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In this paper, we continue to investigate the convergence analysis of Tseng-type forward-backward-forward algorithms for solving
quasimonotone variational inequalities in Hilbert spaces. We use a self-adaptive technique to update the step sizes without prior
knowledge of the Lipschitz constant of quasimonotone operators. Furthermore, we weaken the sequential weak continuity of
quasimonotone operators to a weaker condition. Under some mild assumptions, we prove that Tseng-type forward-backward-
forward algorithm converges weakly to a solution of quasimonotone variational inequalities.

1. Introduction

Let H be a real Hilbert space endowed with inner product
h·, · i and corresponding norm ∥·∥. Let C be a nonempty
closed and convex subset of H. Let f : H ⟶H be an oper-
ator. Our purpose of this paper is to investigate the following
Stampacchia-type variational inequality (shortly, VIðC, f Þ).

Find u ∈ C such that

f uð Þ, x − uh i ≥ 0, ∀x ∈ C: ð1Þ

Denote the solution set of (1) by SolðC, f Þ.
Variational inequality problem (1) was introduced by

Stampacchia [1] in 1964. Now it is well-known that varia-
tional inequality problem (1) provides a natural, convenient,
and unified framework for the study of a large number of
problems in economics, operation research, and engineering
(see [2–5]). Variational inequality (1) contains, as special
cases, such well-known problems in mathematical program-
ming as systems of nonlinear equations, optimization prob-
lems ([3, 6]), complementarity problems ([7–9], and fixed-
point problems ([10–20]). Many iterative algorithms for
solving variational inequalities and related problems have
been proposed and investigated (see, for example, [1, 6, 9,

16, 21–40]). Among them, one of the influential algorithms
for solving VIðC, f Þ) is the projection-gradient algorithm
([28, 39, 40]) which defines a sequence fukg by

uk+1 = PC uk − λf uk
� �� �

, ∀k ≥ 0, ð2Þ

where PC is the orthogonal projection operator onto C and
λ > 0 is the step size.

The projection-gradient algorithm guarantees the con-
vergence of the sequence fukg defined by (2) if f is strongly
(pseudo-)monotone (see [8, 41]) or f is inverse strongly
monotone (see [3, 42]). However, if f is plain monotone,
then the sequence fukg generated by (2) does not necessarily
converge. Consequently, Korpelevich [43] proposed an
extragradient algorithm which generates a sequence fukg by

u0 ∈H,

vk = PC uk − λf uk
� �� �

,

uk+1 = PC uk − λf vk
� �� �

, ∀k ≥ 0:

8>>>><
>>>>:

ð3Þ
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This algorithm guarantees the convergence of the
sequence fukg defined by (3) if f is pseudomonotone. Since
then, Korpelevich’s algorithm has attracted so much atten-
tion by many scholars, who modified it in several different
forms (see, e.g., [34, 44–47]). Especially, Vuong [31] proved
that Korpelevich’s extragradient method has weak conver-
gence provided that f is sequentially weakly continuous
and pseudomonotone.

A challenging task when devise efficient algorithms for
solving variational inequalities is to avoid to compute the
projection operators at each iteration because the computa-
tion of the projection operator may be very expensive. In this
respect, Tseng [30] modified extragradient algorithm with
the following form:

u0 ∈H,

vk = PC uk − λf uk
� �� �

,

uk+1 = uk + λ f uk
� �

− f vk
� �� �

, ∀k ≥ 0:

8>>>><
>>>>:

ð4Þ

Boţ et al. [48] approach the solution of VIðC, f Þ from a
continuous perspective by means of trajectories generated
by the following dynamical system of forward-backward-
forward type:

u 0ð Þ = u0,
v tð Þ = PC u tð Þ − λf u tð Þð Þð Þ,
_u tð Þ + u tð Þ = v tð Þ + λ f u tð Þð Þ − f v tð Þð Þð Þ,

8>><
>>: ð5Þ

where λ > 0 and u0 ∈H.
Note that (5) has its roots and the existence and unique-

ness of the trajectory x ∈ C1ð½0,+∞Þ,HÞ generated by (5) has
been obtained (see [49]). The explicit time discretization of
the dynamical system (5) yields the following Tseng-type
forward-backward-forward algorithm:

u0 ∈H,

vk = PC uk − λf uk
� �� �

,

uk+1 = μk vk + λ f uk
� �

− vk
� ��� �

+ 1 − μkð Þuk, ∀k ≥ 0:

8>>>><
>>>>:

ð6Þ

Bot et al. ([48]) proved that the sequence fukg generated
by (6) converges weakly to an element in SolðC, f Þ provided
f is pseudomonotone and sequentially weakly continuous.
On the other hand, for solving (1) and related problems,
some self-techniques have been used to relax the step size
without prior knowledge of the Lipschitz constant of the
operator f (see [50–53]).

Let SoldðC, f Þ be the solution set of the dual variational
inequality of (1), that is,

Sold C, fð Þ≔ u ∈ C ∣ f xð Þ, x − uh i ≥ 0,∀x ∈ Cf g: ð7Þ

Note that SoldðC, f Þ is closed convex. If C is convex and
f is continuous, then SoldðC, f Þ ⊂ SolðC, f Þ.

To prove the convergence of the sequence fukg, a com-
mon assumption SolðC, f Þ ⊂ SoldðC, f Þ has been used, that
is,

f xð Þ, x − uh i ≥ 0, ∀u ∈ Sol C, fð Þ, x ∈ C, ð8Þ

which is a direct consequence of the pseudomonotonicity of
f . But this conclusion (that is, SolðC, f Þ ⊂ SoldðC, f Þ) is false,
if f is quasimonotone.

In this paper, we introduce a self-adaptive Tseng-type
forward-backward-forward algorithm to solve quasimono-
tone variational inequalities (1). The algorithm is designed
such that the step sizes are dynamically chosen and its con-
vergence is guaranteed without prior knowledge of the
Lipschitz constant of f . Moreover, we replace the sequential
weak continuity imposed on f by a weaker condition. We
show that the proposed algorithm converges weakly to a
solution of quasimonotone variational inequalities under
some additional conditions.

2. Preliminaries

Let C be a nonempty convex and closed subset of a real Hil-
bert space H. Use “⇀ ” and “⟶” to denote weak conver-
gence and strong convergence, respectively. Let
f : H ⟶H be an operator. Recall that f is said to be

(i) strongly monotone if there exists a positive constant
α such that

f uð Þ − f vð Þ, u − vh i ≥ α∥u − v∥2, ∀u, v ∈H ð9Þ

(ii) α-inverse strongly monotone if there exists a posi-
tive constant α such that

f uð Þ − f vð Þ, u − vh i ≥ α∥f uð Þ − f vð Þ∥2, ∀u, v ∈H ð10Þ

(iii) monotone if

f uð Þ − f vð Þ, u − vh i ≥ 0, ∀u, v ∈H ð11Þ

(iv) pseudomonotone if

f vð Þ, u − vh i ≥ 0 implies f uð Þ, u − vh i ≥ 0, ∀u, v ∈H ð12Þ

(v) quasimonotone if

f vð Þ, u − vh i > 0 implies f uð Þ, u − vh i ≥ 0, ∀u, v ∈H ð13Þ

It is easy to see that strongmonotonicity⇒monotonicity
⇒ pseudomonotonicity⇒ quasimonotonicity.

But the reverse assertions are not true in general.
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Example 1 (see [50]). Let H =ℝ4 and C = fðx1, x2, x3, x4ÞT
∈ℝ4 : x1 − x2 − x3 ≥ 1g. Let f : C⟶ℝ4 be defined by f
ðxÞ = ð∥x∥2 + 2Þu for all x ∈ C, where u = ð1,−1,−1, 0ÞT . Then,
f is pseudomonotone on C. But f is not monotone on C.

Example 2 (see [33]). The function f : ℝ⟶ℝ defined by
f ðxÞ = x2 is quasimonotone on ℝ, but not pseudomonotone
on ℝ.

An operator f : H ⟶H is said to be η-Lipschitz contin-
uous if there exists a positive constant η such that

f uð Þ − f vð Þk k ≤ η u − vk k, ∀u, v ∈H: ð14Þ

If η = 1, then f is said to be nonexpansive.
An operator f : H ⟶H is said to be sequentially

weakly continuous if for given sequence fukg: uk ⇀ u
implies that f ðukÞ⇀ f ðuÞ.

For ∀x ∈H, there exists a unique point in C, denoted by
PCðxÞ satisfying

∥x − PC xð Þ∥ ≤ ∥y − x∥, ∀y ∈ C: ð15Þ

Moreover, PC has the following property:

x − PC xð Þ, y − PC xð Þh i ≤ 0, ∀x ∈H,∀y ∈ C: ð16Þ

3. Main Results

In this section, we present our main results.
Let H be a real Hilbert space and C ⊂H a nonempty

closed convex set. Assume that the following conditions
are satisfied:

(C1) The operator f is quasimonotone on H.
(C2) The operator f is η-Lipschitz continuous on H:

(C3) SoldðC, f Þ ≠∅ and fu ∈ C : f ðuÞ = 0g \ SoldðC, f Þ is
a finite set.

Assume that the operator f possesses the following prop-
erty: for any given sequence fukg ⊂H,

uk ⇀ u† ∈H,

liminf
k⟶+∞

f uk
� ���� ��� = 0

9>>=
>>;imply that f u†

� �
= 0: ð17Þ

Remark 1. If the operator f is sequentially weakly continu-
ous, then f satisfies the above property (17).

Next, we propose a self-adaptive Tseng-type forward-
backward-forward algorithm for solving the quasimonotone
variational inequality (1).

Remark 2. If vk = uk, that is, uk = PCðuk − λk f ðukÞÞ, then uk

∈ SolðC, f Þ. In what follows, we assume that vk ≠ uk. In this
case, we can obtain an infinite sequence fukg generated by
Algorithm 1.

Remark 3. According to the definition (3.4) of fλkg, λk is
monotonically decreasing and therefore converges. Set
limk⟶+∞λk = ~λ. It is obvious that min fδ/η, λ0g ≤ ~λ ≤ λ0.

Next, we prove the convergence of the sequence fukg
generated by Algorithm 1.

Theorem 4. Suppose that the conditions (C1)-(C3) and (17)
are satisfied. Then, the sequence fukg generated by Algo-
rithm 1 converges weakly to a point in SolðC, f Þ.

Proof. Let x∗ ∈ SoldðC, f Þ. Set wk = vk + λkð f ðukÞ − f ðvkÞÞ,∀
k ≥ 0. Then, we have

wk − x∗
��� ���2 = vk + λk f uk

� �
− f vk
� �� �

− x∗
��� ���2

= vk − x∗
��� ���2 + 2λk f uk

� �
− f vk
� �

, vk − x∗
D E

+ λ2k f uk
� �

− f vk
� ���� ���2 = uk − x∗

��� ���2
+ vk − uk
��� ���2 + 2 vk − uk, uk − x∗

D E
+ 2λk f uk

� �
− f vk
� �

, vk − x∗
D E

+ λ2k f uk
� �

− f vk
� ���� ���2 = uk − x∗

��� ���2
− vk − uk
��� ���2 + 2 vk − uk, vk − x∗

D E
+ 2λk f uk

� �
− f vk
� �

, vk − x∗
D E

+ λ2k f uk
� �

− f vk
� ���� ���2:

ð18Þ

Since x∗ ∈ SoldðC, f Þ ⊂ C, from (16) and (3.2), we achieve
huk − λk f ðukÞ − vk, x∗ − vki ≤ 0. It follows that

uk − vk, x∗ − vk
D E

≤ λk f uk
� �

, x∗ − vk
D E

: ð19Þ

Using vk ∈ C and x∗ ∈ SoldðC, f Þ, we obtain

f vk
� �

, vk − x∗
D E

≥ 0: ð20Þ

By (18), (19), and (20), we receive

wk − x∗
��� ���2 ≤ uk − x∗

��� ���2 − vk − uk
��� ���2 + 2λk f uk

� �
, x∗ − vk

D E
+ 2λk f uk

� �
− f vk
� �

, vk − x∗
D E

+ λ2k f uk
� �

− f vk
� ���� ���2
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= uk − x∗
��� ���2− vk − uk

��� ���2 + 2λk f vk
� �

, x∗ − vk
D E

+ λ2k f uk
� �

− f vk
� ���� ���2

≤ uk − x∗
��� ���2 − vk − uk

��� ���2 + λ2k f uk
� �

− f vk
� ���� ���2:

ð21Þ

From (3.4), we have k f ðukÞ − f ðvkÞk ≤ δ/λk+1kuk − vkk.
This together with (21) implies that

wk − x∗
��� ���2 ≤ uk − x∗

��� ���2 − 1 − δ2
λ2k
λ2k+1

 !
vk − uk
��� ���2: ð22Þ

Note that limk⟶+∞λk/λk+1 = 1. So, there exists an inte-
ger K such that ð1 − δ2ðλ2k/λ2k+1ÞÞ > 0 when k ≥ K . Hence,
from (22), we deduce ∥wk − x∗∥ ≤ ∥uk − x∗∥ when k ≥ K .

In terms of (3.3), we get

uk+1 − x∗
��� ��� = μk wk − x∗

� �
+ 1 − μkð Þ uk − x∗

� ���� ���
≤ μk wk − x∗

��� ��� + 1 − μkð Þ uk − x∗
��� ���

≤ uk − x∗
��� ���:

ð23Þ

Thus, the sequence f∥uk − x∗∥g is monotonically
decreasing and limk⟶+∞∥uk − x∗∥ exists. So, the sequence
fukg is bounded.

By virtue of (22) and (23), we have

∥uk+1 − x∗∥2 ≤ μk∥w
k − x∗∥2 + 1 − μkð Þ∥uk − x∗∥2

≤ ∥uk − x∗∥2 − μk 1 − δ2
λ2k
λ2k+1

 !
∥vk − uk∥2:

ð24Þ

It follows that

μk 1 − δ2
λ2k
λ2k+1

 !
∥vk − uk∥2 ≤ ∥uk − x∗∥2−∥uk+1 − x∗∥2:

ð25Þ

Since limk⟶+∞ð1 − δ2ðλ2k/λ2k+1ÞÞ = 1 − δ2 > 0,
liminf k⟶+∞μk > 0, and limk⟶+∞∥uk − x∗∥ exist, it follows
from (25) that

lim
k⟶+∞

vk − uk
��� ��� = 0: ð26Þ

Since f is Lipschitz, from (26), we obtain

lim
k⟶+∞

f vk
� �

− f uk
� ���� ��� = 0: ð27Þ

Thanks to (3.3), we derive

uk+1 − uk
��� ��� ≤ μk uk − vk

��� ��� + μkλk f uk
� �

− f vk
� ���� ���:

ð28Þ

Based on (26)–(28), we deduce

lim
k⟶+∞

uk+1 − uk
��� ��� = 0: ð29Þ

According to (16) and (3.2), we have

uk − λk f uk
� �

− vk, x − vk
D E

≤ 0, ∀x ∈ C: ð30Þ

It follows that

1
λk

uk − vk, x − vk
D E

+ f uk
� �

, vk − uk
D E

≤ f uk
� �

, x − uk
D E

, ∀x ∈ C:
ð31Þ

Since fukg is bounded, by (26), fvkg is also bounded. At
the same time, using the Lipschitz continuity of f , f f ðukg is
bounded. Combining (26), (27), and (31), we attain

liminf
k⟶+∞

f uk
� �

, x − uk
D E

≥ 0, ∀x ∈ C: ð32Þ

Since fukg is bounded, there exists a subsequence fukig
of fukg such that uki ⇀ û ∈ C as i⟶ +∞. By virtue of

Step 1. Let uk and λk be given. Compute
vk = Pcðuk − λk f ðukÞÞ:

Criterion: if vk = uk, then stop.
Step 2. Compute

uk+1 = μkðvk + λkð f ðukÞ − f ðvkÞÞÞ + ð1 − μkÞuk,

λk+1 =
min fðδ∥uk − vk∥/∥f ðukÞ − f ðvkÞ∥Þ, λkg, f ðukÞ ≠ f ðvkÞ,
λk, else,

(

update k to k + 1 and go to Step 1.

Algorithm 1: Let λ0 > 0 and δ ∈ ð0, 1Þ. Select the starting point u0 ∈H and the sequence of relaxation parameters fμkgk≥0 ⊂ ð0, 1� satisfying
liminf k⟶+∞μk > 0. Set k = 0.
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(32), we have

liminf
i⟶+∞

f uki
� �

, x − uki
D E

≥ 0, ∀x ∈ C: ð33Þ

Next, we consider two possible cases.
Case 1. liminf i⟶+∞∥f ðukiÞ∥ = 0. Since uki ⇀ û and f sat-

isfies (17), we deduce that f ðûÞ = 0.
Case 2. liminf i⟶+∞∥f ðukiÞ∥>0: In this case, ∃I0 > 0 such

that f ðukiÞ ≠ 0 for all i ≥ I0. From (33), we obtain

liminf
i⟶+∞

f uki
� �

∥f uki
� �

∥
, x − uki

* +
≥ 0, ∀x ∈ C: ð34Þ

Choose a positive strictly decreasing sequence fεjg such
that εj ⟶ 0 as j⟶ +∞. Thanks to (34), there exists a
strictly increasing subsequence fkijg with the property that

kij ≥ I0 and

f ukij
� �
f ukij
� ���� ��� , x − ukij

* +
+ εj > 0, ∀j ≥ 0: ð35Þ

It follows that

f ukij
� �

, x − ukij
D E

+ εj f ukij
� ���� ��� > 0, ∀j ≥ 0: ð36Þ

Set yj = f ðukij Þ/∥f ðukij Þ∥2 for all j ≥ 0. Thus, we have

h f ðukij Þ, yji = 1 for each j ≥ 0. From (36), we deduce

f ukij
� �

, x + εj f ukij
� ���� ���yj − ukij

D E
> 0, ∀j ≥ 0: ð37Þ

Since f is quasimonotone on H, by (37), we get

f x + εj f ukij
� ���� ���yj� �

, x + εj f ukij
� ���� ���yj − ukij

D E
≥ 0, ∀j ≥ 0:

ð38Þ

Observe that lim j⟶+∞εj∥f ðukij Þ∥∥yj∥ = limj⟶+∞εj = 0.
Since f is Lipschitz continuous, f ðx + εj∥f ðukij Þ∥yjÞ⟶ f
ðxÞ as j⟶ +∞. Thus, taking the limit as j⟶ +∞ in
(38), we obtain that

f xð Þ, x − ûh i ≥ 0, ∀x ∈ C: ð39Þ

So, û ∈ SoldðC, f Þ.
Next, we prove fukg has finite weak cluster points in

SolðC, f Þ. First, we show that fukg has at most one weak
cluster point in SoldðC, f Þ. Let û ∈ SoldðC, f Þ and ~u ∈ Soldð
C, f Þ be two distinct weak cluster points of fukg. There exist
two sequences fukig and fukjg of fukg satisfying uki ⇀ û as

i⟶ +∞ and ukj ⇀ ~u as j⟶ +∞. Note that for all k ≥ 0,

2 uk, û − ~u
D E

= ∥uk − ~u∥2−∥uk − û∥2+∥û∥2−∥~u∥2: ð40Þ

Since limk⟶+∞∥uk − û∥ and limk⟶+∞∥uk − ~u∥ exist, by
(40), we conclude that limk⟶+∞huk, û − ~ui exists, denoted
by l. Thus,

l = lim
i⟶+∞

uki , û − ~u
D E

= lim
j⟶+∞

ukj , û − ~u
D E

: ð41Þ

Since uki ⇀ û and ukj ⇀ ~u, from (41), we have

l = û, û − ~uh i = ~u, û − ~uh i, ð42Þ

which implies that ∥û − ~u∥2 = 0 and hence, û = ~u. Therefore,
fukg has at most one weak cluster point in SoldðC, f Þ. By the
condition (C3), fu ∈ C, f ðuÞ = 0g \ SoldðC, f Þ is a finite set.
Therefore, fukg has finite weak cluster points in SolðC, f Þ.

Let p1, p2,⋯, pt be the finite weak cluster points of fukg
in SolðC, f Þ. Set I = f1, 2,⋯,tg and

σ =min ∥pn − pm∥
3 , n,m ∈ I, n ≠m

� �
: ð43Þ

Taking any weak cluster point pn, n ∈ I, there exists a

subsequence fukin g of fukg such that ukin ⇀ pn as i⟶ +∞.
Then, we have

lim
i⟶+∞

ukin ,
pn − pm
∥pn − pm∥

	 

= pn,

pn − pm
∥pn − pm∥

	 

, ∀m ∈ I:

ð44Þ

Observe that ∀m ≠ n,

pn,
pn − pm
∥pn − pm∥

	 

= ∥pn − pm∥

2 + ∥pn∥
2−∥pm∥

2

2∥pn − pm∥

> σ + ∥pn∥
2−∥pm∥

2

2∥pn − pm∥
:

ð45Þ

According to (44) and (45), there exists a large enough
positive integer nðiÞ such that when i ≥ nðiÞ,

ukin ∈ x : x, pn − pm
∥pn − pm∥

	 

> σ + ∥pn∥

2−∥pm∥
2

2∥pn − pm∥

� �
, m ∈ I,m ≠ n:

ð46Þ

Set

Rn =
\t

m=1,m≠n
x : x, pn − pm

∥pn − pm∥

	 

> σ + ∥pn∥

2−∥pm∥
2

2∥pn − pm∥

� �
:

ð47Þ

5Journal of Function Spaces



In the light of (46) and (47), we have ukin ∈ Rn when i ≥
max fnðiÞ, n ∈ Ig.

Now, we show that uk ∈
St

n=1Rn for a large enough k.
Assume that there exists a subsequence fukjg of fukg such
that ukj ∉

St
n=1Rn. By the boundedness of fukjg, there exists

a subsequence of fukjg convergent weakly to p†. Without
loss of generality, we still denote the subsequence as fukjg.
According to assumptions, ukj ∉

St
n=1Rn, so ukj ∉ Rn for

any n ∈ I. Therefore, there exists a subsequence fukjs g of
fukjg such that ∀s ≥ 0,

ukjs ∉ x : x, pn − pm
∥pn − pm∥

	 

> σ + ∥pn∥

2−∥pm∥
2

2∥pn − pm∥

� �
, m ∈ I,m ≠ n:

ð48Þ

Thus,

p† ∉ x : x, pn − pm
∥pn − pm∥

	 

> σ + ∥pn∥

2−∥pm∥
2

2∥pn − pm∥

� �
, m ∈ I,m ≠ n,

ð49Þ

which implies that p† ≠ pn, n ∈ I. This is impossible. So, for
a large enough positive integer K0, u

k ∈
St

n=1Rn when k
≥ K0.

Next, we show that fukg has a unique weak cluster point
in SolðC, f Þ. First, from (29), there exists a positive integer
K1 ≥ K0 such that ∥uk+1 − uk∥<σ for all k ≥ K1. Assume that
fukg has at least two weak cluster points in SolðC, f Þ. Then,
there exists K̂ ≥ K1 such that uK̂ ∈ Rn and uK̂+1 ∈ Rm, where
n,m ∈ I and t ≥ 2, that is,

uK̂ ∈ Rn =
\t

m=1,m≠n
x : x, pn − pm

∥pn − pm∥

	 

> σ + ∥pn∥

2−∥pm∥
2

2∥pn − pm∥

� �
,

uK̂+1 ∈ Rm =
\t

n=1,n≠m
x : x, pm − pn

∥pm − pn∥

	 

> σ + ∥pm∥

2−∥pn∥
2

2∥pm − pn∥

� �
:

ð50Þ

Therefore,

uK̂ , pn − pm
∥pn − pm∥

	 

> σ + ∥pn∥

2−∥pm∥
2

2∥pn − pm∥
, ð51Þ

uK̂+1, pm − pn
∥pm − pn∥

	 

> σ + ∥pm∥

2−∥pn∥
2

2∥pm − pn∥
: ð52Þ

Combining (51) and (52), we achieve

uK̂ − uK̂+1, pn − pm
∥pn − pm∥

	 

> 2σ: ð53Þ

At the same time, we have

uK̂+1 − uK̂
��� ��� < σ: ð54Þ

Based on (53) and (54), we deduce

2σ < uK̂ − uK̂+1, pn − pm
pn − pmk k

	 

≤ uK̂ − uK̂+1
��� ��� < σ: ð55Þ

This leads to a contradiction. Thus, fukg has a unique
weak cluster point in SolðC, f Þ. Therefore, fukg converges
weakly to a point in SolðC, f Þ. This completes the proof.☐

Corollary 5. Suppose that the conditions (C1)-(C3) and (17)
are satisfied. Then, the sequence fukg generated by Algo-
rithm 2 converges weakly to a point in SolðC, f Þ.

Remark 6. If f is pseudomonotone, then Theorem 4 and
Corollary 5 hold.

Remark 7. If the operator f is sequentially weakly continu-
ous and also satisfies conditions (C1)-(C3), then Theorem
4 and Corollary 5 still hold.

Remark 8. Our main purpose is to solve (1); hence, a natural
condition is SolðC, fÞ ≠∅. In order to prove our main theo-
rem, we assume that SoldðC, f Þ ≠∅. Note that SoldðC, f Þ ⊂
SolðC, f Þ. This means that even if SolðC, f Þ ≠∅, SoldðC, f Þ
≠∅ does not necessarily hold. A question is under what

Step 1. Let uk and λk be given. Compute
vk = PCðuk − λk f ðukÞÞ:
Criterion: if vk = uk, then stop.
Step 2. Compute
uk+1 = vk + λkð f ðukÞ − f ðvkÞÞ,
λk+1 =

min fðδ∥uk − vk∥/∥f ðukÞ − f ðvkÞ∥Þ, λkg, f ðukÞ ≠ f ðvkÞ,
λk, else,

(

update k to k + 1 and go to Step 1.

Algorithm 2: Let λ0 > 0 and δ ∈ ð0, 1Þ. Select the starting point u0 ∈H. Set k = 0.
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conditions SoldðC, f Þ ≠∅ holds. In fact, we have the follow-
ing results:

(i) If f is pseudomonotone on C and SolðC, f Þ ≠∅,
then SoldðC, f Þ ≠∅

(ii) If f is quasimonotone on C, int C ≠∅ and fu ∣ f ðuÞ
= 0g ≠∅, then SoldðC, f Þ ≠∅ (see [35])
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