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Variational inequalities are considered the most significant field in applied mathematics and optimization because of their massive
and vast applications. The current study proposed a novel iterative scheme developed through a fixed-point scheme and
formulation for solving variational inequalities. Modification is done by using the self-adaptive technique that provides the
basis for predicting a new predictor-corrector self-adaptive for solving nonlinear variational inequalities. The motivation of the
presented study is to provide a meaningful extension to existing knowledge through convergence at mild conditions. The
numerical interpretation provided a significant boost to the results.

1. Introduction

Earlier, most of the equilibrium-related queries were
resolved by variational inequalities that are a mathematical
theory. In this regard, Stampacchia [1] is considered a
pioneer who initially introduced variational inequalities in
1964. At the end of 1964, Stampacchia extended his work
by introducing partial differential equations. Since then, this
field has become the most emerging and demanding with
extensive applications in optimization and control, econom-
ics, movements, engineering sciences, and equilibrium prob-
lems. Massive utilization of variational inequalities in applied
sciences made it branched and more generalized to interact
with other fields [2–5], hence proved the novelty and produc-
tivity of variational inequalities. Most of the profound task
for researchers is to work on extensions and generalized
inequalities regarding their applications; consequently, it
gives rise to pure and applied mathematics problems. Modi-
fications in variational inequalities produced advances in
numerical methods [6–10], sensitivity analysis, and the
dynamical system that are efficient in solving mathematics-

related problems. Theory and algorithmic advancements
meet in the theory of variational inequalities, opening up a
brand-new field of application [7, 11, 12]. These issues
necessitate a combination of convex, functional, and
numerical analysis techniques. There are numerous exciting
applications for this fascinating section of applied mathe-
matics in the fields of business, finance, economics, and
the social, as well as the pure and applied sciences (see
[3, 9, 13, 14] and the references therein for applications
and numerical approaches). Such extraordinary progress
is based on the most basic and unidirectional linear and
nonlinear approaches.

A fundamental problem associated with variational
inequalities is the establishment of fast numerical methods.
A projection-type method and its variant solve many opti-
mization problems and are also related to variational
inequalities. Variational inequalities and fixed-point issues
with equivalent effects utilizing projection techniques have
grown in popularity in recent years as a study focus. To
prove the convergence of fixed-point iterative methods,
quantitative knowledge of pseudocontractive and nonlinear
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monotone (accretive) operators combined with Lipschitz
type conditions is required (see [15–17]). The phenomena
of variational inequalities have a significant contribution to
solving the Wiener-Hopf equations. Salient features of
Wiener-Hopf equations and optimization problems in the
presence of variational inequalities are addressed by Shi
[17]. Together with the Wiener-Hopf equation, the projec-
tion method is considered an important technique for
approximating the solution of variational inequality prob-
lems. Constructing an equivalence between fixed-point
problems and variational inequalities is made easier with
the concept of the projection method. Utilizing variational
problems, several conventional improved ways to establish
solutions for open, moving boundary value problems, asym-
metric obstacle, unilateral, even-order, and odd-order prob-
lems could be developed (see [4–7, 11, 15] and the references
therein). An investigation into a new predictor-corrector
self-adaptive strategy for solving nonlinear variational
inequalities under known assumptions is suggested in the
proposed study. It was possible to arrive at this fixed-point
formulation using projection, variational inequalities, and
Wiener-Hopf equations. Additionally, the convergence of
the proposed method is discussed.

2. Formulation and Basic Results

A convex set is denoted by K in H (Hilbert space). We
denote norm and inner by k·k and h·, · i, respectively. We
consider a variational inequality: for general operator T , find
y ∈ K such that

Ty, x − yh i ≥ 0,∀x ∈ K: ð1Þ

The inequality (1) is called the variational inequality (VI)
introduced by Stampacchia [1]. A large number of problems
related to equilibrium, nonsymmetric, physical sciences,
engineering, moving boundary value problem, unified,
obstacle, unilateral contact, and applied sciences can be dis-
cussed via the inequalities (1) [1, 6, 7, 12, 13].

Lemma 1. [13].
For z ∈H, y ∈ K holds for the inequality

y − z, x − yh i ≥ 0,∀x ∈ K , ð2Þ

if and only if

y = PKz, ð3Þ

where PK is the projection of H onto Kðconvex setÞ.

It is also known that the PK is called projection operator,
which is also nonexpansive and holds for the inequality.

PKz − yk k ≤ z − yk k − z − PKzk k: ð4Þ

Lemma 2. If y is a solution of VI (1), then y ∈ K satisfies the
relation

y = PK y − ρTy½ �, ð5Þ

where ρ ≥ 0 is taken as constant and PK is considered the pro-
jection operator H onto K:

From Lemma 2, it is obvious that y is a solution of VI
(1), if and only if y satisfies the residue vector rðy, ρÞ defined
by

r y, ρð Þ = y − PK y − ρTy½ �: ð6Þ

Related to the original inequality (1), we see the Wiener-
Hopf equations (WHE) problem. To be more precise, let
QK = I − PK , where PK is the projection operator and I is
the identity operator. For the operator T : H ⟶H, then
for finding z ∈H, we have

ρTPKz +QKz = 0: ð7Þ

Here, Equation (7) is the Wiener-Hopf equation (WHE),
investigated by Shi [17]. This WHE (7) is considered more
general and gives a unified framework to establish the vari-
ous powerful and efficient iterative methods and numerical
techniques (for the application of the WHE (7), see [17, 18]).

Lemma 3. The inequality (1) has a unique solution y ∈ K , if
and only if z ∈H satisfies the WHE (7), provided

y = PKz, ð8Þ

z = y − ρTy: ð9Þ
Lemma 3 implies that the VI (1) is equivalent to WHE

(7). Noor et al. [8, 18] considers this fixed-point formulation
to establish various iterative schemes for solving the VI and
other optimization and related problems.

3. Main Results and Algorithm

To solve the variational inequality (1), we will use an itera-
tive approach that we are developing in this study. The
relevant results, algorithm, and theory will be established
to make an iterative process for solving the inequality. The
convergence of the new technique will also be provided.

We use the fixed-point formulation and suggest a
predictor-corrector technique for upgrading the solution
for VI.

w = PK y − γTy½ �, for γ > 0, ð10Þ

y = PK w − ρTw½ � = PK PK y − γTy½ � − ρTPK y − γTy½ �½ �:
ð11Þ

Using (6), (8), and (10), the WHE (7) can be written in
the form

0 = y − PK y − ρTy½ � − ρTy + ρTPK y − ρTy½ �
= r y, ρð Þ − ρTy + ρTPK y − ρTy½ �: ð12Þ
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We define the relation

D y, ρð Þ = r y, ρð Þ − ρTy + ρTPK y − ρTy½ �: ð13Þ

It is obvious that y ∈ K is a solution of the VI if and only
if y ∈ K is satisfied with Equation (13).

D y, ρð Þ = 0: ð14Þ

Using (10) and (13), we can rewrite as

w = PK y − γD y, ρð Þ − γTy½ �, ð15Þ

This fact has motivated us to establish the new predictor-
corrector self-adaptive iterative method for solving the VI
(1).

Algorithm 1. Step 1: Give ∈>0, γ > 0, δ ∈ ð0, 1Þ, δ0 ∈ ð0, 1Þ,
μ ∈ ð0, 1Þ, ρ > 0, and y∗ ∈H set n = 0

Step 2: Set ρn = ρ; if krðyn, ρÞk < ϵ, then computation
stops; otherwise, the iteration will continue to find the mn
nonnegative integer, and take ρn = ρμmn which satisfies the
inequality

ρn T ynð Þ − T wnð Þð Þk k ≤ δ r yn, ρnð Þk k, ð16Þ

where

wn = PK yn − γnD yn, ρnð Þ − γnTy
n½ � ð17Þ

Step 3: Compute

d yn, ρnð Þ = r yn, ρnð Þ − ρnT ynð Þ + ρnT PK yn − ρnTy
n½ �ð Þ,
ð18Þ

where

r yn, ρnð Þ = yn − PK yn − ρTyn½ � ð19Þ

Step 4: Get the next iterate

wn = PK yn − γD yn, ρnð Þ − γT ynð Þ½ �, ð20Þ

yn+1 = PK wn − ρTwn½ �, ð21Þ
and then set ρ = ρn/μ, else set ρ = ρn:n = n + 1, and go to

Step 2

We observe that Algorithm 1 is refinement and addition
of the standard procedure. Here, we consider −γDðyn, ρnÞ
− γTðynÞ, the self-adaptive technique, or we can say the
step-size. This technique and procedure are closely related
to the projection residue.

The convergence of the newly established result of
Algorithm 1 is the important part to consider under some
suitable and mild conditions, which is the paper’s main
target and motivation.

Theorem 4. Let real Hilbert space be denoted by H and
T : K ⟶H; we take α as strongly monotone, where β is
Lipschitz continuous mapping on a convex subset K of H:
Let y∗ ∈ K be a solution of VI (1) and let the sequences fyng
be generated by Algorithm 1. If θ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2
p

ð1 + γβÞ
< 1, then the sequences fyng converges to y∗, for

0 < ρ < 2α

β2 : ð22Þ

Proof. Since y∗ is a solution of NVI (1), from Lemma 1, we
have

w∗ = PK y∗ − y∗Ty∗½ �, for γ > 0, ð23Þ

y∗ = PK w∗ − ρTw∗½ �, for ρ > 0: ð24Þ

Applying Algorithm 1, from (19) and (24), we know that
PK is nonexpansive:

yn+1 − y∗
�

�

�

� = PK wn − ρTwn½ � − PK w∗ − ρTw∗½ �k k
≤ wn −w∗ − ρTwn + ρTw∗�k k:

ð25Þ

Since T is considered as strongly monotone and
Lipschitz continuous with constant α and β: From (25), we
have

wn −w∗ − ρ Twn − Tw∗ð Þk k2
= wn −w∗k k2 − 2ρ Twn − Tw∗,wn −w∗h i

+ ρ2 Twn − Tw∗k k2 ≤ wn −w∗k k2
− 2ρα wn −w∗k k2 + ρ2β2 wn −w∗k k2

= 1 − 2ρα + ρ2β2� �

wn −w∗k k2:

ð26Þ

From (25) and (22), we get

yn+1 − y∗
�

�

�

� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2
q

wn −w∗k k: ð27Þ

From (18) and (22), we get

wn −w∗k k = PK yn − γD yn, ρnð Þ − γTyn½ � − PK y∗ − γTy∗½ �k k
≤ yn − γD yn, ρnð Þ − γTyn − y∗ + γTy∗k k
≤ yn − y∗ − γD yn, ρnð Þk k + γ Tyn − Ty∗k k
≤ yn − y∗ − γD yn, ρnð Þk k + γβ yn − y∗k k:

ð28Þ

Consider

yn − y∗ − γD yn, ρnð Þk k2
= yn − y∗k k2 − 2γ yn − y∗,D yn, ρnð Þh i + γ2 D yn, ρnð Þk k2:

ð29Þ
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We use the definition of Dðyn, ρnÞ, and we obtain

yn − y∗ − γD yn, ρnð Þk k ≤ yn − y∗k k: ð30Þ

From (28) and (30), we have

wn −w∗k k ≤ 1 + γβð Þ yn − y∗k k: ð31Þ

From (27) and (31), we get

yn+1 − y∗
�

�

�

� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2
q

1 + γβð Þ yn − y∗k k = θ yn − y∗k k,
ð32Þ

where θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2p

ð1 + γβÞ, since 0 < θ < ,∑∞
n=0θ

n

=∞, thus from (32) and Algorithm 1 for an arbitrarily cho-
sen and consider initial points y0 and yn obtained from
Algorithm 1,which converge strongly to y∗:

4. Numerical Example

Example 1. We take the nonlinear complementarity
problems: for finding y ∈ Rn, we have

y ≥ 0, T yð Þ ≥ 0, y, T yð Þh i = 0: ð33Þ

Here, TðyÞ =D1ðyÞ +D2ðyÞ + q,we considerD1ðyÞas non-
linear part, andD2ðyÞ + qis taken as a linear part, and in
((33)), we take a special case of the VI (1). The matrix D2 =
BtB + C, where B is n × n matrix whose entries we generate
randomly in the interval ð−5,+5Þ, and skew-symmetric matrix
C is considered in the same way. The vector is denoted by q
and is obtained in the interval ð−500,+500Þ. This is distrib-
uted uniformly. For easy problems, we take ð−500,+500Þ
and ð−500,0Þ considered for the hard problem. In D1ðyÞ, the
nonlinear part of TðyÞ, the components are DjðyÞ = dj ∗
arctan ðyjÞ, and dj is a random variable generated in ð0, 1Þ:

For the output of the result, we consider, μ = 2/3, δ = 0:95,
δ0 = 0:95, ρ > 0 and γ = 1:95; the initial guess y0 =
ð0, 0, 0,⋯, 0ÞT . The computation starts with ρ0 = 1 and
stops as soon as krðyn, ρnÞk ≤ 10−7: MATLAB is used for
all codes. Table 1 represents the outcomes of Algorithm 1.

5. Conclusion

We have considered the new technique for solving inequality
(1). We have applied the self-adaptive technique to control
the step size under some mild conditions. Results have been
compared with the published paper. It has been observed
that the number of iterations is reduced by applying the
new suggested method. This is an extension of the previ-
ously known results. This work can be enhanced further
when the operator is pseudomonotone which is considered
a weaker condition when the operator is strongly monoto-
nicity. The numerical results reflect the output of our newly
established algorithms well for the considered problems.

Data Availability

The manuscript included all required data and information
for its implementation.
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