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In this short paper, we consider the conditional regularity for the 3D inhomogeneous incompressible Navier–Stokes equations in
Vishik spaces and give regularity criterion of strong solutions.

1. Introduction

We consider the regularity issue for solutions ðρ, u,ΠÞ:
QT ⟶ℝ ×ℝ3 ×ℝ to 3D inhomogeneous incompressible
Navier–Stokes equations forQT ≔ℝ3 × ½0, TÞ:

∂tρ + u · ∇ρ = 0, ð1Þ

ρut − Δu + ρ u · ∇ð Þu+∇Π = 0,
div u = 0:

ð2Þ

Here, ρ is the density function of flow velocity, u is the
flow velocity, and Π is the pressure. We consider the ini-
tial value problem of (1), which requires initial

ρ x, 0ð Þ = ρ0 xð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈ℝ3:

ð3Þ

There is a very rich literature dedicated to the study of the
above system. In the case of smooth data with no vacuum,
Kazhikov [1] proved that the nonhomogeneous Navier–
Stokes equations have at least one global weak solution in
the energy space. When the initial data may contain vacuum
states, Simon [2] proved the global existence of a weak solu-
tion to the equations of incompressible, viscous, nonhomo-
geneous fluid flow in a bounded domain of two or three
spaces, under the no-slip boundary condition. Choe and
Kim [3] proposed a compatibility condition and investigated

the local existence of strong solutions. More precisely, under
the compatibility condition,

Δu0 −Π0 = ρ1/20 g and div u0 = 0, for a:e:x ∈Ω, ð4Þ

For initial data,

0 ≤ ρ0 ∈ L3/2 ∩ L∞ ∩H1� �
Ωð Þ u0 ∈ H1 ∩H2� �

Ωð Þ, ð5Þ

they proved the local-in-time existence for solutions in the
class

ρ ∈ L∞ 0, T∗ ;H1 Ωð Þ� �
,

ρt ∈ L
∞ 0, T∗ ; L2 Ωð Þ� �

, ð6Þ

∇3u ∈ L2 0, T∗ ; L3/2
� �

,

∇Π ∈ L∞ 0, T∗, L2 Ωð Þ� �
∩ L2 0, T∗ ; L6 ∩W1,3/2 Ωð Þ� �

:

ð7Þ
Here, Ω ⊆ℝ3 is a bounded domain or whole space. After

that, Craig et al. [4] improved the above result to global strong
small solutions. Very recently, without compatibility condi-
tions, for any initial data ðρ0, u0Þ ∈ ðW1,γ ∩ L∞Þ ×H1

0,σ with
γ > 1, Li showed the existence of local strong solution for the
initial-boundary value problem to the nonhomogeneous
incompressible Navier–Stokes equations in the class
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ρ ∈ L∞ 0, T ;W1,γ ∩ L∞
� �

∩ C 0, T½ �, Lγð Þ Ωð Þð Þ,
u ∈ L∞ 0, T ,H1

0,σ Ωð Þ� �
∩ L2 0, T ,H2 Ωð Þ� �

, ρu ∈ C 0, T , L2 Ωð Þ� �
,ffiffi

t
p

u ∈ L∞ 0, T ,H2 Ωð Þ� �
∩ L2 0, T ,W2,6� �

,
ffiffi
t

p
∂tu ∈ L

2 0, T ,H1 Ωð Þ� �
:

ð8Þ

Moreover, if γ ≥ 2, then, the strong solution is unique.
On the other hand, for the regularity issue to system

(1)–(3), Kim [5] proved the following regularity condition:

u ∈ Ls 0, T ; Lp,∞ ℝ3� �� �
, 2
s
+ 3
p
= 1, 3 < p ≤∞: ð9Þ

And Zhou and Fan [6] showed the following regularity
condition:

u ∈ L2/1−r 0, T ,M
:

2,3/r ℝ3� �� �
, with 0 < r < 1: ð10Þ

Here, M:
2,3/rðℝ3Þ stands for the homogeneous Morrey

space (see Appendix).
Before stating our result, we now introduce a Banach

space _V
s
p,σ,θ which is larger than the homogeneous Besov

space; see [7, 8].

Definition 1. Let s ∈ℝ, p, σ ∈ ½1,∞�, θ ∈ ½1, σ�; the Vishik
space _V

s
p,σ,θ is defined by

_V
s
p,σ,θ ℝ3� �

≔ f ∈D′ ℝ3� �
: fk k _V

s
p,σ,θ

<∞
n o

, ð11Þ

with the norm

fk k _V
s
p,σ,θ ℝ3ð Þ ≔ sup

N=1,2,⋯,

∑ jj j<N2jsθ _Δj f
��� ���θ

Lp

� 	1/θ

N1/θ−1/σ , θ ≠∞,

ð12Þ

and if θ =∞, k f k _V
s
p,σ,θðℝ3Þ ≔ k f k _B

0
p,∞ðℝ3Þ:

Here, D′ðℝ3Þ is the dual space of

D ℝ3� �
= f ∈ S ℝ3� �

;Dα f̂ 0ð Þ = 0,∀α ∈ℕ3
n o

: ð13Þ

Motivated by [7, 9], now, we are ready to state our first
main result.

Theorem 2. Let T > 0. Assume that the initial data ðρ0, u0Þ
satisfy the initial condition (5) and the compatibility condi-
tion (4). Let ðρ, uÞ be the corresponding unique local strong
solution to system (1)–(3) with the properties stated in (6).
If additionally for all t ∈ ½0, TÞ

ðt
0
u τð Þk k2p/p−3_V

0
p,σ,θ

dτ <∞, 3 < p ≤∞,σ, θ ∈ 1,∞½ �, ð14Þ

then, the solution ðρ, uÞ can be extended smoothly beyond
time t = T .

Remark 3. As mentioned in [9], we remind that the follow-
ing continuous embeddings hold:

_B
s
p,σ ℝ3� �

= _V
s
p,σ,σ ℝ3� �

⊂ _V
s
p,σ,θ1 ℝ3� �

⊂ _V
s
p,σ,θ2 ℝ3� �

⊂ _V
s
p,σ,1 ℝ3� �

,
ð15Þ

for s ∈ℝ, p, σ ∈ ½1,∞�, and θ1, θ2 ∈ ½1, σ� with θ1 ≥ θ2. For
this reason, (13) is a stronger condition than

ðt
0
u τð Þk k2p/p−3_B

0
p,∞

dτ <∞, 3 < p ≤∞,σ, θ ∈ 1,∞½ �: ð16Þ

Remark 4. By the same calculations as those in [10, 11], for
the initial data ðρ0, u0Þ satisfying that ρ ∈ L6/5ðℝ3Þ, ρ0ju0j2
∈ L1ðℝ3Þ, ρ0u0 ∈ L1ðℝ3Þ, and Ðℝ3ρ0u0 dx ≠ 0, there exists no
global-in-time smooth solution to Cauchy problem (1)–(3).

2. Proof of Theorem 2

We first introduce some notations. Let ðX, k·kÞ be a normed
space. By Lqð0, T ; XÞ, we denote the space of all Bochner
measurable functions φ : ð0, TÞ⟶ X such that

φk kLq 0,T ;Xð Þ ≔
ðT
0

φ tð Þk kqdt
� 	1/q

<∞, 1 ≤ q <∞,

φk kL∞ 0,T ;Xð Þ ≔ sup
t∈ 0,Tð Þ

φ tð Þk k <∞, q =∞:

ð17Þ

Unless specifically mentioned, letter C is used to repre-
sent a generic constant, which may change from line to line.

Proof. By the maximum principle, we note that

sup
0≤t≤T

ρ ·, tð Þk kL∞ ≤ ρ0k kL∞ <∞: ð18Þ

And also, by L2-energy estimate, we know that

sup
0≤t≤T

ρ1/2u ·, tð Þ�� ��2
L2 ℝ3ð Þ

�
+ 2
ðT
0

∇u ·, tð Þk k2L2 ℝ3ð Þ dt ≤ C ρ1/20 u0
�� ��2

L2 ℝ3ð Þ:

ð19Þ

To exclude the pressure term, multiplying ð1:1Þ2 by ut
and using Hölder’s inequality, we get
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1
2
d
dt

∇uk k2L2 +
ð
ℝ3
ρ utj j2 dx ≤

ð
ℝ3

ρ1/2u · ∇u · ρ1/2ut


 

 dx

≤
ð
ℝ3

ρ1/2 〠
j<−N

Δju ∇uk kρ1/2ut












 dx
+
ð
ℝ3

ρ1/2 〠
j=N

j=−N
Δju ∇uk kρ1/2ut












 dx

+
ð
ℝ3

ρ1/2 〠
j>−N

Δju ∇uk kρ1/2ut












 dx
≔ I + II + III,

ð20Þ

where we use the decomposition of u. Let us control each
term sequentially: the term (I):

I ≤ ρ1/2
�� ��

L∞
〠
j<−N

Δju

�����
�����
L∞

∇uk kL2 ρ1/2ut
�� ��

L2

≤ C 〠
j<−N

23/2j uk kL2 ∇uk kL2 ρ1/2ut
�� ��

L2

≤ C2−3/2Nx ρ1/2ut
�� ��

L2
∇uk kL2 ρ1/2ut

�� ��
L2

≤ C2−3N2
uk k2L2 ∇uk k2L2 +

1
32 ρ1/2ut
�� ��2

L2
,

ð21Þ

the term (II):

II ≤ 〠
j=N

j=−N
ρ

1
2Δ ju

��� ���
Lp

∇uk kLp−2/2p ρ1/2ut
�� ��

L2

≤ C 〠
j=N

j=−N
Δ ju
�� ��

Lp
∇uk k1−3/pL2 ∇2u

�� ��3/p
L2

ρ1/2ut
�� ��

L2

≤ CN1−1/σ sup
N=1,2,⋯

∑j=N
j=−N _Δju

��� ���
Lp

N1−1/σ ∇uk k1−3/pL2 ∇2u
�� ��3/p

L2
ρ1/2ut
�� ��

L2

≤ C N1−1/σ sup
N=1,2,⋯

∑j=N
j=−N _Δju

��� ���
Lp

N1−1/σ

0
@

1
A

2

∇uk k2−6/pL2 ∇2u
�� ��6/p

L2
+ 1
32 ρ1/2ut
�� ��

L2

≤ CN uk k2p/p−3_V
0
p,σ,1

∇uk k2L2 +
1
32 ρ1/2ut

�� ��
L2
+ ∇2u
�� ��2

L2

� �
,

ð22Þ

and the term (III):

III ≤ 〠
j>N

ρ1/2Δju
�� ��

L3
∇uk kL6 ρ1/2ut

�� ��
L2

≤ C ∇uk kL6 〠
j>N

21/2 j uk kL2 ρ1/2ut
�� ��

L2

≤ C2−N/2 uk kL2 ∇2u
�� ��

L2
ρ1/2ut
�� ��

L2

≤ 2−N2
uk k2L2 ∇2u

�� ��2
L2
+ 1
32 ρ1/2ut
�� ��2

L2
:

ð23Þ

Summing up the estimate above with the energy esti-
mate, we get

d
dt

ρ1/2u
�� ��2

L2
+ ∇uk k2L2

� �
+
ð
ℝ3

∇uj j2 + ρ utj j2� �
dx

≤ C2−3N2
uk k2L2 ∇uk k2L2 + CN uk k2p/p−3_V

0
p,σ,1

∇uk k2L2

+ C2−N2
uk k2L2 ∇2u

�� ��2
L2
+ 1
16 ∇2u
�� ��2

L2
:

ð24Þ

On the other hand, we note that

∇2u
�� ��2

L2 ℝ3ð Þ ≤ C
ffiffiffi
ρ

p
utk k2L2 ℝ3ð Þ + ρu · ∇uk k2L2 ℝ3ð Þ

� �
≤ C

ffiffiffi
ρ

p
utk k2L2 ℝ3ð Þ + C2−3N2

uk k2L2 ∇uk k2L2
+ C2−N2

uk k2L2 ∇2u
�� ��2

L2
+ CN uk k2p/p−3_V

0
p,σ,1

∇uk k2L2 :
ð25Þ

Collecting (23) and (24), we have

d
dt

ρ1/2u
�� ��2

L2
+ ∇uk k2L2

� �
+
ð
ℝ3

∇uj j2 + ∇2u


 

2 + ρ utj j2

� �
dx

≤ C
ffiffiffi
ρ

p
utk k2L2 ℝ3ð Þ + C2−3N2

uk k2L2 ∇uk k2L2
+ C2−N2

uk k2L2 ∇2u
�� ��2

L2
+ CN uk k2p/p−3_V

0
p,σ,1

∇uk k2L2 :
ð26Þ

Now, choosing N > 0 sufficiently large such that C2−N2

kuk2L2 ≤ 1/128, (indeed, the constant C > 0 is also depending

on kρ1/20 u0k2L2), the estimate (25) becomes

d
dt

ρ1/2u
�� ��2

L2
+ ∇uk k2L2

� �
+
ð
ℝ3

∇uj j2 + ∇2u


 

2 + ρ utj j2

� �
dx

≤ CN uk k2p/p−3_V
0
p,σ,1

∇uk k2L2 :
ð27Þ

By Grönwall’s inequality under assumption (13), we
obtain

ρ1/2u, ∇u ∈ L∞ 0, T ; L2 ℝ3� �� �
,∇u, ∇2u, ρ1/2ut ∈ L2 0, T ; L2 ℝ3� �� �

:

ð28Þ

Lastly, according to the arguments in [6], Lemma 2.3,
differentiating ð1Þ2 with respect to time t and multiplying
the equations by ut , we can obtain

ρ1/2ut ∈ L
∞ 0, T ; L2 ℝ3� �� �

,

∇ut ∈ L
2 0, T ;H1 ℝ3� �� �

:
ð29Þ

This is the desired result, and thus, the proof in Theorem
2 is completed.
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Appendix

Let 1 < p < r < +∞; the homogeneous Morrey space _M
p,r

ðℝ3Þ is the set of functions f ∈ Lplocðℝ3Þ such that

fk k _M
p,r = sup

R>0,x0∈ℝ3
R3/r 1

R3

ð
B x0,Rð Þ

f xð Þj jpdx
 !1/p

< +∞,

ðA:1Þ

where Bðx0, RÞ denotes the ball centered at x0 and with radio
R. It is well known that Lrðℝ3Þ ⊂ Lr,qðℝ3Þ ⊂ _M

p,rðℝ3Þ, where
for r ≤ q ≤ +∞.
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