ = 0.01.

Remark 3. Example 1 leads to the conclusion that (i) If we replace the IC @Q(w,,w,¢) =
v, wy + Bw, + y,wiw, in Example 1, then the
approximate solution can be achieved as

het hZCZX h3g3X
Q(w, Wy, 6) = \/oclwl + W, + ylwlwz(l + T+ 1) + e + NEES)) T (56)

(ii) The closed form solution in the stated case will be Example 2. Assume the time-fractional BPM (4) having
G (Wi, Wy, 6) = \Jaywy + Byw, + Y, ww, exp (o), a=1,7, =0, and & = 1; then,
where «; and f3; are the real constants.
(iil) Letting a; = 8; = 0 and y; = 1 along with % = 1/2,
we get the result proposed independently by Roul
[53] and Shakeri and Dehgan [54], respectively.

2
Wow;

2
wiw,

D?@(WI,WZ,C) =@, (W, Wy,0)+ @, . (W, Wy¢)+ Q(W;,wy,6), (57)

with IC Case 1. First, we apply the Caputo fractional derivative

operator coupled with the generalized integral transform

@y (W1, w5, 0) = \/sin (6w, )cosh(6w,), 6 €R. (58)  and Adomian decomposition method. Applying the gen-
eralized integral transform for Example 2,

Proof. . Foremost, we provide the solution of (57) in two
general cases.

m—1
v (8)U (W, 8) — ¢ (3) Z v (8)e™ (0) = J [@‘zvlwl (W, Wy, 0) + @‘szwz (W, Wy, 0) + Q(wl,wz,q)]. (59)
k=0

Taking into consideration the IC given in (58), we have
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y(8)

U(wy,8) = 0(3) Q (W, Wy, 0) + ——— X(g) \ﬂ[ wow, (W W2 6) + @izwz (W W5, 6) + @(WbWz»C)]- (60)

Employing the inverse generalized integral transform,
we obtain

- 1
Q (W, wy,6) =J 1[_ (W, w,,0) +WJ][@fvlw1 (W, Wy, ¢) + @fvzwz (W, Wy, 0) + @(wl,wz,c)]]. (61)

Thanks to the generalized decomposition method, we

find
- EZ0) 320
o (Wi, wy0)=J7" Q(wy,w,,0) | = \/sm(Ow )cosh (6w,)
¢(3) ¢ (3)
(62)
= \/sin(Gwl)cosh(sz).
Here, we surmise that the unknown function Also, the nonlinearity & j(@), j=1,2, can be decom-

@ (w,,w,,¢) can be written by an infinite series of the form  posed by an infinite series of polynomlals represented by
F(0) =@, =Y d,and F,(0) =

N wiw, wzw2 Z?:o ‘%e
Q(Wy, Wy 6) = ) @y (Wy, Wy 6). (63) deﬁned in (44).
=0
Dy (W, Ws,6) = [ 5 [Z (), + Z (B), + Z (@»H £=0,1,2,.... (64)
=0
For £=0,1,2,3,..,
- 1
@, (W, wy¢) = J7! [Wx(g)J][szfo + By + h@o]]
= \/sin(Ow )cosh (6w,) _¢
! YT+l
- 1
@, (wy,wy,¢) =J7" |:‘//X(§)J][ﬂl + B+ ml]]
: ZX 65
= \/sm(ewl)cosh(ewz) %, ( )
Q5 (W), wy,¢) = J7" [1//‘(%) J[o, + B, + h@z]]
3x

= \/Sil’l (0W1 )COSh (BWZ) m,
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The approximate solution for Example 2 is expressed as
follows:

@ (W1, W 6)

Journal of Function Spaces

= @ (W1, Wy, 6) + @y (W1, Wy, 6) + Dy (W, W3, 6) + Dy (W, Wi, 6) +-o

(66)

= \/sin (le)cosh(ﬂwz)(l +

Case 2. Here, we surmise ABC fractional derivative operator
coupled with the generalized integral transform and

¢ ¢ I3 )
+ oo .

T(y+1) T(2x+D) TGr+1)

Adomian decomposition method. Applying the generalized
integral transform for Example 2,

v (A (Y) k-1 &) 2 2
— 7 A ,8 (8) AE(8)@™ (0) = 3| @, (W Wa,6) + @, (Wi W, 6) + @ (Wy, Wy, 0) | (67)
X+(1_X)1//X(§) ( Wi ) (/) Z [ 11( 1> 72 ) 22( 1 2 ) ( 1> "2 )]
Taking into consideration the IC given in (58), we have
y(3) X+ -v 6 o 2
U (w,, 3 @ (w,w,, Pt @, o (W, Wa,6) + @ (W, W, 6) + @ (W), Wy, 6) . (68)
( 1 ) ¢(§) ( Wi, W, ) WX(§)A(X) [ 1 1( 172 ) 22( "2 ) ( 12 )]
Employing the inverse generalized integral transform,
we obtain
1| v(8) x+(1-xy*(3) 2 2 ]
Qw,w,ch] Q(w, Wy, 0) +5——"———J|Q,, .. (W;,W5,6)+ @, ., (W,W,,6)+Q(w;,W,,6)|]|. 69
( 1> "2 ) ¢(§) ( 1> "2 ) WX(Q’)A(X) [ 1 1( 1> "2 ) 22( 1> 2 ) ( 1> 2 )] ( )
Thanks to the generalized decomposition method, we
find
Qo (Wi, Wys6) =07 [ Q(wy, wy, )] = [ v(3) sin (6w, )cosh ( 2)]
¢(8) ¢(8) (70)
= \/sin(Owl)cosh(Gwz).
Here, we surmise that the unknown function F1(Q) = @ilwl = Z Ay,
@ (w,, w,,¢) can be written by an infinite series of the form =0 (72)

Q (W, Wy, 6) = ) @y (Wy, Wy, 6). (71)

=0

Also, the nonlinearity & (@), j = 1,2, can be decom-
posed by an infinite series ofj polynomials represented by

[ee]
F,(Q) = @i’zwz = Z%’e’
£=0
where @, (w,, w,, ¢) will be evaluated recurrently and &/, and

3B, are the so-called polynomials of @, @, . . ., @, defined in
(44).
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For £=0,1,2,3,..,

x+(1—x)v/"(§)J]

-1
01 (Wi, Wy26) = I [ V@AW

xc*
I'(x+1)

B \/sin(Gwl)cosh (6w,)
- A(x) [

x+ 1=y (38)

-1
@ (w1 w,6) = J [ VAR

2 2x
XS
rey+1)

B \/sin(Gwl)cosh (6w,) [
) )

x+ (1= )" (8)

-1
@3(W1,W2,C) =J [ WX(Q)A(X)

X3c3)(
r(3y+1)

B \/sin(le)cosh (6w,) [
) A% (x)

The approximate solution for Example 2 is expressed as
follows:

+2x(1-y)

+3X2(1_X)r

15

[y + By + @0]]

+(1—x)],

J[o, + B, +@1]]

, (73)
raen Y

J][.Qi2+.95’2+@2]]

2x 3
+(1_X) >

+3y(1-y)’

ot ¢t
2x+1) F'(y+1)

Q (W), W3, 6) = Dy (W), Wy, 6) + Dy (W), Wy, 6) + D, (W), Wy, 6) + Dy (W), Wy, 6) + -

_ \/sin(9W1)C°Sh(9w2)(1 * A\tx)<

1 ( XZCZX
+ [ —
A* () \T 2y +1)

1 X3C3X s
+ AS 31—
e (x)(r(3x+ p Ao

+2x(1-y)

For y = 1, we obtained the exact solution of Example 2 as

G (W, Wy,0) = \/sin(ewl)cosh(sz) exp (¢). (75)

The analytical approximate solutions including certain
random initialization produced by the proposed method-
ology are shown in Table 2. The VIMHP is employed to
perform the comparative analysis, which forecasts the
precision of the proposed methodology based on its lower
error. The findings in this study are tremendously helpful in
comprehending the internal components of natural di-
sasters. We will describe the scientific clarification of the
solutions for the BP model in this paragraph of the article.

Jt
F'(x+1)

_S
F2y+1)

¢ +(1_X)>

I'(y+1)

(74)
+(1 —x)z)

2

+3y(1-y)° +(1_X)3>+"')-

I'(x+1)

The exact and numerical solution for &« = 1,7, = 0,¢ = 0.01,
and 7 = y = 1 is shown in Figure 4.

Furthermore, the absolute error for the aforementioned
assumptions is depicted in Figure 5(a). Figure 5(b) dem-
onstrates the behavior of the findings in three-dimensional
simulation for different fractional orders by employing the
Caputo fractional derivative operator.

Finally, Figure 6 represents the two-dimensional be-
havior of exact, approximate by Caputo, and approximate
solutions derived by ABC fractional operators with varying
fractional orders. These solutions have a distinctive char-
acteristic that allows them to interact with other solutions
derived by [23]. The proposed findings have particle-like
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geometries in their solutions. The synthesized trajectory is  Example 3 (Verhulst law [19]). Assume the time-fractional
either a success or a descent from one asymptotic state to the BPM (4) having a = 8 = 1; then,
next. The accuracy of the proposed method can be enhanced

by increasing the recursive terms. O
D@ (wy, Wy, 6) = valwl (W1, W5, 6) + @irzwz (W1, W3, 6) + 1@ (Wi, Wy, ) (1 = 1@ (W, W5, 6)), (76)
with IC Case 1. First, we apply the Caputo fractional derivative
» operator coupled with the generalized integral transform
Qy (W, Wy, 0) = exp(w/i (w, + Wz))- (77) and Adomian decomposition method. Applying the gen-
8 eralized integral transform for Example 3,

Proof. Foremost, we provide the solution of (76) in two
general cases.

m—1
YO (w,,8) = ¢(8) Y ¥ ()0 (0) = I[@, ,,, (Wi Wy, 6) + QL (W, Wss6) o)
x=0

+1@Q (W1, Wy, ¢) (1 — 7@ (Wy, Wy, 6))].

Taking into consideration the IC given in (77), we have

3 1
U(wy,8) = Z;Eg;@(wl,wz, 0) + ) J][va]w] (W, Wy, 6) + vazwz (W1, Wy, 6) + 1@ (Wy, Wy, 6) (1 - rlé(wl,wz,c))]. (79)
Employing the inverse generalized integral transform,
we obtain
_ 13 1 2 2
@ (wy,Wy,¢) = J 4(3) (w1, w,0) JFWJ][@WIWl (W1 W2 6) + @y, (W15 W), 6) + 1@ (W, Wi, 6) (1 - 71@(W1’W2>C))] -
(80)
Thanks to the generalized decomposition method, we
find
1|y (8) ~1fy(8) hiry
@, (W, Wy, ¢ :Jll[—@w,w,O]:J] [—ex — (w; + W
o (W1> W, 6) ¢(§)(12) ¢(§)P 8(12)
(81)
h
= exp(\ % (w, +w2)).
Here, we surmise that the unknown function Q(w,wy,6) = Z Qp (W1, Wy 6). (82)

@ (w,,w,,¢) can be written by an infinite series of the form =0
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TaBLE 2: Exact @y and approximate solution @, of @(w;,w,,¢) of Example 2 having absolute errors E, = |@p — @cppl and
E, = |@g — Qppcll when y =1,¢=0.2,r; = -8/9, and # = -1 for different values of w; and w,.

(W, wy) @y sol. @cpp sol. @ ppc sOL VIMHP sol. [23] Error = E, Error = E,
(-10, 10) 10.303436 10.303000 10.302851 10.993451 5.8565¢ -4 5.8565¢ -4
(-8, 8) 5.552607 5.552292 5.552292 5.990091 3.156le—-4 3.156le—-4
(-6, 6) 1.455853 1.455770 1.455770 1.995099 8.2751le—-5 8.2751le—-5
(-4, 4) 2.259085 2.258957 2.258957 2.879342 1.2841e—-4 1.2841e-4
(-2,2) 1.391787 1.391708 1.391708 2.600834 7.9109¢ -5 7.9109¢ -5
(0, 0) 0.000000 0.000000 0.000000 0.990087 0.000000 0.000000

2,2) 1.391787 1.391700 1.391700 1.990980 7.9109¢ -5 7.9109¢ -5
(4, 4) 2.259085 2.258957 2.258957 2.998456 1.284le—-4 1.284le—-4
(6, 6) 1.455853 1.455770 1.455770 2.009987 8.275le-5 8.275le—-5
(8, 8) 5.552607 5.5523292 5.5523292 5.968901 3.156le—4 3.156le—4
(10, 10) 10.303000 10.303044 10.303044 10.990234 5.8565¢ - 4 5.8565¢ -4

Exact Approximate

Absolute Error

B Exact B =09
=1 Bl y=08

(a) (b)

FIGURe 5: Three-dimensional illustration of the absolute error and multiple surface of various fractional orders for Example 2 when
a=1,r,=0,h=1,and ¢= 0.0l
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09+
0.8 -
0.7 +
0.6 -
0.5
0.4 -
03+
0.2t
0.1

Q (wl) W2, O

—&— Exact Sol. -- x=09
—<— ABC Sol. -%- x=0.8
x=1 - x=0.7

FIGURE 6: Two-dimensional illustration of Example 2 for various fractional orders when & = 1,7, =0,% = 1, and ¢ = 0.01.
Also, the nonlinearity j(@), j=1,2,3, can be B, defined in (44) along with

decomposed by an infinite series of polynomials represented ~ F; (@) = @ (1 —r, Q) = Y 2, €,. Thus, we have
by F,(Q) = @ilwl = Yo and F,(Q) = @fvzwz = Ye=0

(@) -1 G), £=0,
G(@-r@") =1 (G, -r0)0,), e=1,
(@,-2r0,@,-1,@}), £=2, (83)

Y Cepy (Wi wy6) = 7! {;J}[Z (e + ) (Be+ ). (%)eﬂ, £=0,1,2,....
vie) |5 £=0 =0

¢=0

For ¢=0,1,2,3,...,

_ 1
@, (W, Wy,6) = J l[m\ﬂ[do+%’o+‘€o]]

h
= exp(\/% (wy +w2)>—r(;i Iy

@, (W1, Wy, ¢) = \ﬂ_l[@\ﬂ[dl + B, +‘€1]]

D 2 84
= eXp(\/%(Wl +W2)>m, ( )

_ 1
Qs (W), Wy, ¢) = J I[WJ][% + B, +<fg2]]

hr o
1 S
= exp( ? (Wl + Wz)) m,
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The approximate solution for Example 3 is expressed as
follows:

Q (W1, Wy, 6) = D (W1, W, €) + @y (W1, W3, ) + Dy (W, W3, 6) + Dy (W, Wi, )+

H o (85)
_eXp(\/—(W1+w2)>< r(x+1) T+ TG+ )

Case 2. Here, we surmise ABC fractional derivative operator =~ Adomian decomposition method. Applying the generalized
coupled with the generalized integral transform and  integral transform for Example 3,

Y (3)A — k-1 K
%%( W) - ¢<§>Zw (0% (0) = I[@ , (Wi W2,6) + @, (W1, W) -

+ 1@ (W), W), 6) (1= 1, @(Wy, Wy, 6))].

Taking into consideration the IC given in (77), we have

y(8)
#(3)

+ 1@ (W1, W), 6) (1= 7@ (W1, W2 6))].

+(1 - y*(8)

U(wy,8) = @ (wy,wy,0) + +2 J][@wlwl( 1’w2>c)+@‘2~w2(w1’w2’c)

1l/ (8)A (X) 2 (87)

Employing the inverse generalized integral transform,
we obtain

A [v®
¢ (2)

+ 1@ (Wy, Wy, ¢) (1= 7,@ (W), W5, 6))]-

+(1- 8
X(—X)V/X()J] [nglm (WI’WZ) C) + @szz (wl’wz’ C)

LWy, ¢) =J
@(W1 W, C) ‘/’X(Q)A () (88)

Q (W, w,,0) +

Thanks to the generalized decomposition method, we
find

3 h
@o(wl)W27C):J] [ZEQ’;@(WP 2)0)] [%ex}j(\/%(wﬂw"z))]

SR L)

Here, we surmise that the unknown function Q(wy,Wy,¢) = Z Qp (W, W3, 6). (90)
@ (w,,wW,,¢) can be written by an infinite series of the form =

(89)
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Also, the nonlinearity #;(@), j=1,2,3, can be
decomposed by an infinite series of polynomials represented
by F(0) = @fvlwl =Y d,and F, (Q) = @fvzwz

x+ (1= v (38)

_ g1
@, (Wy, Wy, ¢) = J [ v (3)A(y)

J][szio+<9?0+“€o]]

Journal of Function Spaces

= Yoo B, along with F5(Q) = Q(1 -r,0) = Y,2, €, de-
fined in (44) and (83), respectively.
For ¢=0,1,2,3,...,

1 hr, X6
= mexp(\/% (wy +w2)>[r(X+ D +(1 —X)],

x+ 1=yt (8)

_ g1
QZ(WI’WZ’C)_J] [ V/X(Q)A(X)

J[, + B, +‘€1]]

- Azl(;oexp(@ v +WZ)>[%”"“ Dt o
@3 (wy W) = I [%J[% LByt %2]]
- A:(X)exp(\/@ (w, +w2)>[%+ 3 (1 —X)%wxu —X)Zr(;i 5+a -0
The approximate solution for Example 3 is expressed as
follows:
@ (W, Wy, ) = D (Wys Wy ¢) + Dy (Wyo Wy, ) + Dy (W, Wy, €) + Dy (Wy, W §) -+
:exp(\/@(w1+w2))(l+ﬁ r(Xin*(l""))
+A21(X) (%Jrzxu—x)r(xi 1)+(1—)()2) (92)
+%\31(x) (réz:jfl)+3xz(l _X)r(z;X+1)+3X(l —X)Zr(xi 5 +(1 —x)3> 400,

For y = 1, we obtained the exact solution of Example 3 as

Q (Wi, W,,6) = exp(@ (W, +w,) + c). (93)

Table 3 shows the analytical approximate solutions with
some free parameters that are provided by the proposed
technique. The comparison analysis is conducted with the
VIMHP that predicts the preciseness of the suggested
scheme due to their lower error. The analytical findings are
extremely useful in deciphering the internal components of

acts of nature. The exact and numerical solution for
a=1=p,¢=0.01, and y = 1 is shown in Figure 7.

Furthermore, the absolute error for the aforementioned
assumptions is depicted in Figure 8(a). Figure 8(b) dem-
onstrates the behavior of the findings in three-dimensional
simulation for different fractional orders by employing the
Caputo fractional derivative operator.

Finally, Figure 9 represents the two-dimensional be-
havior of exact, approximate by Caputo, and approximate
solutions derived by ABC fractional operators with varying
fractional orders. These solutions have a distinctive
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characteristic that allows them to interact with other solu-
tions derived by [23]. The proposed findings have particle-
like geometries in their solutions. The synthesized trajectory
is either a success or a descent from one asymptotic state to

1
D?@(wl,wz,q) = @i,lwl (W, Wy, 0) + @fvzwz (W wy0) +—0Q

with IC

1
Qo (W, W,,0) = 2 \/Z(Wf + wg) +W, +5. (95)

Proof. Foremost, we provide the solution of (76) in two
general cases.

m-1

Y () (wy,8) - ¢<§>ZW1<§>@ (0) =

Taking into consideration the IC given in (95), we have

%(Wl,g) W( )

Employing the inverse generalized integral transform,
we obtain

y(8)

Q(wy,wy,6) =J° [‘/5(

Thanks to the generalized decomposition method, we
find

v (8)

Qp (W Wpy¢) = 7" [m

1 1
¢(§) @(WI’WZ’O) X(Q) [ ww, (wl’w2’ C) + @wzwz (wl’w2’ C) W@O - E:|

=i\/2(wf +w§) +w, +5.

Here, we surmise that the unknown function
@ (w,,wW,,¢) can be written by an infinite series of the form

21

the next. The accuracy of the proposed method can be
enhanced by increasing the recursive terms. O

Example 4. Assume the time-fractional BPM (4) having
a=-1,8=1, = (1/96), and r, = 48; then,

1
Y 1(w1)w2) C) _Es (94)

Case 1. First, we apply the Caputo fractional derivative
operator coupled with the generalized integral transform
and Adomian decomposition method. Applying the gen-
eralized integral transform for Example 4,

1 1
[ o, (wl,wz,c)+@wa2 (wl,wz,c)+96@ 2]. (96)
(97)
G (W, Wy, 0) + —— ! [ Q@ o (W, Wy ¢) + @ (W), Wy, 6) + ! —lH (98)
1> Y2 V/X(g) W, W, 1> Y2 W W, 1> Y2 96@0 2 .
3) 1
%Z\/z(wf+w§)+w2+5]
(99)
Q (W, Wy,6) = Z @, (Wi, Wy, 6). (100)

=0
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TaBLE 3: Exact @p and approximate solution @, of @(w;,w,,¢) of Example 3 having absolute errors E; = |@p — Qcppll and
E, = |@g — Qppcll when y =1,¢=0.2,r; = -8/9, and # = -1 for different values of w; and w,.

(W, wy) @ sol. Qcpp sol. @ ppc sOL VIMHP sol. [23] Error = E, Error = E,
(-10, 10) 1.04194¢ -3 1.04185¢ -3 1.041824e -3 1.04186¢ -3 8.1559¢ -8 8.1599¢ -8
(-8, 8) 3.95279¢-3 3.95249¢ -3 3.95243e-3 3.95248e -3 3.0941e-7 3.0939¢ -7
(-6, 6) 1.49956e -2 1.49940e -2 1.49939¢ -2 1.49944e -2 1.1732e-6 1.1730e -6
(-4, 4) 5.68882¢ -2 5.68832¢ -2 5.68830e -2 5.68838e—-2 4.4529¢ -6 4.4527e—-6
(-2,2) 2.15815e~1 2.15792e-1 2.15790e -1 2.15798e -1 1.6893e -5 1.6890e -5
(0, 0) 8.18731e—1 8.186677e¢—1 8.186670e - 1 8.186667¢ - 1 6.4086e -5 6.4082¢ -5
(2,2) 3.10599000 3.10575 3.10570 3.10566 2.4312e—4 2.4310e -4
4, 4) 11.7831000 11.78212 11.78210 11.78218 9.2233e-4 9.2226e -4
(6, 6) 44.7011800 44.69756 44.69750 44.69769 3.4989%¢ -3 3.4982¢-3
(8, 8) 169.581450 169.56803 169.56810 169.56817 1.3274e-2 1.3278e -2
(10, 10) 643.335670 643.28526 643.28519 643.28534 5.0357e—2 5.0350e -2
Exact Approximate

FiGURE 7: Three-dimensional illustration of exact and approximate solution of Example 3whena =1 = f,7;, =0,¢=0.01,2 = 1,and y = 1.

Absolute Error

B Exact B x=09
L x=1 Bl y=0s8
@ (b)

FiGure 8: Three-dimensional illustration of the absolute error and multiple surface of various fractional orders for Example 3 when
a=1=p,r,=0,=1,and ¢=0.01.
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FIGURE 9: Two-dimensional illustration of Example 3 for various fractional orders when « =1 =f,r, =0, =1, and ¢ = 0.01.

Also, the nonlinearity # i (@), j=1,2,3, can be Yoo B defined in (44) along with
decomposed by an infinite series of polynomials represented 5 (Q) = (1/96@,) — (1/2) = ¥ ;20 D,. Thus, we have
by F,(Q) = valwl =Yoo d,and F,(Q) = @fvzwz =

([ 1 1 ro0
9%a, 2/ -
1 1 1 @1)
—_— ] = -\ = b £=1,
‘%(96@ 2) ) 96(@3

1 _ 2
+— £22+@—; , £€=2,
[ 96\ @, @,

Y Gy (Wy,wy,0) = J7! [;J][Z () + Y (B)y+ ) (Q)ZH, £=0,1,2,....
Vi) |5 220 =0

¢=0

(101)

For¢=0,1,2,3,...,
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@ (Wy>wp,6) = J°

[w"(é)

1
" 24

@, (wy, Wy,

C):Jl[wﬂﬁ)

1

= ——(Z(Wf + wg +w, + 5))

144

(2(w1 + w2 +w, + 5))

Journal of Function Spaces

Iy + By + D, ]]

12 ¢
I'(y+ 1)

I+ B, +D, ]]

a2 K (102)
ry+1y

Q5 (W, W5, 6) :J]_l[ X(g)J[M2+%2+9 ]]

1
288

The approximate solution for Example 3 is expressed as
follows:

(Z(Wf + w§ +w, + 5))

s X

I3y+1)

Q (W1, Wy, 6) = D (W, W, 6) + @y (W1, Wi, 6) + @y (W1, W3, 6) + Dy (W, Wi, 6) +o

= V2w W)t + 5 (o w4 5))

1 2

144

(Z(Wf + wg +w, + 5))_3/2 o

Case 2. Here, we surmise ABC fractional derivative operator
coupled with the generalized integral transform and

4+_
T(2x+1) 288

-2
I(x+1) (103)
1 2 2 —-5/2 C3X
(2(W1 +W2+W2+5)) m‘f’

Adomian decomposition method. Applying the generalized
integral transform for Example 4,

wX(g)A (X) x—k—1 (k) _ 2 2 1 _l
pr eI AUDRLIC) Z (8127 (0) = 3] @, (01:92,6) + Qr, (W1 W26 + g2 |, (109
Taking into consideration the IC given in (95), we have
v (3) x+1=-v' @) [ 2 11
%(wl’g) ¢(§) @( 1,W2,0) l{/X(g)A (X) J @wlwl (WI’WZ’ C) + @wzwz (w1>w2’ C) +96@0 2 . (105)

Employing the inverse generalized integral transform,
we obtain
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¢(8) v (3)A(y)

Q(wy, Wy, 6) =J° [W( )@( Wi, W, 0) + MJ @ilwl(w1,wr§)+ wzwz(wl,w2,§)+ ! _1]

Thanks to the generalized decomposition method, we
find

y(8)

Qo (W1, W 6) = J]_l[¢(§)

=i\/2(wf +w§) +w, +5.

Here, we surmise that the unknown function
@ (w,,W,,¢) can be written by an infinite series of the form

Q (W, Wy,6) = Z @, (W1, Wy, 6). (108)
=0

@, (W, wy,6) = J‘I[M

@A Q) J[do+%0+90]]

1 2 xdt
= (X)(z(wf + W5+ W, +5)) [F(X ey

v (8)

_ 1-
@Z(WI’WZ’C)_ 1|:X+( (Q)A(X) ‘ﬂ[dl+‘%jl+91]:|

1

B ZCZX
_ L (wrewrwrs) " [réxﬁ

144A° (y)

x+(1-v'(8)

_ g1
@ (W) = [ V(DA ()

J[d2+%2+92]]

" 288A%(y)

The approximate solution for Example 4 is expressed as
follows:

1 P S
3 (Z(Wl tTw, +w,+ 5)) [W

25
. 106
964, 2 (106)
qlw(e)1
(W, w, ,0)] =J I[Z(g) 2 \/Z(Wf +w§) +W,+5 ]
(107)
Also, the nonlinearity #;(Q), j=1,2,3, can be

decomposed by an infinite series of polynomials represented
by F,(Q) =0, =2 dandF,(Q) =a,, =32
B, along with g3 (@) = (1/96Q) - (1/2) = ¥;2, %e defined
in (44) and (101), respectively.

For ¢=0,1,2,3,...,

+(1—x)],

¢ 2
)+2X(1_X)F(X+1)+(1_X)

2x c)(
2 3
T+ D) —X)7)+(1—X)

1
+3x( T(x+1

+3X2(1 -x)

(109)
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TaBLE 4: Exact @ and approximate solution @, of @ (w;,w,,¢) of Example 3 having absolute error when y = 1,¢ = 10,7, = —8/9, and
h = —1 for different values of w; and w,.

(W, W) Qg sol. Qcyp sol. Q¢ sol. VIMHP sol. [23] Error = E, Error = E,
(—450, 450) 224.939112 224.939000 224.938855 224939112 9.813%¢ - 16 9.8127e-16
(—400, 400) 199.939313 199.939304 199.939295 199.939316 1.7688e - 15 1.7679%e - 15
(-300, 300) 149.939918 149.939822 149.939800 149.939925 7.4574e—15 7.4570e - 15
(-250, 250) 124.940402 124.940400 124.940398 124.940445 7.4465e - 15 7.4456e - 15
(0, 0) 0.8531256 0.8531119 0.8531108 0.8531260 7.3883e¢ -3 7.3880e -3
(50, 50) 25.07696486 25.07696467 25.07696402 25.07696508 5.7070e-11 5.7004e-11
(100, 100) 50.06964861 50.06964789 50.06964702 50.06964940 1.7965e — 12 1.7953e - 12
(200, 200) 100.0661239 100.0661130 100.0661009 100.0661400 5.6333e—-14 5.6300e - 14
(350, 350) 175.06457142 175.06457103 175.06457100 175.06457300 3.4370e - 15 3.4355e—-15
(500, 500) 250.0639500 250.0635573 250.0634435 250.0639946 5.7707e - 16 5.7700e - 16
Exact Approximate

50 50
" 100100 ¢ ¢ 100100 Wi

(a) (b)

F1GURE 10: Three-dimensional illustration of exact and approximate solution of Example 4 whena = -1, = 1,7, = 48,6 = 0.01, = (1/96),
and y = L.

0.76

0.74

0.72 +

Absolute Error
Q (Wp Wy, O

W, 100 -100 W2

—&— Exact Sol. -- x=09
—<— ABC Sol. -%- x=08
x=1 —+— x=0.7

(a) (b)

FiGURre 11: Three-dimensional illustration of the absolute error and two-dimensional view of multiple fractional orders for Example 4 when
a=-1,8=1,r =48, = (1/96), and ¢ = 0.01.
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Q (W, Wy, 6) = @ (W1, Wy, 6) + Dy (W1, Wy, ) + @y (W, W), 6) + Dy (Wy, W, 0) + -

4

" 144A% (y) T(2x+1)

33
xst

1 ) 5 -5/2
" 28847 (,()(Z(W1 +Wy W, +5)) <r(3x )

For y = 1, we obtained the exact solution of Example 4 as

Q(wl,wz,g):i\/z(wf+w§)+w2+§+5. (111)

Table 4 shows the analytical approximate solutions with
some free parameters that are provided by the proposed
technique. The comparison analysis is conducted with the
VIMHP that predicts the preciseness of the suggested
scheme due to their lower error. The analytical findings are
extremely useful in deciphering the internal components of
acts of nature. The exact and numerical solution for
a=-1,=1,r, =48,¢=0.01,2 = (1/96), and xy=1 is
shown in Figure 10.

Furthermore, the absolute error for the aforementioned
assumptions is depicted in Figure 11(a).

Finally, Figure 11(b) represents the two-dimensional
behavior of exact, approximate by Caputo, and approximate
solutions derived by ABC fractional operators with varying
fractional orders. These solutions have a distinctive char-
acteristic that allows them to interact with other solutions
derived by [23]. The proposed findings have particle-like
geometries in their solutions. The synthesized trajectory is
either a success or a descent from one asymptotic state to the
next. The accuracy of the proposed method can be enhanced
by increasing the recursive terms. O

6. Conclusion

This article investigated the more general integral transform
with the Adomian decomposition method. The Caputo and
ABC fractional derivative operators have been implemented
to deal with the biological population model. Several distinct
solutions have been proposed with the assumptions of
Malthusian law, Verhulst law, and porous media. Various
representations were used to elucidate these solutions, which
clarified the significant properties of the fractional models in
consideration. Without any restrictive assumptions, dis-
cretization, or linearization, the proposed methodology
locates the solutions. Elegance and originality have been
invoked to describe our trajectory. Contrasting proposed
findings to those acquired in earlier scholarly articles
demonstrates the peculiarity of our solutions. The strategy’s
powerful and successful implementation is explored and
validated in order to demonstrate its applicability to addi-
tional nonlinear evolution equations.

! \/Z(wf W) Wy 5+ ﬁw(z(wf W W, 5))_1/2<F(X+1) +

1 o K
(z(w1 +w,+tw, + 5)) <—

27
¢ U—x))
+2y(1 —X)%+(l —x)2>
+3(1 —X)%Jrsxu —X)Z%Jru —X)3> b,
(110)
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