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By the concept of fractional derivative of Riemann-Liouville on time scales, we first introduce fractional Sobolev spaces,
characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones on time
scales. Then, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivity,
separability, and some imbeddings. Finally, as an application, by constructing an appropriate variational setting, using fibering
mapping and Nehari manifolds, the existence of weak solutions for a class of fractional boundary value problems on time
scales is studied, and a result of the existence of weak solutions for this problem is obtained.

1. Introduction

The Sobolev space theory was developed by the Soviet math-
ematician S.L. Sobolev in the 1930s. It was created for the
needs of studying modern theories of differential equations
and studying many problems in the fields related to mathe-
matical analysis. It has become a basic content in mathemat-
ics. In order to study the existence of solutions of differential
and difference equations under a unified framework, papers
[1-3] study some Sobolev space theories on time scales.

In the past few decades, fractional calculus and fractional
differential equations have attracted widespread attention in
the field of differential equations, as well as in applied math-
ematics and science. In addition to true mathematical inter-
est and curiosity, this trend is also driven by interesting
scientific and engineering applications that have produced
fractional differential equation models to better describe
(time) memory effects and (space) nonlocal phenomena
[4-9]. It is the rise of these applications that give new vitality
to the field of fractional calculus and fractional differential
equations and call for further research in this field.

In order to unify the discrete analysis and continuous
analysis, Hilger [10] proposed the time scale theory and
established its related basic theory [11, 12]. So far, the study
of time scale theory has attracted worldwide attention. It has

been widely used in engineering, physics, economics, popu-
lation dynamics, cybernetics, and other fields [13-17].

As far as we know, no one has studied the fractional
Sobolev space and its properties on time scales through the
Riemann-Liouville derivative. In order to fill this gap, the
main purpose of this article is to establish the fractional
Sobolev space on time scales via the Riemann-Liouville
derivative and to study its basic properties. Then, as an
application of our new theory, we study the solvability of a
class of fractional boundary value problems on time scales.

2. Preliminaries

In this section, we briefly collect some basic known nota-
tions, definitions, and results that will be used later.

A time scale T is an arbitrary nonempty closed subset of
the real set R with the topology and ordering inherited from
RR. Throughout this paper, we denote by T a time scale. We
will use the following notations: J$ = [a, b), ] = [a, ], ]° =
JNT, J=JgnT, J*=[a,p(b)]NT.

Definition 1 (see [18]). For t € T, we define the forward jump
operator 0 : T— T by o(t):=inf {s€ T : s>t}, while the
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backward jump operator p: T— T is defined by p(t) =
sup {seT:s<t}.

Remark 2 (see [18]).

(1) In Definition 1, we put inf@ =sup T (ie., o(f) =t if
T has a maximum ¢) and sup@ =inf T (i.e, p(t) =
t if T has a minimum ¢), where & denotes the empty
set.

(2) If o(t) > t, we say that ¢ is right-scattered, while if p
(t) < t, we say that ¢ is left-scattered. Points that are
right-scattered and left-scattered at the same time
are called isolated.

(3) If t <sup T and o(t) = ¢, we say that ¢ is right-dense,
while if ¢t >inf T and p(t) =¢, we say that ¢ is left-
dense. Points that are right-dense and left-dense at
the same time are called dense

(4) The graininess function y: T — [0,00) is defined
by ) = o(t) —t.

(5) The derivative makes use of the set T, which is
derived from the time scale T as follows: if T has a

left-scattered maximum M, then TF:= T\ {M}; oth-
erwise, TF:=T.

Definition 3 [18]. Assume that f : T — R is a function and
let t € T%. Then, we define f*(t) to be the number (provided
it exists) with the property that given any & > 0, there is a
neighborhood U of  (ie., U= (t-38,t+8)NT for some §
> 0) such that

flo()=f(s) - A1) (o) =5)| <elo(t) =5, (1)

for all s € U. We call f4(t) the delta (or Hilger) derivative of
f at t. Moreover, we say that f is delta (or Hilger) differen-
tiable (or in short: differentiable) on T* provided f*(t) exists
for all t € T*. The function f* : T — R is then called the
(delta) derivative of f on T*.

Definition 4 (see [18]). A function f : T — R is called rd
-continuous provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd -continuous functions f : T — R will be
denoted by C,; =C,4(T)=C,;(T,R). The set of functions
f : T— R that are differentiable and whose derivative is r
d -continuous is denoted by C!, = C*,(T) = C!4(T, R).

Definition 5 (see [19]). Let J denote a closed bounded inter-
val in T. A function F : ] — R is called a delta antideriva-
tive of function f : ] — R provided F is continuous on ],
delta differentiable at J, and FA(t) = f(t) for all ¢ € J. Then,
we define the A -integral of f from a to b by ji’f(t)At =
F(b) — F(a).
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Proposition 6 (see [20]). f is an increasing continuous func-
tion on J. If F is the extension of f to the real interval Jy
given by

s), ifseT,
Hg:{f() f s 2

f(t), ifse(to(t)¢T,

then [°f(t)At < ["F(t)dt.

Definition 7 (see [19]) (fractional integral on time scales).
Suppose h is an integrable function on J. Let 0 <« < 1. The
left fractional integral of order « of & is defined by

t (t _ S)ot—l

T h(s)As. (3)

(e = |

a

The right fractional integral of order « of h is defined by

b (S _ t)a—l

=] S

where I' is the gamma function.

h(s)As, (4)

Definition 8 (see [19]) (Riemann-Liouville fractional deriva-
tive on time scales). Lett € T,0<a < 1,and h : T —> R. The
left Riemann-Liouville fractional derivative of order « of / is
defined by

ﬁ¥h0%=6ﬁ3”40)A=FU{%0<J%t—$“h@ﬂk){

The right Riemann-Liouville fractional derivative of
order « of h is defined by

Toth(n) = (71, () =

Proposition 9 (see [19]). Let 0<a <1, we have IDf‘ =
AoTI

Proposition 10 (see [19]). For any function h that is integra-
ble on ], the Riemann-Liouville A-fractional integral satisfies

e Ilf = Il‘tﬁﬁ fora>0and >0.

Proposition 11 (see [19]). For any function h that is integra-
ble on ], one has ID‘: ° lrlltxh =h.

Corollary 12 (see [19]). For 0 < a < 1, we have ED‘: ° ID;O‘ =
Id and '1," o 11T = Id, where Id denotes the identity operator.
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Theorem 13 (see [19]). Let f € C(J) and a>0, then f €
WI0) iff

T, (GO =0 ()

Theorem 14 (see [19]). Let a >0 and f € C(]) satisfy the
condition in Theorem 13. Then,

(17 o 20f) (= (8)

Theorem 15 (see [2]). A function f : ] — RN is absolutely
continuous on J iff f is A -differentiable A-a.e. on J° and

fA(s)ds, Vte]. 9)

f0=fa)+ |
[at)y

Theorem 16 (see [21]). A function f : T — R is absolutely

continuous on T iff the following conditions are satisfied:

(i) f is A-differentiable A-a.e. on J° and f* € L'(T)
(ii) The equality

holds for every t € T.

Theorem 17 (see [22]). A function q: Jg — R™ is abso-
lutely continuous iff there exist a constant c € R™ and a func-
tion @ € L such that

q(t)=c+ (IL.9)(t), te]g. (11)

In this case, we have q(a) = c and q' (t) = @(t), t € J a.e.

Theorem 18 (see [2]) (integral representation). Let a € (0, 1)
and q € L'. Then, q has a left-sided Riemann-Liouville deriv-
ative DS, q of order « iff there exist a constant c € R™ and a
function @ € L' such that

1 c

q(t) = 7 =+ L)1),

T(a)W tejgae. (12)

In this case, we have I1:%q(a) = c and (D%q)(t) = ¢(t
te]g ae.

~—

>

Theorem 19 (see [23]). Let >0, p,q>1, and 1/p+1/q< 1
+a, where p# 1 and q# 1 in the case when 1/p+1/q=1+
a. Moreover, let

wy={ff=ilagerr ()},

(13)
Ly ={f:f=agerm},

then the following integration by part formulas hold.

(a) If p e LP(]) and w € L1(]), then

| poiv)wa=| vo(ie)nan g

(b) If g€ 1, (IP) and f € [, (L), then

J s (oir)ma=| s(ioig)war a9

]0

Lemma 20 (see [1]). Let f € L}(J°). Then, the following
J (f-9*)(s)As=0, foreverypeCy,, (]k), (16)
]0

holds iff there exists a constant ¢ € R such that
f=cA-ae on)’. (17)

Definition 21 (see [1]). Let p € R be such that p>1 and u
: ] — R. Say that u belongs to W,*(J) iff u € I4(J°) and
there exists g : J* — R such that g € I/, (J°) and

J,o <u.¢A)(S>As:_LO (9-9)()ds, Vg eChy(J'), (18)

with
Chua(1) ={f: T —R:feCu(1).fl@=fb)}, (19)

where C!;(J¥) is the set of all continuous functions on J such
that they are A-differential on J k and their A-derivatives are
rd-continuous on J*.

Theorem 22 (see [1]). Let p € R be such that p > 1. Then, the
set L)(J°) is a Banach space together with the norm defined
for every f € L4(J°) as

1/p
fIP(s)As| ifpeR,
e Jree]
inf {CeR:|f|[<CA-aeon]’}, ifp=-+co.
(20)

Moreover, L3(J°) is a Hilbert space together with the



inner product given for every (f, g) € L3(J°) x L3(J°) by

()= | S99 1)

]0

Theorem 23 (see [24]). Fractional integration operators are
bounded in LF(]J), i.e., the following estimate

(b _ a)Re(x

< Reairi@) 1Pl Rew>0 (@)

172l o)

holds.

Proposition 24 (see [1]). Suppose p€R and p>1. Let p'
€R be such that 1/p' + 1/p' = 1. Then, if f € I5(J°) and

geL‘Z’(I"), then f-geLL(J°) and
1f-9ll, < IF e - 11gllpe- (23)

This expression is called Hélder’s inequality and Cauchy-
Schwarz’s inequality whenever p = 2.

Theorem 25 (see [25]) (the first mean value theorem). Let f
and g be bounded and integrable functions on ], and let g be
nonnegative (or nonpositive) on J. Let us set

=inf {f(t): te ]},

M=sup {f(t): te]’}. (24)

Then, there exists a real number A satisfying the inequal-
ities m < A <M such that

b b
| 0gwar=a[ grar (25)

a a

Corollary 26 (see [25]). Let f be an integrable function on ]
and let m and M be the infimum and supremum, respectively,
of f on J°. Then, there exists a number A between m and M

such that fsf(t)At =A(b-a).

Theorem 27 (see [25]). Let f be a function defined on | and
let ceT with a<c<b. If f is A-integrable from a to ¢ and
from c to b, then f is A-integrable from a to b and

b

r f(H)At= J f(H)At+ J f()At. (26)

a a c

Lemma 28 (see [26]) (a time scale version of the Arzela-
Ascoli theorem). Let X be a subset of C(J, R) satisfying the
following conditions:

(i) X is bounded

(ii) For any given € > 0, there exists § > 0 such that t,,
tye], |t;—t,| <& implies |f(t;) - f(t,)| <& for all
feX

Then, X is relatively compact.
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3. Fractional Sobolev Spaces on Time Scales and
Their Properties

In this section, we present and prove some lemmas, proposi-
tions, and theorems, which are of utmost significance for our
main results.

In the following, let 0 < a < b. Inspired by Theorems 15-
18, we give the following definition.

Definition 29. Let 0 < a < 1. By ACA ' (J, RN), we denote the
set of all functions f : ] — RY that have the representation

1 c
f(t)= mi(t_a)l

+.09(t), teJA-ae, (27)

with ce RN and g € L.
Then, we have the following result.

Theorem 30. Let 0< a <1 and f € L}. Then, function f has
the left Riemann-Liouville derivative I D/f of order a on the
interval J iff f € AC} L. (J,RN); that is, f has the representa-
tion (27). In such a case,

I-a o
(jzt f) (@)=c (EDt f) () =@(t), te] Aae (28)
Proof. Let us assume that f € L} has a left-sided Riemann-
Liouville derivative TD®f. This means that I, *f is (identi-
fied to) an absolutely continuous function. From the integral

representation of Theorems 15 and 17, there exist a constant
c € RY and a function ¢ € L}, such that

() w=c+ (ine)n, e (29)

= Dif(t) =

I‘tx to (29), we obtain

with [1,”"f(a) = c and ((1}7/)(1))"
A-a.e.
By Proposition 10 and applying |

p(t), te]

(nr) 0= (ne) 0+ (niLe) 0, te) Aae
(30)

The result follows from the A-differentiability of (30).
Conversely, let us assume that (27) holds true. From

Proposition 10 and applying 1 :7“ to (27), we obtain

(II:_af>()—c+<TIt(p>(), te] Aae,  (31)

and then, (11 :_a f) has an absolutely continuous representa-
tion. Further, f has a left-sided Riemann-Liouville derivative
ID‘: f. This completes the proof. O
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Remark 31.

(i) By ACZ’Q(I < p<oo), we denote the set of all func-
tions f: ] — RN possessing representation (27)
with c € RN and ¢ € L}

(ii) It is easy to see that Theorem 30 implies that for any
1<p<oo, f has the left Riemann-Liouville deriva-
tive ID/'f € I!) iff f € AC}?.; that is, f has the repre-
sentation (27) with ¢ € I}

Definition 32. Let 0 <a<1 and let 1<p < oco. By the left
Sobolev space of order «, we will mean the set WZ’)‘; =
W32 (J,RN) given by

WDAtfr = {u elh;3gell Ve e Cooa such thatJ u(t) 'ZTDZ(p(t)At
]O

- [ o-pra}
(32)

Remark 33. A function g given in Definition 32 will be called
the weak left fractional derivative of order 0 < a <1 of u; let

us denote it by Wu;. The uniqueness of this weak derivative
follows from 1.

We have the following characterization of W37 ..

Theorem 34. If 0<a<1 and 1<p<oco, then Wyl =A
%p P
Cpor N L.

Proof. On the one hand, if u € ACZ‘,IZ+ N L, then from Theo-

rem 30, it follows that u has derivative IDf‘u € Li. Theorem
19 implies that

J}Ou(t)erZ‘P(l‘)At - J (2Dt wetnar, ()

]

for any ¢ € C2%. So, u € WyP, with Tu(; =g=!Dluell.
On the other hand, if u € WZ’)I;H then u € L‘Z, and there
exists a function g € I} such that

j u(t)?DZso<t>At=J g(Og(t)At, (34)
]0 ]0

for any ¢ € C%%. To show that u € ACY?, N Lf, it suffices to
check (Theorem 30 and definition of ACZfﬁ) that u pos-
sesses the left Riemann-Liouville derivative of order «, which
belongs to L’; that is, [I1~*u is absolutely continuous on J
and its delta derivative of « order (existing A-a.e. on J)
belongs to L.

In fact, let ¢ € C2, then ¢ €/D;y(Cy) and [Djp=-
('1:-%)*. From Theorem 19, it follows that

[ worssoace | (%)

Jjo

In view of (34) and (35), we get
| (rw)merma=-| sewa o)
J° J°

for any ¢ € C%y. So, 11 tl_au € Wi’f}. Consequently, 11 :_“u is
absolutely continuous and its delta derivative is equal A-a.e.
on [a, by to g € LY. The proof is complete. O

From the proof of Theorem 34 and the uniqueness of the
weak fractional derivative, the following theorem follows.

Theorem 35. If 0 < a <1 and 1<p < oo, then the weak left
fractional derivative Tu; of a function u € WZ’,I; coincides
with its left Riemann-Liouville fractional derivative [ D u
A-a.e. on J.

Remark 36.

(1) If 0<a<1and (1-a)p<]l, then ACZ’)I; c I and,
consequently,

Wil =ACY . nIfi=ACY.. (37)

(2) If0<a<1and (1-a)p>1, then W32, =AC. n
L7 is the set of all functions belonging to ACZ’fZ+ that
satisfy the condition (T1 ifw f)a)=0

By using the definition of W3, with 0<a<1 and
Theorem 35, one can easily prove the following result.

Theorem 37. Let 0<a<1,1<p<oo, and uelLh. Then, u
€ Wi iff there exists a function g € LY} such that

Jjou(t)?DZ(p(t)At = J ge(t)At, @eC,. (38)

]0

In such a case, there exists the left Riemann-Liouville
derivative "D} u of u and g=!D/u.



Remark 38. Function g will be called the weak left fractional
derivative of u € WZ’; of order a. Its uniqueness follows

from [1]. From the above theorem, it follows that it coin-
cides with an appropriate Riemann-Liouville derivative.

Let us fix 0<a <1 and consider in the space W%, a
norm ||-||, given by
Aat

'|]' (4
thu

p
llyeo = Nty + 205, we Wi (39)
LA A

(Here ||||IL’A denotes the delta norm in L’ (Theorem 22)).

Lemma 39. Let 0< o< 1 and 1< p < co, then

T«
die

p
P p
L <Kl (40)

where K= (b—a)*/T'(a+ 1). That is to say, the fractional
integration operator is bounded in L.

Proof. The conclusion follows from Theorem 23, Proposi-
tion 24, and Proposition 6. The proof is complete. O

Theorem 40. If 0 < a < 1, then the norm |||y« is equiva-
Aa*
lent to the norm ||-||, = given by
> At

P —

[l yyer =
a,W:a+

1- P
o u(a)| +

T ||P ap
aDtuHLp, we WS, (41)
‘A

Proof.

(1) Assume that (1 — «)p < 1. On the one hand, in view of
Remarks 31 and 36, for u € Wy, we can write it as

1

u(t)= —

T'(a) m +.Lo(t), (42)

with ce RN and ¢ € L} Since (t - a)<“_l)P is an increasing

monotone function, by using Proposition 6, we can write

that [,(t—a)*"PAt< [, (t-a)“"Pdt. And taking into
R

account Lemma 39, we have

P =
Jutfy =

< 2p 1

1 p

T(a) (t-a)™
e

f—a)@DPp ’
(@) J,o( %) g ‘Lg

(
=2 (FLC<|1> J -arvaiirlf,
(

Aa=1p+1(b=a) P+ Kol ).

+1(t)| At

T,
Ao

T«
aIt

(43)
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where K comes from Lemma 39. Noting that ¢ = II tl_au(a),
T & .
¢ =,D,u, one can obtain

Il < Lo (1P + Nl )

ot

— P
- sz,O ||u||a)wz’f‘+’

1- P
i1 u(@)| + 10w

)

where

. b-a 1-(1-a)p
Lyy=2" (FP ((a) q i =) +KP>. (45)

Consequently,

a ||P
aDyul
Ly

—lyll® P
1]l ger, = N1l + SLopllullgyer > (46)
,a ,a

where L, =L,o+1.
On the other hand, we will prove that there exists a con-
stant M, ; such that

0, e Mol € WS (47)
Indeed, let u € W3”, and consider coordinate functions

(II:_O‘u)l of (EI:_“u) with i€ {1,---,N}. Lemma 39, Theo-
rem 25, and Corollary 26 imply that there exist constants

Acel inf (T17%) ), TN o], (21,2, 0N,
.ot (27w) 0, sup (G17w) @), )
(48)
such that
1 b T,1-«a i
Ai:m (ult u) (s)As. (49)

Hence, for a fixed t, € J°, if (Ili_au)l(to) #0 for all i=
1,2,---, N, then we can take constants 0, such that

o1 “w) == [ () @ae (o0

Therefore, we have

(EI;_“u)i(tO) = b%ar (Elz_au)i(s)As. 25

From the absolute continuity (Theorem 16) of (1 }‘“u)i,
it follows that

(II:_au)i(t) = (II}’“u)i(to) +J [(II}’“u)i(s)} AAS, (52)

[tost)y
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for any t € J. Consequently, combining with Proposition 9
and Lemma 39, we see that

A

AR I HADKCI

(17u) ()] =

‘61' -a

< o gllittully +
10:1
b-a
6, (b-a)™
b-al(2-a)

D) (s)|As
o PO (53)

lati~ully + [[DFull,

<

< ”“HLQ + HED‘:”HLZ’

for t € J. In particular,

—a i |61| (b_a)l_a o
(a1i"u) (t)‘ = b_amH”HLIA + ||£Dr”HL;' (54)

So,

‘(II}“"u) (a)| SN<@((I;%))& + 1) (H””Lg + HaTD(tX”HLZ)

<NM,o(b—a)P'? (H”HLQ + ||ED?MHL‘;)’
(55)
where |0|= max |6]and M, ,=|0|(b—a) “/T(2—a)+ 1.
i€{1,2,--,N} ’
Thus,

(1) (@) < NP2 (b= )12 + [ED ], ). (56)
and, consequently,
il e = GLw) @) + [TD ],
< (N Ml(b-ay 27w 1) (Jull, +[[iDfu]f, ) (57)

=My |uf}

a,WZ‘ﬂ’
where M, , = N°ME (b —a)P 12071 + 1.
If ('1'-%u)'(t,) = 0 for i belongs to some subset of {1,2,

.-+, N}, from the above argument process, one can easily see
that there exists a constant M, ; such that (32) holds.

(2) When (1-a)p>1, then (Remark 36) Wil =A
CyP. n LY is the set of all functions that belong to
ACyP, that satisfy the condition (JI!™*u)(a)=0.
Hence, in the same way as in the case of (1 —a)p <
1 (putting ¢ = 0), we obtain the inequality

||u||f;vz,p+ SL%I””“Z,WZ’P: withsomeL,; >0.  (58)

The inequality,

||u||iwz,p+ SM%IHuH‘?Mﬂ, withsome M, >0,  (59)

is obvious (it is sufficient to put M, = 1 and use the fact that
(oI *u)(a) = 0).
The proof is complete. O

Now, we are in a position to prove some basic properties
a,p
of the space W ..

Theorem 41. The space WZ’& is complete with respect to
each of the norms ||-||yer and ||-||, e for any 0<a<1,
Aa* > Aat

I<p<oo.

Proof. In view of Theorem 40, we only need to show that
W% with the norm |||, is complete. Let {u}c
> i A,ﬂ+

WZ’f; be a Cauchy sequence with respect to this norm. So,
the sequences {!I'™*u;(a)} and {!D%u} are Cauchy
sequences in RY and L/, respectively.

Let c€ RN and ¢ € L)) be the limits of the above two
sequences in RN and I/, respectively. Then, the function

u(t)z%(t_a)«—uj]f(p(t), teJA-ae, (60)

(a

belongs to W37, and it is the limit of {u;} in W3, with
respect to ||-|| .y« . The proof is complete. 0
> Aat

The proof method of the following two theorems is
inspired by the method used in the proof of Proposition
8.1 (b) and (c) in [27].

Theorem 42. The space WZ’f{; is reflexive with respect to the
norm ||+ yer for any 0<a <1 and 1<p <oo.
Aa*

Proof. Let us consider W4?, with the norm [[ll =2, and
> Aa

define a mapping
A Wb suvr— (u,[Du) e L x I (61)
It is obvious that
ol = A0l (62)

where

2 Up
[Aullpppr = <Z ||(/\”)iH1L)Z> . Au=(u, Dfu) e L x I,
i=1
(63)

which means that the operator A : u+— (u, ] D) is an iso-
metric isomorphic mapping and the space WZ’:I; is isometric
isomorphic to the space Q={(u, [Du): Yue W3},
which is a closed subset of L% x L as W}?_ is closed.



Since L, is reflexive, the Cartesian product space L} x L}

is also a reflexive space with respect to the norm ||v|l;»,;»
ATTA
2 lp
= (ZizlllviII‘lL’p) , where v= (v, v,) e L) x I}.
A
Thus, WZ’){; is reflexive with respect to the norm ||~||WZ.;;+.

The proof is complete. O

Theorem 43. The space WZ’Z+ is separable with respect to the
norm |||l for any 0<a <1 and 1<p <oo.
Aat

Proof. Let us consider WZ’{; with the norm |[|-|;;«» and the
5 Aat

mapping A defined in the proof of Theorem 42. Obviously,
MW3P.) is separable as a subset of separable space L) x
L. Since A is the isometry, W}P, is also separable with
respect to the norm ||-||WZ,;;+. The proof is complete. 0

Theorem 44. Let 1 <s<r<t<oo, u€Ly(J°) nL,(J%), then
uel)(J°) and

6 1-0
loell, < Nuall s el (64)

where 0 € [0, 1] with 1/r=0/s+ (1—-0)/t.

Proof. We will divide the proof into the following three
major cases.

(i) When r=s, we can take =1, the conclusion is
evident

(ii) When r=t, we can take =0, the conclusion is
obvious

(iii) Let 1<s<r<t<oo

In this case, if there exist m, n > 0 such that r = s/m + t/n,
then

Jul” = fual™" - Jul ™ (65)

| r

In view of u € L (J°) N L) (J°), we have

(|u|5/m)mAx = | |ufAx < +co,
J° 0

(66)
J (\u|t/”)nAx = J |u|' Ax < +0c0.
]0 ]0
Hence, we obtain that
u["" e Ly (J°), [u|"™ € L} (J°). (67)
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Therefore, when m, n satisfy the following conditions

m,n>0,
st
mia " (68)
1 1
JE— 7:1’
m n
that is to say,

t—s t—s

m=-—", n=-_, (69)
t—r r—s

by Proposition 2.6 in P, from [1], one obtains
J |u|rAx:J |u|5/m.|u‘t/nAx
J0 J°

<[] (urmyas] i | (unyas]

1/m 1/n
= (J |uSAx) . (J |u|tAx>
J° J

s/im tin

= [lullz” - [lull g < 0,
(70)
souelL)(J°) and
/ /
luellz, = JIU|U|VAX < llullis" - ||U||Ef- (71)

Let 0 =s/rm, then 6 € (0,1), t/m=1-0, O/s+ (1-0)/t
=1/rm+ 1/rn=1/r, and hence,

0 1-0
o, < o, Nl 2. (72)

The proof is complete. |

Proposition 45. Let 0<a<1 and 1<p<oo. For all ue
WZ’)I;, if1-—a>1/pora>1/p, then

(14

b
TI)H et (73)

Il < 5

ifa>1/p and 1/p+1/q =1, then

ba—l/p

o < F @@= Dar ™

(P

Proof. In view of Remark 36 and Theorem 14, in order to
prove inequalities (73) and (74), we only need to prove that

(44

b
el (2DFw) | < m\ Dl (75)
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for 1 —a>1/p or a > 1/p, and that
ba—l/p
<
© I(a)((a-1)q+1)"

fora>1/pand 1/p+1/g=1.

Note that 'D%u € L/ (J, RY), the inequality (75) follows
from Lemma 39 directly.

We are now in a position to prove (76). For a > 1/p,
choose g such that 1/p+1/q=1. For all ue WZ’fﬁ, since

ot (2D w) laDfullyp> (76)

(t—s)@‘*l)q is an increasing monotone function, by using
Proposition 6, we find that [’ (¢ )i < (e s)leba
ds. Taking into account Proposition 24, we have
t
(%4 04 a— T (04
1 (Gorule)| = g1 (-9 Do

I'a) J,

¢ 1/q
([ mas) ot

a

| =

’ -

<

=

®)
(@) (Jt (t- s)<a—1>qd5> UquID;*uuLi (77)

a

IN
3
-

bl/q+zx—1
<
L(a)((a=1)g+1)"
botfl/p T
— 1)q+ 1)1/q { aDtuHLQ'

Il Dfull

(o) ((r

The proof is complete. O

Remark 46.

(i) According to (73), we can consider W3”, with
respect to the norm

p
Il e = D5l = (J [ aDfu() |pAt) , (78)
,a J

in the following analysis.

(ii) It follows from (73) and (74) that WA .+ 1s continu-
ously immersed into C(J, RY) with the natural norm

Illoo

Proposition 47. Let 0<a <1 and 1< p <oo. Assume that
a>1/p and the sequence {u,} C Wy, converges weakly to
uin Wyl.. Then, u, — u in C(J,RY), i.e, |u— o =0,
as k — oo.

Proof. If a > 1/p, then by (74) and (78), the injection of W“’)‘;
into C(J, RY), with its natural norm ||,
w, — u in Wyt ., then up — u in C(J, RY).

, is continuous, i.e.,

Since 1, — uin Wy, it follows that 1, — u in C(J, RN).
In fact, for any h e (C(J,RN))", if 4, — u in WZ’?;H then
u, — u in C(J, RY), and thus, h(u;) — h(u). Therefore, h

*

€ (WZ’)I;)*, which means that (C(J,RM))" c(Wgl)".

Hence, if u, — u in Wy, then for any h € (C(J,RY))", we

have h € ( Alzﬁ) , and thus, h(u,) — h(u), ie., u, — u in
C(J, RY).

By the Banach-Steinhaus theorem, {u;} is bounded in
W4, and, hence, in C(J,RY). Now, we prove that the
sequence {u,} is equicontinuous. Let 1/p+1/g=1 and ¢,
.ty € J with t; <t,, for all f € L}(J,RY), by using Proposi-
tion 24, Proposition 6, and Theorem 27, and noting « >
1/p, we have

TS ()~ TS (1)

- j (1~ 9" f(s)ds :<t2 (5 s
1 g a-1 _ f _Sa—l $)As
SWL(“ 9~ [ (197 (9

=) If (s)14s

=) = (t, =) l)qu) ||f||Lp

1/q
( (t,—s) (o ”qu> ||f||Lp

1/q
(- 5)(a_1)q) AS) ||f||LQ

J

( v
(J ,=5) ”%) i
(

1/q
—(ty- s)(a—l)q)ds> If 1

1/q

1

I/l
I'()(1+ (-
+(t; - tl)(a_l)qﬂ)

If 1l
i g
B 2||f"Li
(e (14 (a=1)g)"
20l

_ A _ a—1/,
_F(oc)(1+(oc—1)‘Z)1/q(t2 W

a-1)g+1 (a-1)g+1
-t

(4

1/q

1/q

(b= t) )

( _ tl )oc—1+1/q
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Therefore, the sequence {u;} is equicontinuous since,
for t,,t, €], t; <t,, by applying (79) and (78), we have

[ue(ty) — ()| =

5 (TD“ u(t)) 115 (IDfm(n) )|

2t )tx 1/p T
(04
“T@( (@ g
2 t2 )lx 1/p

T e
r@(1+ - 0" Il

(t
(
(
(
2(t, - t)"
(
(
(

) 'I]' oc
(a) (“ l)q )l/qH HLP
=)
)

N 1)1/q ””kHWZ’;

I(a)((a-1)q
<C(ty—t,)* ',
(80)

where 1/p+1/g=1 and CeR" is a constant. By the
Arzela-Ascoli theorem on time scales (Lemma 28), {u}
is relatively compact in C(J,RN). By the uniqueness of
the weak limit in C(J,RY), every uniformly convergent
subsequence of {u;} converges uniformly on J to u. The
proof is complete. O

Remark 48. It follows from Proposition 47 that W3, is com-
pactly immersed into C(J, RY) with the natural norm |||,

Theorem 49. Let 1<p<oco, l/p<a<l, I/p+1/q=1,L:]
xRN x RN — R, (t,x, y) = L(t, x, y) satisfies the following:

(i) For each (x,y) € RN x RN, L(t, x, y) is A-measurable
int

(ii) For A-almost every t € ], L(t, x, y) is continuously dif-
ferentiable in (x, y)

If there exist m; € C(R*,R"), m, € L\(J,R"), and m;
e LY(J,RY), 1< q< oo, such that, for A-a.e. t €] and every
(x,y) € RN xRY, one has

IL(t, %, y)| < my(Ix ) (ms(2) + |y PP),
IDL(t, %, y)| < my(Ix ) (my(£) + ), (81)
ID,L(t x, y)| < my (x| ) (ms(t) + [yP).

Then, the functional x defined by

x(u) = LOL(t, u(t), s Dju(t))At, (82)

is continuously differentiable on Wi., and Yu,ve WyP.,
one has
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(X)) = Lo [(D,L(t u(t), TD%u(t), v(t))
+ (D,L(t, u(t), zDfu(t), ;Dv(t))]At.
(83)

Proof. It suffices to prove that y has, at every point u, a

directional derivative x'(u) € (WZ’:I;)*

that the mapping

given by (84) and

¥ WZ’)‘Z+ Sum X'(u) € (WZ’Z+)*, (84)

is continuous. The rest proof is similar to the proof of
Theorem 1.4 in [28]. We will omit it here. The proof is
complete. O

4. An Application

As an application of the concepts we introduced and the
results obtained in Section 3, in this section, we will use crit-
ical point theory to study the solvability of a class of bound-
ary value problems on time scales. More precisely, our goal
is to study the following fractional nonlinear Dirichlet prob-
lem on time scale T:

{ TDZ( ZD?u(t)‘piZZDfu(tO = VE(tu(t)) + ow(t)|u(t)|*u(t), A-aete],
u(a)=u(b) =0,
(85)

where D¢ and [D? are the right and the left Riemann-
Liouville fractlonal derlvatlve operators of order « defined
on T, respectively, VF(t, u) is the gradient of F(t,u) at u
and Fe C(J xRN, R) is homogeneous of degree r, o is a
positive parameter, w € C(J), 1<r<p<gand l/p<a<]1.

We make the following assumptions:

(H,)F : ] x RN — R is homogeneous of degree r, that
is,

F(t,su) =s"F(t, u)(s > 0), (86)
forall te], ueRY;

(H,)F*(t,u) = max (+F(t, u),
By (H,), F(t, u), we have

0) #0 for all u#0.

uVF(x, u) =s"F(x, u), (87)

|F(x, u)l < K]|u|", (88)

for some constant K > 0.
Our main results are as follows.

Theorem 50. Let 1/p<a<1, 1<r<p<q and suppose that
F(t,u) satisfies the conditions (H,) and (H,). Then, there
exists 0, >0 such that for all o €(0,0,), (85) has at least
two nontrivial solutions.
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There have been many results using critical point theory
to study boundary value problems of fractional differential
equations [29-35] and dynamic equations on time scales
[36-40], but the results of using critical point theory to study
boundary value problems of fractional dynamic equations
on time scales are still rare [3]. This section will explain that
critical point theory is an effective way to deal with the exis-
tence of solutions of (85) on time scales.

We will use the famous Nehari manifold and fibering
map theory to prove our main results.

We say that u € WZ’& is a solution to the problem (85), if
u satisfies the following equality:

| Do Goru Iorvm)an- | (@Fwuo). vo)a
—aJ w(t)|u(t)| T (u(t), v(t)At =0, Vve WP,
]U
(59)

As a result, associated to the problem (85), we define the
functional

T () = Ll —J F(t, u(t))At - fJ w(t)|u(t)|1At
0 0

P q (90)
= () - H(u) - M, 1),
where
u 21 Tpey)|f u) = u
= | iprufan e = | Feua o
(o2
Mo(0)= | wopuoiar

We need to show that the following lemma holds.
Lemma 51.

(i) The functional ], is well defined on WZ’,I;

(ii) The functional ], is of class C' (W32, R), and for all
u,ve WZ’:I;H we have

(7otwv)= | [Dru) (Dju(e), Dfv(e) A

]0

—J (VE(t, u(t)), v(t)) At

]0
~o| w2, wo)ar
]U

11
where
(7'w) =] Jiprunl Cotu [orvo)ar,
<H’(u), v> - JJO(VF(t, u(t)), v(t))At, (93)
(Mot ) =0 | @O vipar

Proof.

(i) From (33) in Proposition 45, (87), (88), and the
equivalent norm, we obtain

Jo(u) = %Ilullp - JIOF(t, u(t))At - C—rLOw(t)u(t)th

q
< Ljup o [ 1Rt u(e)iaes & maxo(t)[ |uo)iar
< —|\\Uu , U — maxw u
p I q te] 0
< l||u||P +K u(t)| At + gllwll lull?,
p ° g 7
1 o b"q
P r T, |19
< P+ Kl + & ol s | T
1 b
< full + K || 102w,
p r ((X+ 1) Ly
o b“q T, |19
el o Dful]}s

1
< Ellullp + o llul” + ey lull?,

(94)
which implies that ], is well defined on WZ’)‘;.
(ii) Let
() = 2 [oDful" = E(t u(t) = Zw(®)lul’. (95)

Then, we can easily show that for all u, v € W}?, and for
A-ae. te],

1(1
= lim —{}—)|3D‘t"(u+sv)|p—F(t,u+sv) - %w(t)\u+sv|q

_ 1_1) |3Dgu|" + F(t,u(t)) + %w(t)lulq}

= [1Dfu(t)[" (ADFu(t) Div(t)) = (VE(t,u(1)), (1))

= ow(t)|u(t)| " (u(t), v(1)).
(96)
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Hence, in view of the Lagrange mean value theorem, (87)
and (42), there exists a real number « such that [« | <|s| and

I (u(t) +sv(t)) - T (u(t))
= ‘ED?(IJ +Kv) ‘p—2 (ID‘;‘(u + KV),ED?V(t))
— (VE(t, (u+xv)),v) —ow(t)|(u+ Kv)|‘7’2((u +Kv), V)
< ‘ID;"(u + KV)‘IH ’ID‘:V‘ = (VE(t, (u+xv)),v)

—ow(t)|u+ xv| 7! [v] < ‘ID‘tx(u + KV)‘IH ’ID?V‘
r

- F(t, (u+ +olo(®)||u+xv]d!
LB (e )y + ofa(t) a4 ]

p-1
ZD‘:(u+Kv)‘

T o
< <DV

r r
- ——Klu+xv|'v
u+xy

-1

+aw(t)||u+ x|y < 'plv

P
DY (u+ ;cv)‘

—rK|u+ KV\)\H [v| + olw(t)||u+ K1/|q_1 [v|

P-l‘

P
< ‘aTD:xu :D‘:v + ZD‘:V +rK|u|’_1|v|+rK|v|r

-1
+olw()][u|"v] +alw(t)]|v]*.

(97)

On the other hand, in view of Hélder inequality on time
scales, we see that

J /()

IDtu(n) || SDtv(r) | At

= (J]o [ED‘E‘u(t) \Hr/@_l)At) e (J}O | Dfv(t) ‘PAt) "

182727 i Y 237

)
LA

J Juortiviey 14

< <J1° [|“(f)|cfl]</(c_1)At> o (Lo (1) |PAt> v

= |||u|"1|||LZ/<<—1> il

(98)

for ¢=r or ¢=g. Because w is bounded, then, from the
above inequalities, we conclude that the expression (97)
is in L}(]).

As a result, in view of the dominated convergence theo-
rem on time scales, one gets

o Jou(8) + 5v(6) = 1, ()

- | Jeppuo) Gt pvce) a

(99)
- | e

—o| WOl (o), wv)ar
J

That is to say, ], is Gateaux differentiable.
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In what follows, we prove that the Gateaux derivative of
J, is continuous.

First, we verify that H' : W32, — (WZ’ZJ* is continuous.
Taking into account (88), we have

J}OWF(t,un(t))—VF(t,u(t))|2At
SJ (IVE(t, u, (1)) |+IVE(t, u(t)) | )>At
]0
SZJ (|VF(t,un(t))|2+|VF(t,u(t))\2)At (100)
]0
<2r’K? 2(r-1) 2(r-1)
<2 KJI0(|un(t)| + [u(t)] )At

< 2P2K> (||un||§g—1>+||u||§g-l>) (b-a),

which combining with u,, —> u in L% and Lebesgue’s dom-
inated convergence theorem on time scales leads to

(J |VF(t,u,,(t))—VF(t,u(t))|2At)m—>o, n— oco. (101)
]D

Namely,

VE(t,u,) — VF(t,u), inLy(J,RY). (102)

Let {u,}, u € WyP. such that u, — uin WyP. (n — o).
Using the Holder inequality on time scales and (73) in Propo-
sition 45, we can obtain

|5 (1) _HI(”)H(WZI;*)*

=VEM§;}’)H1/H:1 (H'(u,J—H'(u))v‘
= sup JO(VF(t,un(t))—VF(t,u(t)))v(t)At‘
vew lvi=1 17

IN

sup  IVEC 14, (-)=VEC, ()l Iv(:) 2
vews? vi=1
ba T
sup  [IVF(, “n('))_VF("”('))”LZm’ “vaHLi

vsWZ’i,r,HvH:l

IN

=C sup

vewyrvi=1

IVEC, ()= ()l — 0.

(103)
So, H' (u) is continuous.

Next, we will prove J € C'(W32,, R). For any given u,
ve WZ”I;, by the Holder inequality on time scales, we have
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(@) =] epruol” Corue) Ioscat
sJﬂDf‘u(t)
(J |TTD¢x |p 1\ /(= I)At> (p=L)ip
.
(J }TDoc |PAt) 1
,
J,

T b\ 1
) )
( TDru()| At) Wl = =t -

P! |]jD‘;‘v(t) |At

(104)

That is, J'(u) is bounded. It is obvious that J'(u) is lin-

ear. Hence, for any ue Wy, J'(u) € (WZ’,I;)*.

T
Define g : W32, — I4()), g(u) = DfulP~?, Du, Vu €
WL, where 1/p + 1/p" = 1. Now, it is time for us to demon-

strate g is continuous in the following two cases:

(1) If pe(2,00), then, for u,ve WP, using Hélder
inequality on time scales, we can deduce that

j lg(u) - g(v)|P ¢

gl

J !TDrxu_TDrxv|P |TDau|+|1fDocv|>P(P 2) At
N 105
{ TD;'u—j[D;*vyp )Pp At} (105)

-2\ PP 0-2) P02
x UU((|1D;‘L¢|+|;TD‘;‘v|)P<P ) At}
T

T T TR T ! (p-2
= I DFu= DIy IEDul+ S DpvI) 72

U
2T T T P
“ulP=?  Dfu—|) D¢V DSv| At

I/\

I/\

< Cllu = vl (lull+ vy e~

(2) If p e (1,2], then, for u,ve WZ’Z“ we have

| Jatw =gt as

:JO

J
< ﬁJ |3D‘;‘u—3D‘t"v|P P At < Cyllu—vl.
]U

'I]'Doc p—zTTD{x pszDa P’A (106)
a tul L tVI a2tV t

Consequently, when p > 1, g is continuous.
Now, for u, v € WZ”};, we will show that

' ) =T ) - <Klg(a) = g0l (107)
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In fact, for u,v e WZ’,‘;H by Holder inequality on time
scales, we have

17" @0) =T 0l
i ¢EW§;ﬁ|¢|\:1 ‘< = v>’
= s j\w (0" (Dfu(e), T Dfp (1)) At
(pEW wllel=1

‘J,JID:‘v(t) 2 (EDEv(e).LDEg(e)) A

- s || (o-0), “D%o(t))m\

eW™ lgl=1

< sup J|g (v)| [ Dfe(t)|At

peW? lgl=1J J*

1/p' 1/p
< sup < pAt) (J ‘ED‘t"(p}pAt>
Wi llgl=1 TN

lgt0 - 9)lyllel =g (w) - gl

(108)

Combining with the continuity of g, we see that Je
Cl(Wyl., R).
In conclusion, (ii) is proven. The proof is complete. [

We deduce from Lemma 51 and (87) that

Vg u)y=| [TDfu(t)’At—r| F(t,u(t))At

()| oot s

- aJ w(t)]u(r)|At.
J

It is easy to see that the energy functional ], is not
bounded below on the space WZ’fZH but it is bounded below
on a suitable subset of WZ’ff. In order to study problem (85),
we define the constraint set

N = {uEWZ’ff\{O}: <]/G(u),u>:O}. (110)

Note that 4/, contains every nonzero solution of (85),
and u € /' if and only if

w(t)|u(t)|1At = 0.

]0

(111)

Jull? - rJIOF(t,u(t))At—o- J

In order to get the existence of solutions, we decompose
N, into three parts: corresponding to local minima, local
maxima, and points of inflection are A-measurable sets
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defined as follows:

Ny = {u eNy:(p=DlullP —r(r- I)JIOF(t, u(t))At

-o(q- I)J](]w(t)|u(t)|th >0,

W= {ue/V (p—l)llullf’—r(r—l)J E(t, u(t)) At

—o(q- 1)Low

()74t <0 3,

N = {u eNg:(p—Dllulf —r(r- I)J F(t,u(t))At
]U

-o(q- 1)J}0w(t)|u(t)|th = 0}.

(112)

Next, we give some important attributes of /', 4 and
N2 Let p be such that 1/p+ 1/p=1 and put

(p—r)I(a)((e—1)p+1)7P
(q - 7)llwll o, b 4EP)

. (q —P)F’(oc)(((x — 1)1_) + 1>r/p (g-p)/(p-T)
Kr(q- r)b1+f’(lx—llp)

o=
(113)

Then, we have the following crucial result.
Lemma 52. If 0 € (0,7,), then //° =

Proof. We proceed by contradiction to show that #? = & for
all o € (0,7,). If there exists u, € 4?2, then, in view of (111),
we get

(o-nlwl ~o(a-)| w@Om®lar=0, (14
]0
(q—p)lluollp—r(q—r)J F(t, uy(t))At = 0. (115)
]0
By Proposition 45 and (114), we have
(p =)l =o(q - V)J w(t)|uy(t)|1At
]0
<o(q—7)llwllyblluglid,
. pla-1ip)g T
< _ (x
<bo(q- el o 107
b1+(¢x—1/p)q .
=@l Ii(a)((a—1)p+1)7 o™
(116)
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which implies that

(p - NIH(@) (o~ Dp+ )7 "7
NIl > ( g(q _ T)||w||oob1+q<"‘"”?) ) . (117)

Moreover, combining with Proposition 45, (88), and
(115), one has

(q=p)llugllP =r(q - r)JIOF(t, uy(t))At
<r(qg- r)J]0K|u0|rAt
< Kr(q—r1)llugll,b
© ) b(oc—l/p)r 'I]' .
= F(q—r) Fr<(x)((a_1)?+1)r/pH uOHLP
~ 1+(a=1/p)r .
=Klg=r) sl
(118)

Hence,

Jugl < <(q_

It follows from (47) that

Kr(q _ T)b1+<06—1/p)r

1/(p-r)
P (a)((a—1)p+ 1)r/p> . (119)

5o PoDI@)(@=Dp+ )™

" Nl (q - 1)l bR (120)

and that

gl ) > <<q —p)I"(@)((a = 1)p+ 1y/p> o)

KT’( )b1+ (a=1/p)r
(121)

Combining with (120) and (120), we gain that
(p—nI'(@)((a=-1p+1)7
(q _ T") ”wlloolerq(afl/p)

(@=pr@e-np
KT’( )b1+ a-1/p)r =1-

[

(122)

Namely, o >17,, which leads to a contradiction. This
completes the proof of Lemma 52. O

Lemma 53. If o € (0,7,), then ], is coercive and bounded
below on N ,.
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Proof. Let u € /¥, then, by (88) and Proposition 45, we gain

J F(t, u(t))AtsKJ lu(t)[" At < Kull b
J J°
Klerr(ot—l/p)

= @) (@-1Dp+1)7

Kb1+r(a—1/p)
= ——|ul".
(o) ((@=1)p+1)"

laDfull,  (123)

Hence, in view of (111), one gets

1 o
Jo(u) = I—)IIuHP —J F(t,u(t))At — —Low(t)|u(t)th

J° q

q-p r
= ||u||P—J F(t, u(t At+—J F(t, u(t))At

= P u)are 2| Rt u()

q-p q-r
= ||u||P——J F(t, u(f))At

» ) Fu)

_ K(g— bl+r((x—1/p)

S 4-7) — 5l

qp I’ (a)((ax=1)p+1)""

(124)

Since r < p < g, ], is coercive and bounded below on /.
The proof of Lemma 53 is now completed. O

Now as we know, the Nehari manifold is closely related
to the behavior of the functions ®,, : [0,00) — R defined as

0, (5) = J,(su). (125)

Such maps are called fibering maps. For u € WZ”};, we
define

O,(s) =Jo(su)

1 o
= 1—)|IsuIIP - J}UF(t, u(t))At - ajjow(t)|su(t)|th
ol ! oY w(t)|u
= P = LOF(t,u(t))At & LO (1)|u(t)1At.

(126)

Then, one obtains

@’(s) =" ullf - rsHJ F(t,u(t))At - asq_IJ w(t)|u(t)|1At,
]O

u
]0

(127)

0", (s)=(p- 1) 2ull’ - r(r- 1)3“2] F(t, u(t))At
P (128)
-o(q- l)sq’zj 0cu(t) lu(t)|1At.
J

Then, it is obvious to see that su € 4 iff @' (s) = 0, and
in particular, u €/, iff ©' (1) =0.
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Before using fiber mapping to study the behavior of
Nehari manifolds, let us introduce some symbols.

F= {u eWyP \{0}: | F(tu(t))At s 0},

]0

F= {ue W5\ {0}: F(t,u(t))At:O},
: (129)
IT* = {u eWRP \{0}: | w(t)|u(t)iAt S o},

]0

= {u e WP \{0}: | w(t)|u(t)|1At = 0}.

]0

We will study the fibering map ©®,, according to the signs
of flow(t)|u(t)\th and [, F(t, u(t))At. To this end, let us
define p, : [0,00) — R by setting

m@=¢%W—wWLMMMth (130)

Hence, for s> 0, one gets
@', (s) = ullf - rsHJ E(t,u(t))At —os1™! [ w(t)|u(t)|1At
]0 B ]U

= (ot -r| Fuwpar)
(131)

which implies that su € /# iff s is a solution of the following
equation:

p.() :rJ F(t,u(t))At. (132)

]0

Furthermore, obviously, p,(0) = 0 and

Pluls)=(p =) Hulf -~ o(q - r)Sq_r_ILOW(f) ju(t)[*At.

(133)
Lemma 54. If u € 2 N I1Y, then ®, has no critical point.

Proof. In this case, ®,(0)=0 and ®',(s)>0 for all s> 0,
which yields that ®, is strictly increasing and hence has no
critical point. The proof is complete. O

Lemma 55. If u € ZL N I1*, then ®, possesses a unique crit-
ical point that corresponds to a global maximum point. More-
over, there exists s, > 0 such that sy € &, and J,(syu) > 0.

Proof. In this case, there exists a unique s € (0, c0) such that
p',(5) = 0. In addition, p’,(s) > 0 for s € (0,5) and p',(s) <0
for s € (5,00). Note that p,(0)=0 and p,(s) — —co as s
— 00. So, for u€ &, there exists a unique s, such that
Pu(so) = o F(t, u(t))At. Consequently, according to (131),
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we get @ (s) >0 for 0 <s<s,and @ (s) <0 fors >s,. That
is, ®, is increasing on (0,s,) and decreasing on (s, c0).
Therefore, ®, has exactly one critical point at sy, which is
a global maximum point. Thus, by (128), syu € .#,. The
proof is complete. O

Lemma 56. If u € F* N I1°, then ©, possesses a unique crit-
ical point that corresponds to a global minimum point. More-
over, there exists s; > 0 such that s; € & and J ,(s;u) <0.

Proof. In this case, it is easy to see that p, (0) =0and p’,,(s) > 0
for all s > 0, which implies that p,, is strictly increasing Since
u € F", there exists a unique s, > 0 such that p, (s;) = [, F o
u(t))At. This implies that ®,, is decreasing on (0, s, ), increas-
ing on (s;,00) and @', (s,) = 0. Thus, ®, has exactly one crit-
ical point corresponding to global minimum point. Hence,
s,u € N';. Moreover, since J;(0) =0, then we have J (s, u)
< 0. The proof is complete. O

Lemma 57. If u € " N IT*, then there exists 17, > 0 such that
foro € (0,1,), ©, has a positive value and ®,, has exactly two
critical points that correspond to the local minimum and local
maximum. Moreover, there exists s, >0 such that s, € /N,
and J,(s,u) <O0.

Proof. Let u € WZ’)I;. As in above, we define

_ P s
E,(s) = —llul? —O‘—J w(t)|u(t)|1At. (134)
P qlp
Then,
B (s) ="M ulP - qu’IJ w(t)|u(t)|?At. (135)
]0
Let £, (s) = 0, we have
1(q-p)
. flull?
S=| ————— , (136)
(of]owmw(r)m
which is the maximum value point of Z,. Moreover,

one has

i P aA
5,0 = "’qJO (0lu() 14t

—sp<Pllu||P a— (t)|u(t)|w)
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) (a-p)/(q-p)

¥ <l s (LI

q

' J ,o‘”(t)|“(t>%>

1 1 o l_l
=5P(E||u||f’— a||u||p> =7 "p(ﬁ q)

(||| 1/(q-p) -

o [Lw(D)|u(t)|1At [l (P (aP)

<0f/°w(t)|”(t)|th>
C_ 1) ﬂ pl(a-p)

q) \ o[ pw(t)|u(t)|At
= G? - l) I U pl(q-p)
q) \ o ow(t)[u(t)|?At ,

240 = (0= V¥ Il (=172 wlofu(npar

J

=2 (p- 1)1l ~o(a - )3? | wlutoa
]O

. , lual? (@-p)/(q-p)
=s {(P— Dllul® - o(q-1) (‘MW)

. Jjow(t)u(t)r]ﬂt]
=2 [(p =l - (g~ DlllP] =¥ Null (p - q)

ul? (¢-21(ap)
= — [ i S P
(p=a) (0 [ (1) u(t)mt> Il

”u”p /(q-p) (p-2)/(q-p)
=(p-9) <0.
(oflow 3] u(t)|th)

(137)

In consideration of Proposition 45, we deduce that

(11 ) p(a-p)
E,0)= (‘; 5) <0J“]0w t)|u(t)th>

2q—p( Jul? )PW
ap \oll L,
P

ulld
S [[ul

p/(q-p)
F (ballwll (o-17p) 1ri(a)((a-1)p+ 1)""’) ||u||q>
p<rq<a> (oclpﬂ)q“’)” " s

aIIwII b1+q a-1/p)

KN
|

=P
ap

(138)

which is independent of u. We now prove that there exists
1, >0 such that ®',(3) > 0. Taking (16) and Proposition 45
into consideration, one obtains
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E’J F(t,u(t))At < §’J Klu(t)|"At
J° J°

<FKull b

"u"p (q P) b1+ a-1/p) .
“\erawmora)  F@ienpe
p9(t) (0)((a=1)p+1)
Kb1+(¢x—1/p)r

lul? (4-p)
("fﬂ)g |th> I'"(@)((a=1)p+1)"
(IuII’ Py ) (a-p)
KpiHe-1ip)r ]9 r/(q-p)
@@= 0pr )7 (oLoga)w(t)m)

~ Kbl+(o¢—1/p)r pq rip < ip
S IM(a)((@-1)p+1)7 <q—P> (MG

(139)

Hence, we have

0,(5)=5,() - E’J]OF(t, u(t)) At

KbH(zx—l/p)r Pq rlp o orip
I"(@)((«-1)p+1)" <q—P> &)

Kb1+(oc—1/p)r ] ( rq >r/p
[(a)((a=1)p+ 1) \q=p

KbH(zx—l/p)r Pq rip
I (@)((a-1)p+ 1) (q-P>

_8r/P 6(}7#)/}) _ KbH(“illp)r ( P4 )r/p >0
I"(a)((a—1)p+1)"? \q—p ’

(140)

ZEu(E) -

>8-08"

— 8r/p+(p—r)/p _6r/p

for 0 < 0 <#,, where § is the constant given in (138) and
—pT(@)((@-1)p+ 1)
qp ”w”mblvtq((xfl/p)

@@= np+ 1) (q-p\]
' Kpitr(e-1ip) ’ pq .

m=
(141)

The same arguments used in the proof of Lemma 55
show that ®, has exactly two critical points which corre-
spond to the local minimum and local maximum. Further-
more, there exists s, > 0 such that s,u € #7 and J,(s,u) <0.
The proof of Lemma 57 is now completed. |

From now on, we define o, by

0 = min (7o, 1, )- (142)

Note that if 0 < 0 < g, then all the above related lemmas
are true.
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Lemma 58. Let u be a local minimizer for ], on subsets N}
or N of N, such that u¢ N°. Then, u is a critical of ] .

Proof. Since u is a minimizer for J, under the constraint
(143)

Then, applying the theory of Lagrange multipliers, we
get the existence of # € R such that

J' () =l (1) (144)
Therefore, one has
(T'ownu)=n(l'o(w,u) =n0",(1)=0,  (145)

but u ¢ 4 and so ®'"',(1) # 0. Hence, 7= 0, which gives the
proof of Lemma 58. The proof is complete. O

In the following, we assume that 1/2<a<1 and 1<r
< p < q. Let 0, be the constant given by (56). Then, the proof
of Theorem 50 is based on the following two propositions.

Proposition 59. Suppose that assumptions of Theorem 50
are satisfied. Then, for all 0< o <0, ], achieves its mini-
mum on N7

Proof. In view of o€ (0,0,) and Lemma 53, we have ],
which is bounded below on ./ and also on /. Therefore,
there exists a minimizing sequence {u;} ¢ /#7 such that

Jim 7, (1) = inf ], (1) (146)

As ], is coercive on #, {u;} is a bounded sequence in
WZ’f;+ up to a subsequence; there is {1} ¢ Wi, such that
et weakly in W32,

Let ue Wyl such that JpF(t u(t))At > 0. So, using
Lemmas 56 and 57, there is s; >0 such that s;u € #7 and
J,(u) <0. Therefore, uigr}‘gjg(u) <0

Because of {u; } c /, we have

Jo(uy) = (;17 + %) e llP <1 + 2) JIOF(t, u (1)) At, (147)

which yields that

(1 + 2) J}OF(t, (1)) At = (}7 + %) legl? = 7, (). (148)

Letting k go to infinity in the above equation, we obtain

(149)

J F(t, u,(£))At > 0.
]0
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Now, we declare that 1, — u,, strongly in WZ‘)‘I;. Other-
wise, we have

llu, I < liminf || [|P. (150)
k—00
Since @’ua (s;) =0, it follows from (150) that ®/uk (s,)>0

for sufficiently large k. Hence, we must have s; > 1.
However, s,u, € /7, and so,

Jo(s1ttg) <Jo(tts) < im Jo(u) = inf Jo(u),  (151)

which gives a contradiction. Thus, u, — u, strongly in
WZ’ff; as a consequence, u, € 4, =7 UNC. In addition,
it is easy to check by contradiction that u, € /#}. Therefore,
from (149), u, is a nontrivial solution of (85). The proof is
complete. O

Proposition 60. Suppose that assumptions of Theorem 50
are satisfied. Then, for all 0< o <0, ], achieves its mini-
mum on N .

Proof. Let u € /. Hence, by the result of Lemma 55, we
obtain the existence of #, >0 such that J (u) >#,. There-
fore, there is a minimizing sequence {v,} c ./, such that

lim J,(v) = inf J (u)>0. (152)
k—00 ueN,

Furthermore, in view of Lemma 53, we know that ] is
coercive, so {v,} is a bounded sequence in WZ’)‘;+ up to a
subsequence, there is {v,} C Wf\’f;+ such that v, — v, weakly
. o,p
in Wy

Because of {v;} ¢/, then we have

o(;-3)| wmra=rm- (5 - )mr

(153)

Letting k go to infinity in (153), it follows from (152) that

J w(t)|vi(t)|1At > 0. (154)
]0

Therefore, v, € II*, and so, ©, has a global maximum at
some point s. Consequently, sv, € 4.
On the other hand, v, € 4 implies that 1 is a global
maximum point for ©, , i.e,
Jo(Sthi) = ©,,(5) <Oy, (1) = J 5 (vi)- (155)
Now, as in the proof of Proposition 59, we assert that
Ve, — v, in WZ’ff. Assuming it is not true, then

[v, |IP < liminf [|v, |IP. (156)
k—00
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It follows from 4.23 that

R4 “
fo(fva)=i""o”p_§rj F(f)%(f))m“’ij w(t)|v, (t)|1At
p i ql)p
P
<liminf <% Il - g’J F(t, vi(1)) At
—00 ]0
1
-o% | womora)

< lim J,(50) =, (5) < inf J,(v)
=0,(1)= inf J(u),

(157)

which gives a contradiction. Therefore, v, — v, and so,
Ve €N UNY.

Using Lemma 52, we have /" = &, so v, is a minimizer
for J, on /.

On the other hand, by (22), v, is a nontrivial solution of
(1). Finally, since /', N A} =D, u, and v, are distinct. That
is, the result of Theorem 50 holds true. The proof is com-
plete. O

5. Conclusions

In this paper, we introduced a class of fractional Sobolev
spaces via the fractional derivative of Riemann-Liouville on
time scales and obtain some of their basic properties. As
an application, we use critical point theory to study the solv-
ability of a class of fractional boundary value problems on
time scales. The results and methods in this paper can also
be used to study the solvability of other boundary value
problems on time scales. At present, the concept of frac-
tional derivatives in different meanings is constantly being
proposed. Therefore, studying the theory and application
of fractional Sobolev spaces on time scales in other meanings
is our future direction.
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