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The fractional-stochastic Drinfel’d-Sokolov-Wilson equations (FSDSWEs) perturbed by the multiplicative Wiener process are
studied. The mapping method is used to obtain rational, hyperbolic, and elliptic stochastic solutions for FSDSWEs. Due to the
importance of FSDSWEs in describing the propagation of shallow water waves, the derived solutions are significantly more
useful and effective in understanding various important challenging physical phenomena. In addition, we use the MATLAB
Package to generate 3D graphs for specific FSDSWE solutions in order to discuss the impact of fractional order and the

Wiener process on the solutions of FSDSWEs.

1. Introduction

Partial differential equations (PDEs) have grown in popularity
because of their broad spectrum of applications in nonlinear
science including engineering [1], civil engineering [2], quan-
tum mechanics [3], soil mechanics [4], statistical mechanics
[5], population ecology [6], economics [7], and biology [8, 9].
Therefore, finding exact solutions is critical for a better under-
standing of nonlinear phenomena. To acquire exact solutions
to these equations, a variety of methods such as Darboux trans-
formation [10], Hirota’s function [11], sine-cosine [12, 13],
(G'/G)-expansion [14-16], perturbation [17, 18], Riccati-
Bernoulli sub-ODE [19], exp (—¢(¢))-expansion [20, 21],
tanh-sech [22, 23], Jacobi elliptic function [24, 25], and Ric-
cati equation method [26] have been used.

Recently, fractional derivatives are used to characterize a
wide range of physical phenomena in mathematical biology,
engineering disciplines, electromagnetic theory, signal
processing, and other scientific research. These new
fractional-order models are better than the previously used
integer-order models because fractional-order derivatives
and integrals allow for the modeling of distinct substances’
memory and hereditary capabilities.

The conformable fractional derivative (CFD) helps us to
develop an idea of how physical phenomena act. The CFD is
very useful for modelling a variety of physical issues since
differential equations with CFD are simpler to solve numer-
ically than those with Caputo fractional derivative or the
Riemann-Liouville. Currently, authors are focusing on frac-
tional calculus and creating new operators such the Caputo
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derivatives. The conformable fractional operator [27-30]
eliminates some of the restrictions of current fractional
operators and provides standard calculus properties such
as the derivative of the quotient of two functions, the prod-
uct of two functions, Rolle’s theorem, the chain rule, and the
mean value theorem. Here, we use CFD stated in [29].
Therefore, let us state the definition of CFD and its proper-
ties as follows [29]:
The CFD of ¢ : R* — R of order « is defined as

DEg(x) = lim er+er) —e0)
; .

e—0 Fo

(1)

The CFD satisfies

(1) Dflagp(y) + by (y)] = aD5e(y) + bDSy(y), a, b€ R
(2) DJ[C] =

Poy)(y) =
(4) ID"‘[xY] vy % yeR

(5) Dyy(y) =y"*(dyldy)

On the other hand, in the practically physical system,
random perturbations emerge from a variety of natural
sources. They cannot be avoided, because noise can cause
statistical properties and significant phenomena. Conse-
quently, stochastic differential equations emerged and they
started to play a major role in modeling phenomena in
oceanography, physics, biology, chemistry, atmosphere, fluid
mechanics, and other fields.

Therefore, we consider in this paper the following
fractional-stochastic Drinfel’d-Sokolov-Wilson equations
(FSDSWEs):

0, C is a constant

(3) Dy( Xy ey ()

d¥ + [y, PD;D|dt = oWdp, (2)

do + [y,D5,. @ + 7, ¥YDiD + y,ODSY]dt = o®df, (3)

XXX

where y, for k= 1,2, 3,4 are nonzero parameters. D%, for 0
<a<l1, is CFD [29]. B(t) is a standard Wiener process
(SWP), and o is the noise strength.

The Drinfel’d-Sokolov-Wilson equations (DSWEs) ((2)
and (3)), with a=1 and o =0, evolved from shallow water
wave models initially given by Drinfel’d and Sokolov [31,
32] and later refined by Wilson [33]. Due to the importance
of DSWEs, several authors have created analytical solutions
for this system using a variety of methods, including exp-
function method [34], truncated Painlevé method [35], F
— expansion method [36], Bicklund transformation of Ric-
cati equation [37], homotopy analysis method [38], and tanh
and extended tanh methods [39]. Furthermore, a few authors
obtained exact solutions for fractional DSW using various
methods such as Jacobi elliptical function method [40] and
complete discrimination system for polynomial method [41],
while the analytical fractional-stochastic ~solutions of
FSDSWEs ((2) and (3)) have never been obtained before.
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Our aim of this paper is to attain a wide range of solu-
tions including rational, hyperbolic, and elliptic functions
for FSDSWEs ((2) and (3)) by using the mapping method.
This is the first study to obtain exact solutions to FSDSWEs
with combination of a stochastic term and fractional deriva-
tive. Also, we utilize MATLAB to generate 3D diagrams for a
number of the FSDSWEs ((2) and (3)) developed in this
study to demonstrate how the SWP affects these solutions.

This paper will be formatted as follows. In Section 2, the
mapping method is used to generate analytic solutions for
FSDSWEs ((2) and (3)). In Section 3, we investigate the
effect of the SWP and fractional order on the derived solu-
tions. Section 4 presents the paper’s conclusion.

2. Analytical Solutions of FSDSWEs
First, let us derive the wave equation of FSDSWE:s as follows.
2.1. Wave Equation for FSDSWEs. Let us apply the following
wave transformation
W (x, £) = y(w)el PO, (i, 1)
_ (‘u)e(aﬁ(t)—(llz)ﬂzt)) u (4)

—

= —x"+ wt,

$2

to attain the wave equation of FSDSWEs ((2) and (3)), where
y and ¢ are real deterministic functions and w is a constant.
Putting Equation (4) into Equations (2) and (3) and using

- [ww dt + awdﬁ} e(FPO-(12)%)
do = [w(p'dt+a(pd/3}e ~(172)0%%)
ID“(D @ e(rfﬁ —(172) azt) (5)
Dag/:wle(aﬁ ~(1/2) azt)
D @ = go' He(aﬁ(t)—(I/Z)ozt))
we attain
w‘//, + yl¢¢;e(aﬁ(r)-(1/z)azt) =0, (6)

(oB(1)=(112)0%t) )-(12)0%t) _ 0.

(7)

Taking expectation E(-) for Equations (6) and (7), we get

wp' +y,0"" +y,y9’e +yy el

wy' + yl(P(P/e—(I/Z)o'ztlE (eaﬁ(t>) =0, (8)

wp' +7,9' +[y3w +Y4<PH “2‘”[E("’3“>)=
(9)
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Since f(t) is a normal distribution, then E(e’P")) =
@)t Now, Equations (8) and (9) take the type

wy' +y,99" =0, (10)

wp' +y,0"" +yy9" +y,0p" =0. (11)

Integrating Equation (10) and putting the constants of
integration equal zero, we get

Y1

w

14 9’ +C, (12)

where C is the integral constant. Plugging Equation (12) into
(11) and using Equation (10), we have

Yz(P’” _ [Vl)’a + Y1V

1D I s Cple’ =0 (13)

Integrating Equation (13), we obtain

9" —4¢’ +0,9=0, (14)
where
¢ = Y1V + Y1V4 ,
6y,0  3y,w
(15)
PRSI Y
? Y2 Y2

2.2. The Mapping Method Description. Here, let us describe
the mapping method stated in [42]. Assuming the solutions
of Equation (14) have the form

o)=Y ax’ (16)

where N is fixed by balancing the linear term of the highest
order derivative (p” with nonlinear term ¢?, a;, for i=1,2,
---ay, are constants to be calculated and y satisfies the first
kind of elliptic equation

1
X =\apxtax - (17)

where p, g, and r are real parameters.

We notice that Equation (17) has a variety of solutions
depending on p, g, and r as follows (Table 1).

sn(u) = sn(p, m), cn(u) = en(p, m), dn(u, m) = dn(u, m)
are the Jacobi elliptic functions (JEFs) for 0 < m < 1. When
m — 1, the JEFs are converted into the hyperbolic func-
tions shown below:

cn(u) — sech (y), sn(u) — tanh (u), cs(u) — csch (u),

ds — csch (u),

2.3. Solutions of FSDSWEs. Now, let us determine the
parameter N by balancing ¢'’ with ¢* in Equation (14) as

N+2=3N=—N-=1. (19)

Rewriting Equation (17) with N=1 as
Q=ay+ax. (20)
Differentiating Equation (20) twice, we have, by using (17),
o' =aqy +apx’. (21)

Substituting Equations (20) and (21) into Equation (14),
we obtain

(ap- Ela?))f —3agal, x* + (a9 - 3¢,ala, + Ga,)x - (Elag —£,ay) =0.
(22)

dn(u) — sech (u).

Putting each coefficient of y* for k=0,1,2,3 equal
zero, we get

a,p- Kla? =0,
3ayail, =0,
0h (23)
a,q- 3{’,1a§a1 +£,a, =0,
Elag -4£,a,=0.
Solving these equations, we obtain
a,=0,a,
P
=%/ 49 —£,. (24)
1
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TasLE 1: All possible solutions for Equation (17) for different values of p, g, and r.
Case p q r X(#)
1 2m? -(1+m?) 1 sn(p)
2 2 2m’ -1 -m*(1-m?) ds(u)
3 2 2 -m? (1- mz) cs(p)
4 -2m? 2m? -1 (1- mz) cn(u)
5 -2 2-m? (m2 -1) dn(u)
6 m? (m*-2) 1 sn(p)
2 2 4 1+dn(p)
7 m? (m2 - 2) m? sn(p)
2 2 4 1+dn(p)
- 2 2)2
38 -1 (m® +1) -(1-m?) men(p) = dn(u)
2 2 4
9 m? -1 (m*+1) (m*-1) dn(y)
2 2 4 1£sm(p)
y 1-m? (1- ) (1- ) cn(p)
2 2 4 1 +sn(u)
11 (1-m)’ (1-m?)’ 1 sn(u)
2 2 4 dn+cn(p)
c
12 2 0 0 -
IS
13 0 1 0 ce
TaBLE 2: All possible solutions for wave Equation (14) when p > 0.
Case p q r X(#) P#)
1 2m? -(1+m?) 1 sn(p) * egsn(pt)
1
2 2 2m? -1 -m’(1-m?) ds(u) i\/eids(y)
1
3 2 2-m? (1-m?) es() s [Pestu)
1
i (m?-2) : sn(u) psn(y)
4 5 5 1/4 or m~/4 = dn(p) + Em
s 1-m? (1-m?) (1-m?) cn(p) L [P ()
2 2 4 L sn(u) € 1+sn(p)
6 (1- m2)2 (1- mz)2 1 sn(y) 4 [P “)
2 2 4 dn+cn(p) £ dn+cn(p)
Cc p c
7 2 0 0 - [ ——
; e
Hence, the solution of Equation (14) is First set: if p > 0 and €, > 0, then the solutions ¢(¢), from

Table 1, of wave Equation (14) are as follows (Table 2).

If m — 1, then Table 2 degenerates to Table 3.

Now, using Table 2 (or Table 3 when m — 1) and
Equations (25) and (12), we get the solutions of FSDSWEs
((2) and (3)), for p/2, > 0, as follows:

() =% /5x() (25)

for p/€, > 0. There are two sets depending only on p and ¢, 1262
as follows. D(x,t) = gp(y)e("m) (112)0t) (26)
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TasLE 3: All possible solutions for wave Equation (14) when p >0 and m — 1.

Case P q r X(#) (k)
1 2 -2 1 tanh (u) i\/ﬁz tanh (u)
1
2 2 1 0 sech(p) /€ sech(u)
3 2 1 0 csch(p) +4/p/ csch(p)
4 1 -1 1 tanh () . _ tanh (4)
2 2 4 1 £ sech (p) - 1 1+sech (u)

c
5 2 0 0 = i\/EE
# &p

Case p q r X(#) P#)
1 -2 1 0 sech (¢) +. /2 sech (u)
1
-1 p
2 5 2 0 2 sech (u) 12 I sech (u)
1

TaBLE 5: All possible solutions for wave Equation (14) when p <0.

Case p q r x(v) ¢()
1 -2m? 2m? — 1 (1- mz) cn(p) + E%cn(/,t)
2 -2 2 —m? (m2 - 1) dn(u) i\/ezldn(‘u)
3 = (' +1) “(-rr) men(y) + dn(u) [ men() = dn(o)
4 m? -1 (m*+1) (m*-1) dn(y) L [P _dnw)
2 2 4 1 sn(p) Ve T Esn(p)

Solution
Solution

4

Space "x"

Space "x"
09 Time "t"

FiGure 1: 3D plot of Equations (28) and (29) with 0 =0 and a =1.
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FiGure 2: 3D plot of Equations (28) and (29) with 0=1,2 and a = 1.
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FIGURE 3: 3D plot of Equation (28) with o =0 and different a.



Journal of Function Spaces

. ////////7// S
/// i i
5 I
3
1.4
1.2
8
;5 1
3
0.8
0.6
6

Time "t"

o
S
E
(=}
w
1.4 |
1.2 4
=]
.2
E 1y
3
0.8
0.6 .
6

4 W s

Space "x"

FIGURE 4: 3D plot of Equation (29) with o =0 and different a.

W)= [y lelBoron), )
where p = (x*/a) + wt.

Second set: if p <0 and ¢, <0, then the solutions ¢(u),
from Table 1, of wave Equation (14) are as follows.

If m — 1, then Table 3 degenerates to Table 4.

In this case, using Table 5 (or Table 4 when m — 1), we
can get the analytical solutions of FSDSWEs ((2) and (3)) as
stated in Equations (26) and (27).

3. The Impact of Noise and Fractional Order on
the Solutions

The impact of the noise and fractional order on the acquired
solutions of FSDSWEs ((2) and (3)) is addressed. MATLAB
tools are used to generate graphs for the following solutions:

D(x, t) = \/gcn (% + wt) e(PP0-(112)%), (28)
W (1) = {— Ll (’“ + wt)] loBO-0R%) (39
wt, o

with C=0,p=—2m2, P1=V,=1 y;=y,=3, p=-2, q=2
—m?, and m=0.5. Then, ¢, = —6/7 and w = 7/4.

Firstly the impact of noise: in the absence of the noise, the
surface is periodic (not flat) as we see in Figure 1.

While in Figure 2, if the noise is introduced and its
strength o is raised, the surface becomes substantially flatter
as follows.

Secondly the impact of fractional order: in Figures 3
and 4, if 0 =0, we can see that the surface expands when
« is increasing.

From the previous simulations, we may examine the
nature of the solution as a double-periodic wave in
physical form. We may conclude that it is critical to
incorporate some fluctuation when modelling any phe-
nomenon since the ignored terms may have an influence
on the solutions.

4. Conclusions

In this paper, we considered the fractional-stochastic Drin-
fel’d-Sokolov-Wilson equations. This equation is well
known in mathematical physics, population dynamics,
surface physics, plasma physics, and applied sciences. The
analytical solutions to FSDSWEs ((2) and (3)) were success-
fully attained by utilizing the mapping method. Due to the
importance of FSDSWEs, these established solutions are
significantly more useful and effective in understanding a
variety of critical physical processes. In addition, we utilized
the MATLAB software to demonstrate how multiplicative
noise and fractional order affected the solutions of
FSDSWEs. We may employ additive noise to address the
FSDSWEs ((2) and (3)) in future study.

Data Availability

All data are available in this paper.
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