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By the concept of fractional derivative of Riemann-Liouville on time scales, we first introduce fractional Sobolev spaces,
characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones on time
scales. Then, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivity,
separability, and some imbeddings. Finally, as an application, by constructing an appropriate variational setting, using fibering
mapping and Nehari manifolds, the existence of weak solutions for a class of fractional boundary value problems on time
scales is studied, and a result of the existence of weak solutions for this problem is obtained.

1. Introduction

The Sobolev space theory was developed by the Soviet math-
ematician S.L. Sobolev in the 1930s. It was created for the
needs of studying modern theories of differential equations
and studying many problems in the fields related to mathe-
matical analysis. It has become a basic content in mathemat-
ics. In order to study the existence of solutions of differential
and difference equations under a unified framework, papers
[1–3] study some Sobolev space theories on time scales.

In the past few decades, fractional calculus and fractional
differential equations have attracted widespread attention in
the field of differential equations, as well as in applied math-
ematics and science. In addition to true mathematical inter-
est and curiosity, this trend is also driven by interesting
scientific and engineering applications that have produced
fractional differential equation models to better describe
(time) memory effects and (space) nonlocal phenomena
[4–9]. It is the rise of these applications that give new vitality
to the field of fractional calculus and fractional differential
equations and call for further research in this field.

In order to unify the discrete analysis and continuous
analysis, Hilger [10] proposed the time scale theory and
established its related basic theory [11, 12]. So far, the study
of time scale theory has attracted worldwide attention. It has

been widely used in engineering, physics, economics, popu-
lation dynamics, cybernetics, and other fields [13–17].

As far as we know, no one has studied the fractional
Sobolev space and its properties on time scales through the
Riemann-Liouville derivative. In order to fill this gap, the
main purpose of this article is to establish the fractional
Sobolev space on time scales via the Riemann-Liouville
derivative and to study its basic properties. Then, as an
application of our new theory, we study the solvability of a
class of fractional boundary value problems on time scales.

2. Preliminaries

In this section, we briefly collect some basic known nota-
tions, definitions, and results that will be used later.

A time scale T is an arbitrary nonempty closed subset of
the real set ℝ with the topology and ordering inherited from
ℝ. Throughout this paper, we denote by T a time scale. We
will use the following notations: J0ℝ = ½a, bÞ, Jℝ = ½a, b�, J0 =
J0ℝ ∩ T , J = Jℝ ∩ T , Jk = ½a, ρðbÞ� ∩ T .

Definition 1 (see [18]). For t ∈ T , we define the forward jump
operator σ : T ⟶ T by σðtÞ≔ inf fs ∈ T : s > tg, while the
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backward jump operator ρ : T ⟶ T is defined by ρðtÞ≔
sup fs ∈ T : s < tg:

Remark 2 (see [18]).

(1) In Definition 1, we put inf∅ = sup T (i.e., σðtÞ = t if
T has a maximum t) and sup∅ = inf T (i.e., ρðtÞ =
t if T has a minimum t), where ∅ denotes the empty
set.

(2) If σðtÞ > t, we say that t is right-scattered, while if ρ
ðtÞ < t, we say that t is left-scattered. Points that are
right-scattered and left-scattered at the same time
are called isolated.

(3) If t < sup T and σðtÞ = t, we say that t is right-dense,
while if t > inf T and ρðtÞ = t, we say that t is left-
dense. Points that are right-dense and left-dense at
the same time are called dense

(4) The graininess function μ : T ⟶ ½0,∞Þ is defined
by μðtÞ≔ σðtÞ − t.

(5) The derivative makes use of the set T k, which is
derived from the time scale T as follows: if T has a
left-scattered maximum M, then T k ≔ T \ fMg; oth-
erwise, T k ≔ T .

Definition 3 [18]. Assume that f : T ⟶ℝ is a function and
let t ∈ T k. Then, we define f ΔðtÞ to be the number (provided
it exists) with the property that given any ε > 0, there is a
neighborhood U of t (i.e., U = ðt − δ, t + δÞ ∩ T for some δ
> 0) such that

f σ tð Þð Þ − f sð Þ − f Δ tð Þ σ tð Þ − sð Þ
��� ��� ≤ ε σ tð Þ − sj j, ð1Þ

for all s ∈U . We call f ΔðtÞ the delta (or Hilger) derivative of
f at t. Moreover, we say that f is delta (or Hilger) differen-
tiable (or in short: differentiable) on T k provided f ΔðtÞ exists
for all t ∈ T k. The function f Δ : T k ⟶ℝ is then called the
(delta) derivative of f on T k.

Definition 4 (see [18]). A function f : T ⟶ℝ is called rd
-continuous provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points
in T . The set of rd -continuous functions f : T ⟶ℝ will be
denoted by Crd = CrdðTÞ = CrdðT ,ℝÞ: The set of functions
f : T ⟶ℝ that are differentiable and whose derivative is r
d -continuous is denoted by C1

rd = C1
rdðTÞ = C1

rdðT ,ℝÞ:

Definition 5 (see [19]). Let J denote a closed bounded inter-
val in T . A function F : J ⟶ℝ is called a delta antideriva-
tive of function f : J ⟶ℝ provided F is continuous on J ,
delta differentiable at J , and FΔðtÞ = f ðtÞ for all t ∈ J . Then,
we define the Δ -integral of f from a to b by

Ð b
a f ðtÞΔt ≔

FðbÞ − FðaÞ:

Proposition 6 (see [20]). f is an increasing continuous func-
tion on J . If F is the extension of f to the real interval Jℝ
given by

F sð Þ≔
f sð Þ, if s ∈ T ,
f tð Þ, if s ∈ t, σ tð Þð Þ ∉ T ,

(
ð2Þ

then
Ð b
a f ðtÞΔt ≤

Ð b
aFðtÞdt:

Definition 7 (see [19]) (fractional integral on time scales).
Suppose h is an integrable function on J . Let 0 < α ≤ 1. The
left fractional integral of order α of h is defined by

T
a I

α
t h tð Þ≔

ðt
a

t − sð Þα−1
Γ αð Þ h sð ÞΔs: ð3Þ

The right fractional integral of order α of h is defined by

T
t I

α
bh tð Þ≔

ðb
t

s − tð Þα−1
Γ αð Þ h sð ÞΔs, ð4Þ

where Γ is the gamma function.

Definition 8 (see [19]) (Riemann-Liouville fractional deriva-
tive on time scales). Let t ∈ T , 0 < α ≤ 1, and h : T ⟶ℝ. The
left Riemann-Liouville fractional derivative of order α of h is
defined by

T
aD

α
t h tð Þ≔ T

a I
1−α
t h tð Þ

� �Δ
= 1
Γ 1 − αð Þ

ðt
a
t − sð Þ−αh sð ÞΔs

� �Δ

:

ð5Þ

The right Riemann-Liouville fractional derivative of
order α of h is defined by

T
aD

α
t h tð Þ≔ T

t I
1−α
b h tð Þ

� �Δ
= −1
Γ 1 − αð Þ

ðb
t
t − sð Þ−αh sð ÞΔs

� �Δ

:

ð6Þ

Proposition 9 (see [19]). Let 0 < α ≤ 1, we have T
aD

α
t =

Δ ∘ T
a I

1−α
t .

Proposition 10 (see [19]). For any function h that is integra-
ble on J , the Riemann-Liouville Δ-fractional integral satisfies
T
v I

α
t ∘

T
a I

β
t = T

a I
α+β
t for α > 0 and β > 0.

Proposition 11 (see [19]). For any function h that is integra-
ble on J , one has T

aD
α
t ∘

T
a I

α
t h = h.

Corollary 12 (see [19]). For 0 < α ≤ 1, we have T
aD

α
t ∘

T
aD

−α
t =

Id and T
a I

−α
t ∘ T

a I
α
t = Id, where Id denotes the identity operator.
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Theorem 13 (see [19]). Let f ∈ CðJÞ and α > 0, then f ∈
T
a I

α
t ðJÞ iff

T
a I

1−α
t f ∈ C1 Jð Þ,  T

a I
1−α
t f tð Þ

� �
t=aj = 0: ð7Þ

Theorem 14 (see [19]). Let α > 0 and f ∈ CðJÞ satisfy the
condition in Theorem 13. Then,

T
a I

α
t ∘

T
aD

α
t

� �
fð Þ = f : ð8Þ

Theorem 15 (see [2]). A function f : J ⟶ℝN is absolutely
continuous on J iff f is Δ -differentiable Δ-a.e. on J0 and

f tð Þ = f að Þ +
ð

a,t½ ÞT
f Δ sð ÞΔs, ∀t ∈ J: ð9Þ

Theorem 16 (see [21]). A function f : T ⟶ℝ is absolutely
continuous on T iff the following conditions are satisfied:

(i) f is Δ-differentiable Δ-a.e. on J0 and f Δ ∈ L1ðTÞ
(ii) The equality

f tð Þ = f að Þ +
ð

a,t½ ÞT
f Δ sð ÞΔs, ð10Þ

holds for every t ∈ T .

Theorem 17 (see [22]). A function q : Jℝ ⟶ℝm is abso-
lutely continuous iff there exist a constant c ∈ℝm and a func-
tion φ ∈ L1 such that

q tð Þ = c + I1a+φ
� �

tð Þ, t ∈ Jℝ: ð11Þ

In this case, we have qðaÞ = c and q′ðtÞ = φðtÞ, t ∈ Jℝ a.e.

Theorem 18 (see [2]) (integral representation). Let α ∈ ð0, 1Þ
and q ∈ L1. Then, q has a left-sided Riemann-Liouville deriv-
ative Dα

a+q of order α iff there exist a constant c ∈ℝm and a
function φ ∈ L1 such that

q tð Þ = 1
Γ αð Þ

c

t − að Þ1−α + Iαa+φð Þ tð Þ, t ∈ Jℝ a:e: ð12Þ

In this case, we have I1−αa+ qðaÞ = c and ðDα
a+qÞðtÞ = φðtÞ,

t ∈ Jℝ a.e.

Theorem 19 (see [23]). Let α > 0, p, q ≥ 1, and 1/p + 1/q ≤ 1
+ α, where p ≠ 1 and q ≠ 1 in the case when 1/p + 1/q = 1 +
α. Moreover, let

T
a I

α
t Lpð Þ≔ f : f = T

a I
α
t g, g ∈ Lp Jð Þ

n o
,

T
t I

α

b Lpð Þ≔ f : f = T
t I

α

bg, g ∈ Lp Jð Þ
n o

,
ð13Þ

then the following integration by part formulas hold.

(a) If φ ∈ LpðJÞ and ψ ∈ LqðJÞ, then
ð
J0
φ tð Þ T

a I
α
t ψ

� �
tð ÞΔt =

ð
J0
ψ tð Þ T

t I
α
t φ

� �
tð ÞΔt: ð14Þ

(b) If g ∈ T
t I

α
bðLpÞ and f ∈ T

t I
α
bðLpÞ, thenð

J0
g tð Þ T

aD
α
t f

� �
tð ÞΔt =

ð
J0
f tð Þ T

t D
α
bg

� �
tð ÞΔt: ð15Þ

Lemma 20 (see [1]). Let f ∈ L1ΔðJ0Þ. Then, the followingð
J0

f · φΔ� �
sð ÞΔs = 0, for every φ ∈ C1

0,rd Jk
� �

, ð16Þ

holds iff there exists a constant c ∈ℝ such that

f ≡ cΔ − a:e: on J0: ð17Þ

Definition 21 (see [1]). Let p ∈ℝ be such that p ≥ 1 and u
: J ⟶ℝ. Say that u belongs to W1,p

Δ ðJÞ iff u ∈ LpΔðJ0Þ and
there exists g : Jk ⟶ℝ such that g ∈ LpΔðJ0Þ andð
J0

u · φΔ� �
sð ÞΔs = −

ð
J0
g · φσð Þ sð ÞΔs, ∀φ ∈ C1

0,rd Jk
� �

, ð18Þ

with

C1
0,rd Jk
� �

≔ f : J ⟶ℝ : f ∈ C1
rd Jk
� �

, f að Þ = f bð Þ
n o

, ð19Þ

where C1
rdðJkÞ is the set of all continuous functions on J such

that they are Δ-differential on Jk and their Δ-derivatives are
rd-continuous on Jk.

Theorem 22 (see [1]). Let p ∈ℝ be such that p ≥ 1. Then, the
set LpΔðJ0Þ is a Banach space together with the norm defined
for every f ∈ LpΔðJ0Þ as

fk kLpΔ ≔

ð
J0
fj jp sð ÞΔs

	 
1/p
, if p ∈ℝ,

inf C ∈ℝ : fj j ≤ C Δ − a:e:on J0
� �

, if p = +∞:

8><
>:

ð20Þ

Moreover, L2ΔðJ0Þ is a Hilbert space together with the
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inner product given for every ð f , gÞ ∈ L2ΔðJ0Þ × L2ΔðJ0Þ by

f , gð ÞL2Δ ≔
ð
J0
f sð Þ · g sð ÞΔs: ð21Þ

Theorem 23 (see [24]). Fractional integration operators are
bounded in LpðJℝÞ, i.e., the following estimate

Iαa+φk kLp a,bð Þ ≤
b − að ÞReα
Reα Γ αð Þj j φk kLp Jℝð Þ, Reα > 0, ð22Þ

holds.

Proposition 24 (see [1]). Suppose p ∈ℝ and p ≥ 1. Let p′
∈ℝ be such that 1/p′ + 1/p′ = 1. Then, if f ∈ LpΔðJ0Þ and

g ∈ Lp′Δ ðJ0Þ, then f · g ∈ L1ΔðJ0Þ and

f · gk kL1Δ ≤ fk kLpΔ · gk kLpΔ′: ð23Þ

This expression is called Hölder’s inequality and Cauchy-
Schwarz’s inequality whenever p = 2.

Theorem 25 (see [25]) (the first mean value theorem). Let f
and g be bounded and integrable functions on J , and let g be
nonnegative (or nonpositive) on J . Let us set

m = inf f tð Þ: t ∈ J0
� �

, M = sup f tð Þ: t ∈ J0
� �

: ð24Þ

Then, there exists a real number Λ satisfying the inequal-
ities m ≤Λ ≤M such that

ðb
a
f tð Þg tð ÞΔt =Λ

ðb
a
g tð ÞΔt: ð25Þ

Corollary 26 (see [25]). Let f be an integrable function on J
and letm andM be the infimum and supremum, respectively,
of f on J0. Then, there exists a number Λ between m and M
such that

Ð b
a f ðtÞΔt =Λðb − aÞ:

Theorem 27 (see [25]). Let f be a function defined on J and
let c ∈ T with a < c < b. If f is Δ-integrable from a to c and
from c to b, then f is Δ-integrable from a to b and

ðb
a
f tð ÞΔt =

ðc
a
f tð ÞΔt +

ðb
c
f tð ÞΔt: ð26Þ

Lemma 28 (see [26]) (a time scale version of the Arzelà-
Ascoli theorem). Let X be a subset of CðJ ,ℝÞ satisfying the
following conditions:

(i) X is bounded

(ii) For any given ε > 0, there exists δ > 0 such that t1,
t2 ∈ J , jt1 − t2j < δ implies j f ðt1Þ − f ðt2Þj < ε for all
f ∈ X

Then, X is relatively compact.

3. Fractional Sobolev Spaces on Time Scales and
Their Properties

In this section, we present and prove some lemmas, proposi-
tions, and theorems, which are of utmost significance for our
main results.

In the following, let 0 < a < b. Inspired by Theorems 15–
18, we give the following definition.

Definition 29. Let 0 < α ≤ 1. By ACα,1
Δ,a+ðJ ,ℝNÞ, we denote the

set of all functions f : J ⟶ℝN that have the representation

f tð Þ = 1
Γ αð Þ

c

t − að Þ1−α + T
a I

α
t φ tð Þ,  t ∈ J Δ − a:e:, ð27Þ

with c ∈ℝN and φ ∈ L1Δ.
Then, we have the following result.

Theorem 30. Let 0 < α ≤ 1 and f ∈ L1Δ. Then, function f has
the left Riemann-Liouville derivative T

a D
a
t f of order α on the

interval J iff f ∈ ACα,1
Δ,a+ðJ ,ℝNÞ; that is, f has the representa-

tion (27). In such a case,

T
a I

1−α
t f

� �
að Þ = c,  T

aD
α

t f
� �

tð Þ = φ tð Þ, t ∈ J Δ‐a:e: ð28Þ

Proof. Let us assume that f ∈ L1Δ has a left-sided Riemann-

Liouville derivative T
aD

α
t f . This means that T

a I
1−α
t f is (identi-

fied to) an absolutely continuous function. From the integral
representation of Theorems 15 and 17, there exist a constant
c ∈ℝN and a function φ ∈ L1Δ such that

T
a I

1−α
t f

� �
tð Þ = c + T

a I
1
t φ

� �
tð Þ, t ∈ J , ð29Þ

with T
a I

1−α
t f ðaÞ = c and ððTa I1−αt f ÞðtÞÞΔ = T

aD
α
t f ðtÞ = φðtÞ, t ∈ J

Δ − a:e:
By Proposition 10 and applying T

a I
α
t to (29), we obtain

T
a I

1
t f

� �
tð Þ = T

a I
α

t c
� �

tð Þ + T
a I

1
t
T
a I

α

t φ
� �

tð Þ, t ∈ J Δ‐a:e:

ð30Þ

The result follows from the Δ-differentiability of (30).
Conversely, let us assume that (27) holds true. From

Proposition 10 and applying T
a I

1−a
t to (27), we obtain

T
a I

1−α
t f

� �
tð Þ = c + T

a I
1
t φ

� �
tð Þ, t ∈ J Δ‐a:e:, ð31Þ

and then, ðTa I1−αt f Þ has an absolutely continuous representa-
tion. Further, f has a left-sided Riemann-Liouville derivative
T
aD

α
t f . This completes the proof.
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Remark 31.

(i) By ACα,p
Δ,a+ð1 ≤ p<∞Þ, we denote the set of all func-

tions f : J ⟶ℝN possessing representation (27)
with c ∈ℝN and φ ∈ LpΔ

(ii) It is easy to see that Theorem 30 implies that for any
1 ≤ p <∞, f has the left Riemann-Liouville deriva-
tive T

aD
α
t f ∈ L

p
Δ iff f ∈ ACα,p

Δ,a+ ; that is, f has the repre-
sentation (27) with φ ∈ LpΔ

Definition 32. Let 0 < α ≤ 1 and let 1 ≤ p <∞. By the left
Sobolev space of order α, we will mean the set Wα,p

Δ,a+ =
Wα,p

Δ,a+ðJ ,ℝNÞ given by

Wα,p
Δ,a+ ≔ u ∈ LpΔ;∃g ∈ LpΔ,∀φ ∈ C∞

c,rd such that
ð
J0
u tð Þ ⋅ Tt D

α

bφ tð ÞΔt



=
ð
J0
g tð Þ ⋅ φ tð ÞΔt

�
:

ð32Þ

Remark 33. A function g given in Definition 32 will be called
the weak left fractional derivative of order 0 < α ≤ 1 of u; let
us denote it by Tu

α
a+ . The uniqueness of this weak derivative

follows from 1.

We have the following characterization of Wα,p
Δ,a+ .

Theorem 34. If 0 < α ≤ 1 and 1 ≤ p <∞, then Wα,p
Δ,a+ = A

Cα,p
Δ,a+ ∩ LpΔ:

Proof. On the one hand, if u ∈ ACα,p
Δ,a+ ∩ LpΔ, then from Theo-

rem 30, it follows that u has derivative T
aD

α
t u ∈ L

p
Δ. Theorem

19 implies that

ð
J0
u tð ÞTt D

α

bφ tð ÞΔt =
ð
J0

T
aD

α

t u
� �

tð Þφ tð ÞΔt, ð33Þ

for any φ ∈ C∞
c,rd. So, u ∈W

α,p
Δ,a+ with Tu

α
a+ = g = T

aD
α
t u ∈ L

p
Δ.

On the other hand, if u ∈Wα,p
Δ,a+ , then u ∈ LpΔ, and there

exists a function g ∈ LpΔ such that

ð
J0
u tð ÞTt D

α
bφ tð ÞΔt =

ð
J0
g tð Þφ tð ÞΔt, ð34Þ

for any φ ∈ C∞
c,rd. To show that u ∈ ACα,p

Δ,a+ ∩ LpΔ, it suffices to
check (Theorem 30 and definition of ACα,p

Δ,a+) that u pos-
sesses the left Riemann-Liouville derivative of order α, which
belongs to LpΔ; that is,

T
a I

1−α
t u is absolutely continuous on J

and its delta derivative of α order (existing Δ-a.e. on J)
belongs to LpΔ.

In fact, let φ ∈ C∞
c,rd, then φ ∈ T

t D
α
bðCrdÞ and T

t D
α
bφ = −

ðTt I1−αb ÞΔ. From Theorem 19, it follows that

ð
J0
u tð ÞTt D

α

bφ tð ÞΔt =
ð
J0
u tð Þ −T

t I
1−α
b φ

� �Δ
tð ÞΔt

=
ð
J0

T
aD

1−α
t

T
a I

1−α
t u

� �
tð Þ −T

t I
1−α
b φ

� �Δ
tð ÞΔt

=
ð
J0

T
a I

1−α
t u

� �
tð Þ −φð ÞΔ tð ÞΔt

= −
ð
J0

T
a I

1−α
t u

� �
tð ÞφΔ tð ÞΔt:

ð35Þ

In view of (34) and (35), we get

ð
J0

T
a I

1−α
t u

� �
tð ÞφΔ tð ÞΔt = −

ð
J0
g tð Þφ tð ÞΔt, ð36Þ

for any φ ∈ C∞
c,rd. So,

T
a I

1−α
t u ∈W1,p

Δ,a+ . Consequently,
T
a I

1−α
t u is

absolutely continuous and its delta derivative is equal Δ-a.e.
on ½a, b�T to g ∈ LpΔ. The proof is complete.

From the proof of Theorem 34 and the uniqueness of the
weak fractional derivative, the following theorem follows.

Theorem 35. If 0 < α ≤ 1 and 1 ≤ p <∞, then the weak left
fractional derivative Tu

α
a+ of a function u ∈Wα,p

Δ,a+ coincides
with its left Riemann-Liouville fractional derivative T

aD
α
t u

Δ-a.e. on J .

Remark 36.

(1) If 0 < α ≤ 1 and ð1 − αÞp < 1, then ACα,p
Δ,a+ ⊂ LpΔ and,

consequently,

Wα,p
Δ,a+ = ACα,p

Δ,a+ ∩ LpΔ = ACα,p
Δ,a+ : ð37Þ

(2) If 0 < α ≤ 1 and ð1 − αÞp ≥ 1, then Wα,p
Δ,a+ = ACα,p

Δ,a+ ∩
LpΔ is the set of all functions belonging to ACα,p

Δ,a+ that

satisfy the condition ðTa I1−αt f ÞðaÞ = 0

By using the definition of Wα,p
Δ,a+ with 0 < α ≤ 1 and

Theorem 35, one can easily prove the following result.

Theorem 37. Let 0 < α ≤ 1, 1 ≤ p <∞, and u ∈ LpΔ. Then, u
∈Wα,p

Δ,a+ iff there exists a function g ∈ LpΔ such that

ð
J0
u tð ÞTt D

α

bφ tð ÞΔt =
ð
J0
g tð Þφ tð ÞΔt, φ ∈ C∞

c,rd: ð38Þ

In such a case, there exists the left Riemann-Liouville
derivative T

aD
α
t u of u and g = T

aD
α
t u.
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Remark 38. Function g will be called the weak left fractional
derivative of u ∈Wα,p

Δ,a+ of order α. Its uniqueness follows
from [1]. From the above theorem, it follows that it coin-
cides with an appropriate Riemann-Liouville derivative.

Let us fix 0 < α ≤ 1 and consider in the space Wα,p
Δ,a+ a

norm k·kWα,p
Δ,a+

given by

uk kpWα,p
Δ,a+

= uk kpLpΔ +
T
aD

α

t u
��� ���p

LpΔ

, u ∈Wα,p
Δ,a+ : ð39Þ

(Here k·kpLΔ denotes the delta norm in LpΔ (Theorem 22)).

Lemma 39. Let 0 < α ≤ 1 and 1 ≤ p <∞, then

T
a I

α

t φ
��� ���p

LpΔ

≤ Kp φk kpLpΔ , ð40Þ

where K = ðb − aÞα/Γðα + 1Þ. That is to say, the fractional
integration operator is bounded in LpΔ.

Proof. The conclusion follows from Theorem 23, Proposi-
tion 24, and Proposition 6. The proof is complete.

Theorem 40. If 0 < α ≤ 1, then the norm k·kWα,p
Δ,a+

is equiva-

lent to the norm k·ka,Wα,p
Δ,a+

given by

uk kpa,Wα,p
Δ,a+

= T
a I

1−α
t u að Þ

��� ���p + T
aD

α

t u
��� ���p

LpΔ

, u ∈Wα,p
Δ,a+ : ð41Þ

Proof.

(1) Assume that ð1 − αÞp < 1. On the one hand, in view of
Remarks 31 and 36, for u ∈Wα,p

Δ,a+ , we can write it as

u tð Þ = 1
Γ αð Þ

c

t − að Þ1−α + T
a I

α

t φ tð Þ, ð42Þ

with c ∈ℝN and φ ∈ LpΔ. Since ðt − aÞðα−1Þp is an increasing
monotone function, by using Proposition 6, we can write

that
Ð
J0ðt − aÞðα−1ÞpΔt ≤ Ð J0ℝðt − aÞðα−1Þpdt. And taking into

account Lemma 39, we have

uk kpLpΔ =
ð
J0

1
Γ αð Þ

c

t − að Þ1−α + T
a I

α

t φ tð Þ
����

����
p

Δt

≤ 2p−1 cj jp
Γp αð Þ

ð
J0
t − að Þ α−1ð ÞpΔt T

a I
α

t φ
��� ���p

LpΔ

� �

≤ 2p−1 cj jp
Γp αð Þ

ð
J0
t − að Þ α−1ð Þpdt T

a I
α

t φ
��� ���p

LpΔ

� �

≤ 2p−1 cj jp
Γp αð Þ 1 α − 1ð Þp + 1 b − að Þ α−1ð Þp+1 + Kp φk kpLpΔ
� �

,

ð43Þ

where K comes from Lemma 39. Noting that c = T
a I

1−α
t uðaÞ,

φ = T
aD

α
t u, one can obtain

uk kpLpΔ ≤ Lα,0 cj jp + φk kpLpΔ
� �

≤ Lα,0
T
a I

1−α
t u að Þ

��� ���p + T
aD

α

t u
��� ���p

LpΔ

� �
= Lα,0 uk kpa,Wα,p

Δ,a+
,

ð44Þ

where

Lα,0 = 2p−1 b − að Þ1− 1−αð Þp

Γp αð Þ 1 − 1 − αð Þpð Þ + Kp

 !
: ð45Þ

Consequently,

uk kpWα,p
Δ,a+

= uk kPLPΔ +
T
aD

α

t u
��� ���p

LpΔ

≤ Lα,1 uk kpa,Wα,p
Δ,a+

, ð46Þ

where Lα,1 = Lα,0 + 1.
On the other hand, we will prove that there exists a con-

stant Mα,1 such that

uk kpa,Wα,p
Δ,a+

≤Mα,1 uk kpWα,p
Δ,a+

, u ∈Wα,p
Δ,a+ : ð47Þ

Indeed, let u ∈Wα,p
Δ,a+ and consider coordinate functions

ðTa I1−αt uÞi of ðTa I1−αt uÞ with i ∈ f1,⋯,Ng. Lemma 39, Theo-
rem 25, and Corollary 26 imply that there exist constants

Λi ∈ inf
t∈ a,b½ ÞT

T
a I

1−α
t u

� �i
tð Þ, sup

t∈ a,b½ ÞT

T
a I

1−α
t u

� �i
tð Þ

" #
,  i = 1, 2,⋯,Nð Þ,

ð48Þ

such that

Λi =
1

b − a

ðb
a

T
a I

1−α
t u

� �i
sð ÞΔs: ð49Þ

Hence, for a fixed t0 ∈ J0, if ðTa I1−αt uÞiðt0Þ ≠ 0 for all i =
1, 2,⋯,N , then we can take constants θi such that

θi
T
a I

1−α
t u

� �i
t0ð Þ =Λi =

1
b − a

ðb
a

T
a I

1−α
t u

� �i
sð ÞΔs: ð50Þ

Therefore, we have

T
a I

1−α
t u

� �i
t0ð Þ = θi

b − a

ðb
a

T
a I

1−α
t u

� �i
sð ÞΔs: 25

From the absolute continuity (Theorem 16) of ðTa I1−αt uÞi,
it follows that

T
a I

1−α
t u

� �i
tð Þ = T

a I
1−α
t u

� �i
t0ð Þ +

ð
t0,t½ ÞT

T
a I

1−α
t u

� �i
sð Þ

h iΔ
Δs, ð52Þ
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for any t ∈ J . Consequently, combining with Proposition 9
and Lemma 39, we see that

T
a I

1−α
t u

� �i
tð Þ

��� ��� = T
a I

1−α
t u

� �i
t0ð Þ +

ð
t0,t½ ÞT

T
a I

1−α
t u

� �i
sð Þ

h iΔ
Δs

�����
�����

≤
θij j

b − a
T
a I

1−α
t u

�� ��
L1Δ
+
ð

t0,t½ ÞT

T
aD

α
t u

� �
sð Þ�� ��Δs

≤
θij j

b − a
T
a I

1−α
t u

�� ��
L1Δ
+ T

aD
α
t u

�� ��
L1Δ

≤
θij j

b − a
b − að Þ1−α
Γ 2 − αð Þ uk kL1Δ +

T
aD

α
t u

�� ��
L1Δ
,

ð53Þ

for t ∈ J . In particular,

T
a I

1−α
t u

� �i
tð Þ

��� ��� ≤ θij j
b − a

b − að Þ1−α
Γ 2 − αð Þ uk kL1Δ +

T
aD

α
t u

�� ��
L1Δ
: ð54Þ

So,

T
a I

1−α
t u

� �
að Þ�� �� ≤N

θj j b − að Þ−α
Γ 2 − αð Þ + 1

� �
uk kL1Δ +

T
aD

α
t u

�� ��
L1Δ

� �
≤NMα,0 b − að Þp−1/p uk kLpΔ +

T
aD

α
t u

�� ��
LpΔ

� �
,

ð55Þ

where jθj = max
i∈f1,2,⋯,Ng

jθij andMα,0 = jθjðb − aÞ−α/Γð2 − αÞ + 1.
Thus,

T
a I

1−α
t u

� �
að Þ�� ��p ≤NpMp

α,0 b − að Þp−12p−1 uk kpLpΔ +
T
aD

α
t u

�� ��p
LpΔ

� �
, ð56Þ

and, consequently,

uk kpa,Wα,p
Δ,a+

= T
a I

1−α
t u

� �
að Þ�� ��p + T

aD
α
t u

�� ��p
LpΔ

≤ NpMp
α,0 b − að Þp−12p−1 + 1

� �
uk kpLpΔ +

T
aD

α
t u

�� ��p
LpΔ

� �
=Mα,1 uk kpa,Wα,p

Δ,a+
,

ð57Þ

where Mα,1 =NpMp
α,0ðb − aÞp−12p−1 + 1.

If ðTa I1−αt uÞiðt0Þ = 0 for i belongs to some subset of f1, 2,
⋯,Ng, from the above argument process, one can easily see
that there exists a constant Mα,1 such that (32) holds.

(2) When ð1 − αÞp ≥ 1, then (Remark 36) Wα,p
Δ,a+ = A

Cα,p
Δ,a+ ∩ LpΔ is the set of all functions that belong to

ACα,p
Δ,a+ that satisfy the condition ðTa I1−αt uÞðaÞ = 0.

Hence, in the same way as in the case of ð1 − αÞp <
1 (putting c = 0), we obtain the inequality

uk kpWα,p
Δ,a+

≤ Lα,1 uk kpa,Wα,p
Δ,a+

, with some Lα,1 > 0: ð58Þ

The inequality,

uk kpa,Wα,p
Δ,a+

≤Mα,1 uk kpWα,p
Δ,a+

, with someMα,1 > 0, ð59Þ

is obvious (it is sufficient to putMα,1 = 1 and use the fact that
ðTa I1−αt uÞðaÞ = 0).

The proof is complete.

Now, we are in a position to prove some basic properties
of the space Wα,p

Δ,a+ .

Theorem 41. The space Wα,p
Δ,a+ is complete with respect to

each of the norms k·kWα,p
Δ,a+

and k·ka,Wα,p
Δ,a+

for any 0 < α ≤ 1,

1 ≤ p <∞.

Proof. In view of Theorem 40, we only need to show that
Wα,p

Δ,a+ with the norm k·ka,Wα,p
Δ,a+

is complete. Let fukg ⊂
Wα,p

Δ,a+ be a Cauchy sequence with respect to this norm. So,
the sequences fTa I1−αt ukðaÞg and fTaDα

t ukg are Cauchy
sequences in ℝN and LpΔ, respectively.

Let c ∈ℝN and φ ∈ LpΔ be the limits of the above two
sequences in ℝN and LpΔ, respectively. Then, the function

u tð Þ = c
Γ αð Þ t − að Þα−1 + T

a I
α
t φ tð Þ,  t ∈ J Δ − a:e:, ð60Þ

belongs to Wα,p
Δ,a+ and it is the limit of fukg in Wα,p

Δ,a+ with
respect to k·ka,Wα,p

Δ,a+
. The proof is complete.

The proof method of the following two theorems is
inspired by the method used in the proof of Proposition
8.1 (b) and (c) in [27].

Theorem 42. The space Wα,p
Δ,a+ is reflexive with respect to the

norm k·kWα,p
Δ,a+

for any 0 < α ≤ 1 and 1 < p <∞.

Proof. Let us consider Wα,p
Δ,a+ with the norm k·kWα,p

Δ,a+
and

define a mapping

λ : Wα,p
Δ,a+ ∋ u⟼ u, TaDα

t u
� �

∈ LpΔ × LpΔ: ð61Þ

It is obvious that

uk kWα,p
Δ,a+

= λuk kLpΔ×LpΔ , ð62Þ

where

λuk kLpΔ×LpΔ = 〠
2

i=1
λuð Þi

�� ��p
LpΔ

 !1/p

, λu = u, TaDα
t u

� �
∈ LpΔ × LpΔ,

ð63Þ

which means that the operator λ : u↦ ðu, T
aD

α
t uÞ is an iso-

metric isomorphic mapping and the spaceWα,p
Δ,a+ is isometric

isomorphic to the space Ω = fðu, T
aD

α
t uÞ: ∀u ∈Wα,p

Δ,a+g,
which is a closed subset of LpΔ × LpΔ as Wα,p

Δ,a+ is closed.
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Since LpΔ is reflexive, the Cartesian product space LpΔ × LpΔ
is also a reflexive space with respect to the norm ∥v∥LpΔ×LpΔ
= ð∑2

i=1∥vi∥
p
LpΔ
Þ1/p, where v = ðv1, v2Þ ∈ LpΔ × LpΔ.

Thus,Wα,p
Δ,a+ is reflexive with respect to the norm ∥·∥Wα,p

Δ,a+
.

The proof is complete.

Theorem 43. The space Wα,p
Δ,a+ is separable with respect to the

norm ∥·∥Wα,p
Δ,a+

for any 0 < α ≤ 1 and 1 ≤ p <∞.

Proof. Let us consider Wα,p
Δ,a+ with the norm ∥·∥Wα,p

Δ,a+
and the

mapping λ defined in the proof of Theorem 42. Obviously,
λðWα,p

Δ,a+Þ is separable as a subset of separable space LpΔ ×
LpΔ. Since λ is the isometry, Wα,p

Δ,a+ is also separable with
respect to the norm ∥·∥Wα,p

Δ,a+
. The proof is complete.

Theorem 44. Let 1 ≤ s ≤ r ≤ t <∞, u ∈ LsΔðJ0Þ ∩ LtΔðJ0Þ, then
u ∈ LrΔðJ0Þ and

∥u∥LrΔ ≤ ∥u∥θLsΔ∥u∥
1−θ
LtΔ

, ð64Þ

where θ ∈ ½0, 1� with 1/r = θ/s + ð1 − θÞ/t.

Proof. We will divide the proof into the following three
major cases.

(i) When r = s, we can take θ = 1, the conclusion is
evident

(ii) When r = t, we can take θ = 0, the conclusion is
obvious

(iii) Let 1 ≤ s < r < t <∞

In this case, if there exist m, n > 0 such that r = s/m + t/n,
then

uj jr = uj js/m · uj jt/n: ð65Þ

In view of u ∈ LsΔðJ0Þ ∩ LtΔðJ0Þ, we have

ð
J0

uj js/m� �m
Δx =

ð
J0
uj jsΔx < +∞,

ð
J0

uj jt/n� �n
Δx =

ð
J0
uj jtΔx < +∞:

ð66Þ

Hence, we obtain that

uj js/m ∈ LmΔ J0
� �

, uj jt/n ∈ LnΔ J0
� �

: ð67Þ

Therefore, when m, n satisfy the following conditions

m, n > 0,
s
m

+ t
n
= r,

1
m

+ 1
n
= 1,

8>>>><
>>>>:

ð68Þ

that is to say,

m = t − s
t − r

, n = t − s
r − s

, ð69Þ

by Proposition 2.6 in P4 from [1], one obtains

ð
J0
uj jrΔx =

ð
J0
uj js/m · uj jt/nΔx

≤
ð
J0

uj js/m� �m
Δx

	 
1/m
·
ð
J0

uj jt/n� �n
Δx

	 
1/n

=
ð
J0
uj jsΔx

� �1/m
·
ð
J0
uj jtΔx

� �1/n

= uk ks/mLsΔ · uk kt/nLtΔ <∞,
ð70Þ

so u ∈ LrΔðJ0Þ and

∥u∥rLrΔ =
ð
J0
uj jrΔx ≤ ∥u∥s/mLsΔ · ∥u∥t/nLtΔ : ð71Þ

Let θ = s/rm, then θ ∈ ð0, 1Þ, t/m = 1 − θ, θ/s + ð1 − θÞ/t
= 1/rm + 1/rn = 1/r, and hence,

∥u∥LrΔ ≤ ∥u∥θLsΔ∥u∥
1−θ
LtΔ

: ð72Þ

The proof is complete.

Proposition 45. Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈
Wα,p

Δ,a+ , if 1 − α ≥ 1/p or α > 1/p, then

∥u∥LpΔ ≤
bα

Γ α + 1ð Þ
T
aD

α
t u

�� ��
LpΔ
, ð73Þ

if α > 1/p and 1/p + 1/q = 1, then

∥u∥∞ ≤
bα−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q
T
aD

α
t u

�� ��
LpΔ
: ð74Þ

Proof. In view of Remark 36 and Theorem 14, in order to
prove inequalities (73) and (74), we only need to prove that

T
a I

α
t

T
aD

α
t u

� ��� ��
LpΔ
≤

bα

Γ α + 1ð Þ
T
aD

α
t u

�� ��
LpΔ
, ð75Þ
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for 1 − α ≥ 1/p or α > 1/p, and that

T
a I

α
t

T
aD

α
t u

� ��� ��
∞ ≤

bα−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q
T
aD

α
t u

�� ��
LpΔ
, ð76Þ

for α > 1/p and 1/p + 1/q = 1.
Note that T

aD
α
t u ∈ L

p
ΔðJ ,ℝNÞ, the inequality (75) follows

from Lemma 39 directly.
We are now in a position to prove (76). For α > 1/p,

choose q such that 1/p + 1/q = 1. For all u ∈Wα,p
Δ,a+ , since

ðt − sÞðα−1Þq is an increasing monotone function, by using

Proposition 6, we find that
Ð t
aðt − sÞðα−1ÞqΔs ≤ Ð taðt − sÞðα−1Þq

ds. Taking into account Proposition 24, we have

T
a I

α
t

T
aD

α
t u tð Þ� ��� �� = 1

Γ αð Þ ∣
ðt
a
t − sð Þα−1TaDα

t u sð ÞΔs∣

≤
1

Γ αð Þ
ðt
a
t − sð Þ α−1ð ÞqΔs

� �1/q
∥TaD

α
t u∥LpΔ

≤
1

Γ αð Þ
ðt
a
t − sð Þ α−1ð Þqds

� �1/q
∥TaD

α
t u∥LpΔ

≤
b1/q+α−1

Γ αð Þ α − 1ð Þq + 1ð Þ1/q
T
aD

α
t u

�� ��
LpΔ

= bα−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q
T
aD

α
t u

�� ��
LpΔ
:

ð77Þ

The proof is complete.

Remark 46.

(i) According to (73), we can consider Wα,p
Δ,a+ with

respect to the norm

∥u∥p
Wα,p

Δ,a+
= ∥TaD

α
t u∥

p
LpΔ
=
ð
J0

T
aD

α
t u tð Þ�� ��pΔt� �1/p

, ð78Þ

in the following analysis.

(ii) It follows from (73) and (74) that Wα,p
Δ,a+ is continu-

ously immersed into CðJ ,ℝNÞ with the natural norm
∥·∥∞

Proposition 47. Let 0 < α ≤ 1 and 1 < p <∞. Assume that
α > 1/p and the sequence fukg ⊂Wα,p

Δ,a+ converges weakly to
u in Wα,p

Δ,a+ . Then, uk ⟶ u in CðJ ,ℝNÞ, i.e., ∥u − uk∥∞ = 0,
as k⟶∞.

Proof. If α > 1/p, then by (74) and (78), the injection ofWα,p
Δ,a+

into CðJ ,ℝNÞ, with its natural norm ∥·∥∞, is continuous, i.e.,
uk ⟶ u in Wα,p

Δ,a+ , then uk ⟶ u in CðJ ,ℝNÞ.
Since uk ⇀ u inWα,p

Δ,a+ , it follows that uk ⇀ u in CðJ ,ℝNÞ.
In fact, for any h ∈ ðCðJ ,ℝNÞÞ∗, if uk ⟶ u in Wα,p

Δ,a+ , then

uk ⟶ u in CðJ ,ℝNÞ, and thus, hðukÞ⟶ hðuÞ. Therefore, h

∈ ðWα,p
Δ,a+Þ

∗
, which means that ðCðJ ,ℝNÞÞ∗ ⊂ ðWα,p

Δ,a+Þ
∗
.

Hence, if uk ⇀ u in Wα,p
Δ,a+ , then for any h ∈ ðCðJ ,ℝNÞÞ∗, we

have h ∈ ðWα,p
Δ,a+Þ

∗
, and thus, hðukÞ⟶ hðuÞ, i.e., uk ⇀ u in

CðJ ,ℝNÞ.
By the Banach-Steinhaus theorem, fukg is bounded in

Wα,p
Δ,a+ and, hence, in CðJ ,ℝNÞ. Now, we prove that the

sequence fukg is equicontinuous. Let 1/p + 1/q = 1 and t1
, t2 ∈ J with t1 ≤ t2, for all f ∈ L

p
ΔðJ ,ℝNÞ, by using Proposi-

tion 24, Proposition 6, and Theorem 27, and noting α >
1/p, we have

T
a I

α
t1
f t1ð Þ−T

a I
α
t2
f t2ð Þ

��� ���
= 1
Γ αð Þ

ðt1
a
t1 − sð Þα−1 f sð ÞΔs −

ðt2
a
t2 − sð Þα−1 f sð ÞΔs

����
����

≤
1

Γ αð Þ
ðt1
a
t1 − sð Þα−1 f sð ÞΔs −

ðt1
a
t2 − sð Þα−1 f sð ÞΔs

����
����

+ 1
Γ αð Þ

ðt2
t1

t2 − sð Þα−1 f sð ÞΔs
�����

�����
≤

1
Γ αð Þ

ðt1
a

t1 − sð Þα−1 − t2 − sð Þα−1� �
∣f sð Þ∣Δs

+ 1
Γ αð Þ

ðt2
t1

t2 − sð Þα−1∣f sð Þ∣Δs

≤
1

Γ αð Þ
ðt1
a

t1 − sð Þα−1 − t2 − sð Þα−1� �q
Δs

� �1/q
∥f ∥LpΔ

+ 1
Γ αð Þ

ðt2
t1

t2 − sð Þ α−1ð ÞqΔs

 !1/q

∥f ∥LpΔ

≤
1

Γ αð Þ
ðt1
a

t1 − sð Þ α−1ð Þq − t2 − sð Þ α−1ð Þq
� �

Δs
� �1/q

∥f ∥LpΔ

+ 1
Γ αð Þ

ðt2
t1

t2 − sð Þ α−1ð ÞqΔs

 !1/q

∥f ∥LpΔ

≤
1

Γ αð Þ
ðt1
a

t1 − sð Þ α−1ð Þq − t2 − sð Þ α−1ð Þq
� �

ds
� �1/q

∥f ∥LpΔ

+ 1
Γ αð Þ

ðt2
t1

t2 − sð Þ α−1ð Þqds

 !1/q

∥f ∥LpΔ

=
∥f ∥LpΔ

Γ αð Þ 1 + α − 1ð Þqð Þ1/q
�
t α−1ð Þq+1
1 − t α−1ð Þq+1

2

+ t2 − t1ð Þ α−1ð Þq+1
�1/q

+
∥f ∥LpΔ

Γ αð Þ 1 + α − 1ð Þqð Þ1/q t2 − t1ð Þ α−1ð Þq+1
� �1/q

≤
2∥f ∥LpΔ

Γ αð Þ 1 + α − 1ð Þqð Þ1/q
t2 − t1ð Þα−1+1/q

=
2∥f ∥LpΔ

Γ αð Þ 1 + α − 1ð Þqð Þ1/q t2 − t1ð Þα−1/p:

ð79Þ
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Therefore, the sequence fukg is equicontinuous since,
for t1, t2 ∈ J , t1 ≤ t2, by applying (79) and (78), we have

uk t1ð Þ − uk t2ð Þj j = T
a I

α
t1

T
aD

α
t1
uk t1ð Þ

� �
−T
a I

α
t2

T
aD

α
t2
uk t2ð Þ

� ���� ���
≤

2 t2 − t1ð Þα−1/p
Γ αð Þ 1 + α − 1ð Þqð Þ1/q ∥

T
aD

α
t uk∥LpΔ

= 2 t2 − t1ð Þα−1/p
Γ αð Þ 1 + α − 1ð Þqð Þ1/q ∥

T
aD

α
t uk∥LpΔ

≤
2 t2 − t1ð Þα−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q
T
aD

α
t u

�� ��
LpΔ

= 2 t2 − t1ð Þα−1/p
Γ αð Þ α − 1ð Þq + 1ð Þ1/q ukk kWα,p

Δ,a+

≤ C t2 − t1ð Þα−1/p,
ð80Þ

where 1/p + 1/q = 1 and C ∈ℝ+ is a constant. By the
Arzelà-Ascoli theorem on time scales (Lemma 28), fukg
is relatively compact in CðJ ,ℝNÞ. By the uniqueness of
the weak limit in CðJ ,ℝNÞ, every uniformly convergent
subsequence of fukg converges uniformly on J to u. The
proof is complete.

Remark 48. It follows from Proposition 47 thatWα,p
Δ,a+ is com-

pactly immersed into CðJ ,ℝNÞ with the natural norm ∥·∥∞.

Theorem 49. Let 1 < p <∞, 1/p < α ≤ 1, 1/p + 1/q = 1, L : J
×ℝN ×ℝN ⟶ℝ, ðt, x, yÞ↦ Lðt, x, yÞ satisfies the following:

(i) For each ðx, yÞ ∈ℝN ×ℝN , Lðt, x, yÞ is Δ-measurable
in t

(ii) For Δ-almost every t ∈ J , Lðt, x, yÞ is continuously dif-
ferentiable in ðx, yÞ

If there exist m1 ∈ Cðℝ+,ℝ+Þ, m2 ∈ L1ΔðJ ,ℝ+Þ, and m3

∈ LqΔðJ ,ℝ+Þ, 1 < q <∞, such that, for Δ-a.e. t ∈ J and every
ðx, yÞ ∈ℝN ×ℝN , one has

∣L t, x, yð Þ∣ ≤m1 ∣x ∣ð Þ m2 tð Þ + yj jp� �
,

∣DxL t, x, yð Þ∣ ≤m1 ∣x ∣ð Þ m2 tð Þ + yj jp� �
,

∣DyL t, x, yð Þ∣ ≤m1 ∣x ∣ð Þ m3 tð Þ + yj jp−1� �
:

ð81Þ

Then, the functional χ defined by

χ uð Þ =
ð
J0
L t, u tð Þ, T

aD
α
t u tð Þ� �

Δt, ð82Þ

is continuously differentiable on Wα,p
Δ,a+ , and ∀u, v ∈Wα,p

Δ,a+ ,
one has

χ′ uð Þ, v
D E

=
ð
J0

DxL t, u tð Þ, T
aD

α
t u tð Þ, v tð Þ�� ��

+ DyL t, u tð Þ, T
aD

α
t u tð Þ, T

aD
α
t v tð Þ�� ��

Δt: 

ð83Þ

Proof. It suffices to prove that χ has, at every point u, a
directional derivative χ′ðuÞ ∈ ðWα,p

Δ,a+Þ
∗
given by (84) and

that the mapping

χ′ : Wα,p
Δ,a+ ∋ u↦ χ′ uð Þ ∈ Wα,p

Δ,a+
� �∗, ð84Þ

is continuous. The rest proof is similar to the proof of
Theorem 1.4 in [28]. We will omit it here. The proof is
complete.

4. An Application

As an application of the concepts we introduced and the
results obtained in Section 3, in this section, we will use crit-
ical point theory to study the solvability of a class of bound-
ary value problems on time scales. More precisely, our goal
is to study the following fractional nonlinear Dirichlet prob-
lem on time scale T :

T
t D

α

b
T
αD

α

t u tð Þ
��� ���p−2TαDα

t u tð Þ
� �

= ∇F t, u tð Þð Þ + σω tð Þ u tð Þj jq−2u tð Þ, Δ‐a:e:t ∈ J ,

u αð Þ = u bð Þ = 0,

8><
>:

ð85Þ

where T
t D

α
b and T

aD
α
t are the right and the left Riemann-

Liouville fractional derivative operators of order α defined
on T , respectively, ∇Fðt, uÞ is the gradient of Fðt, uÞ at u
and F ∈ CðJ ×ℝN ,ℝÞ is homogeneous of degree r, σ is a
positive parameter, ω ∈ CðJÞ, 1 < r < p < q and 1/p < α < 1.

We make the following assumptions:
ðH1ÞF : J ×ℝN ⟶ℝ is homogeneous of degree r, that

is,

F t, suð Þ = srF t, uð Þ s > 0ð Þ, ð86Þ

for all t ∈ J , u ∈ℝN ;
ðH2ÞF±ðt, uÞ =max ð±Fðt, uÞ, 0Þ ≠ 0 for all u ≠ 0.
By ðH1Þ, Fðt, uÞ, we have

u∇F x, uð Þ = srF x, uð Þ, ð87Þ

∣F x, uð Þ∣ ≤ K uj jr , ð88Þ

for some constant K > 0.
Our main results are as follows.

Theorem 50. Let 1/p < α < 1, 1 < r < p < q and suppose that
Fðt, uÞ satisfies the conditions ðH1Þ and ðH2Þ. Then, there
exists σ0 > 0 such that for all σ ∈ ð0, σ0Þ, (85) has at least
two nontrivial solutions.
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There have been many results using critical point theory
to study boundary value problems of fractional differential
equations [29–35] and dynamic equations on time scales
[36–40], but the results of using critical point theory to study
boundary value problems of fractional dynamic equations
on time scales are still rare [3]. This section will explain that
critical point theory is an effective way to deal with the exis-
tence of solutions of (85) on time scales.

We will use the famous Nehari manifold and fibering
map theory to prove our main results.

We say that u ∈Wα,p
Δ,a+ is a solution to the problem (85), if

u satisfies the following equality:

ð
J0

T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ,TaDα

t v tð Þ� �
Δt −

ð
J0
∇F t, u tð Þð Þ, v tð Þð ÞΔt

− σ
ð
J0
ω tð Þ u tð Þj jq−2 u tð Þ, v tð Þð ÞΔt = 0, ∀v ∈Wα,p

Δ,a+ :

ð89Þ

As a result, associated to the problem (85), we define the
functional

Jσ uð Þ = 1
p
∥u∥p −

ð
J0
F t, u tð Þð ÞΔt − σ

q

ð
J0
ω tð Þ u tð Þj jqΔt

= J uð Þ −H uð Þ −Mσ uð Þ,
ð90Þ

where

J uð Þ = 1
p

ð
J0

T
aD

α
t u tð Þ�� ��pΔt,H uð Þ =

ð
J0
F t, u tð Þð ÞΔt,

Mσ uð Þ = σ

q

ð
J0
ω tð Þ u tð Þj jqΔt:

ð91Þ

We need to show that the following lemma holds.

Lemma 51.

(i) The functional Jσ is well defined on Wα,p
Δ,a+

(ii) The functional Jσ is of class C
1ðWα,p

Δ,a+ ,ℝÞ, and for all
u, v ∈Wα,p

Δ,a+ , we have

J′σ uð Þ, v
D E

=
ð
J0

T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ,TaDα

t v tð Þ� �
Δt

−
ð
J0
∇F t, u tð Þð Þ, v tð Þð ÞΔt

− σ
ð
J0
ω tð Þ u tð Þj jq−2 u tð Þ, v tð Þð ÞΔt

= J ′ uð Þ, v
D E

− H ′ uð Þ, v
D E

− M′σ uð Þ, v
D E

,

ð92Þ

where

J ′ uð Þ, v
D E

=
ð
J0

T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ,TaDα

t v tð Þ� �
Δt,

H ′ uð Þ, v
D E

=
ð
J0
∇F t, u tð Þð Þ, v tð Þð ÞΔt,

M′σ uð Þ, v
D E

= σ
ð
J0
ω tð Þ u tð Þj jq−2 u tð Þ, v tð Þð ÞΔt:

ð93Þ

Proof.

(i) From (33) in Proposition 45, (87), (88), and the
equivalent norm, we obtain

Jσ uð Þ = 1
p
∥u∥p −

ð
J0
F t, u tð Þð ÞΔt − σ

q

ð
J0
ω tð Þ u tð Þj jqΔt

≤
1
p
∥u∥p +

ð
J0
∣F t, u tð Þð Þ∣Δt + σ

q
max
t∈J

ω tð Þ
ð
J0
u tð Þj jqΔt

≤
1
p

uk kp + K
ð
J0

u tð ÞjrΔt + σ

q

���� ∥ω∥∞∥u∥q
LqΔ

≤
1
p
∥u∥p + K∥u∥rLrΔ +

σ

q
∥ω∥∞

bαq
Γq α + 1ð Þ

T
aD

α
t u

�� ��q
LqΔ

≤
1
p
∥u∥p + K

bαr
Γr α + 1ð Þ

T
aD

α
t u

�� ��r
LrΔ

+ σ

q
∥ω∥∞

bαq
Γq α + 1ð Þ

T
aD

α
t u

�� ��q
LqΔ

≤
1
p
∥u∥p + c1∥u∥

r + c2∥u∥
q,

ð94Þ

which implies that Jσ is well defined on Wα,p
Δ,a+ .

(ii) Let

Π uð Þ = 1
p

T
aD

α
t u

�� ��p − F t, u tð Þð Þ − σ

q
ω tð Þ uj jq: ð95Þ

Then, we can easily show that for all u, v ∈Wα,p
Δ,a+ and for

Δ-a.e. t ∈ J ,

lim
s⟶0

Π u tð Þ + sv tð Þð Þ −Π u tð Þð Þ
s

= lim
s⟶0

1
s


 1
p

T
aD

α
t u + svð Þ�� ��p − F t, u + svð Þ − σ

q
ω tð Þ u + svj jq

−
1
p

T
aD

α
t u

�� ��p + F t, u tð Þð Þ + σ

q
ω tð Þ uj jq

�

= T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ,TaDα

t v tð Þ� �
− ∇F t, u tð Þð Þ, v tð Þð Þ

− σω tð Þ u tð Þj jq−2 u tð Þ, v tð Þð Þ:
ð96Þ
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Hence, in view of the Lagrange mean value theorem, (87)
and (42), there exists a real number κ such that ∣κ ∣ ≤ ∣ s ∣ and

Π u tð Þ + sv tð Þð Þ −Π u tð Þð Þ
s

= T
aD

α
t u + κvð Þ�� ��p−2 T

aD
α
t u + κvð Þ,TaDα

t v tð Þ� �
− ∇F t, u + κvð Þð Þ, vð Þ − σω tð Þ u + κvð Þj jq−2 u + κvð Þ, vð Þ

≤ T
aD

α
t u + κvð Þ�� ��p−1 T

aD
α
t v

�� �� − ∇F t, u + κvð Þð Þ, vð Þ
− σω tð Þ u + κvj jq−1 vj j ≤ T

aD
α
t u + κvð Þ�� ��p−1 T

aD
a
t v

�� ��
−

r
u + κv

F t, u + κvð Þðj jv + σ ω tð Þj j u + κvj jq−1 vj j

≤ T
a D

α

t u + κvð Þ
��� ���p−1 T

a D
α

t v
��� ��� − r

u + κv
K u + κvj jrv

+ σ ω tð Þj j u + κvj jq−1 vj j ≤ T
a D

α

t u + κvð Þ
��� ���p−1 T

a D
α

t v
��� ���

− rK u + κvj jÞjr−1 vj j + σ ω tð Þj j u + κvj jq−1 vj j
≤ T

a D
α

t u
��� ���p−1 T

a D
α

t v
��� ��� + T

a D
α

t v
��� ���p + rK uj jr−1 vj j + rK vj jr

+ σ ω tð Þj j uj jq−1 vj j + σ ω tð Þj j vj jq:
ð97Þ

On the other hand, in view of Hölder inequality on time
scales, we see that

ð
J0

T
aD

α
t u tð Þ��p−1��� ��� T

aD
α
t v tð Þ�� ��Δt

≤
ð
J0

T
aD

α
t u tð Þ�� ��p−1h ip/ p−1ð Þ

Δt
� � p−1ð Þ/p ð

J0

T
aD

α
t v tð Þ�� ��pΔt� �1/p

= T
aD

α
t u

�� ��p−1��� ���
Lp/ p−1ð Þ
Δ

· T
aD

α
t v

�� ��
LpΔ
,

ð
J0
u tð Þj jς−1 v tð Þ ∣ Δtk

≤
ð
J0

u tð Þj jς−1� �ς/ ς−1ð Þ
Δt

� � p−1ð Þ/p ð
J0
v tð Þj jpΔt

� �1/p

= ∥ uj jς−1∣∥Lς/ ς−1ð Þ
Δ

· ∥v∥LςΔ
ð98Þ

for ς = r or ς = q. Because ω is bounded, then, from the
above inequalities, we conclude that the expression (97)
is in L1ΔðJÞ.

As a result, in view of the dominated convergence theo-
rem on time scales, one gets

lim
s⟶0

Jσ u tð Þ + sv tð Þð Þ − Jσ u tð Þð Þ
s

=
ð
J0

T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ,TaDα

t v tð Þ� �
Δt

−
ð
J0
∇F t, u tð Þð Þ, v tð Þð ÞΔt

− σ
ð
J0
ω tð Þ u tð Þj jq−2 u tð Þ, v tð Þð ÞΔt:

ð99Þ

That is to say, Jσ is Gâteaux differentiable.

In what follows, we prove that the Gâteaux derivative of
Jσ is continuous.

First, we verify thatH ′ : Wα,p
Δ,a+ ⟶ ðWα,p

Δ,a+Þ
∗
is continuous.

Taking into account (88), we have

ð
J0
∇F t, un tð Þð Þ−∇F t, u tð Þð Þj j2Δt

≤
ð
J0
∣∇F t, un tð Þð Þ∣+∣∇F t, u tð Þð Þ ∣ð Þ2Δt

≤ 2
ð
J0

∇F t, un tð Þð Þj j2 + ∇F t, u tð Þð Þj j2� �
Δt

≤ 2r2K2
ð
J0

un tð Þj j2 r−1ð Þ + u tð Þj j2 r−1ð Þ
� �

Δt

≤ 2r2K2 ∥un∥
2 r−1ð Þ
∞ +∥u∥2 r−1ð Þ

∞

� �
b − að Þ,

ð100Þ

which combining with un ⟶ u in L2Δ and Lebesgue’s dom-
inated convergence theorem on time scales leads to

ð
J0
∇F t, un tð Þð Þ−∇F t, u tð Þð Þj j2Δt

� �1/2
⟶ 0, n⟶∞: ð101Þ

Namely,

∇F t, unð Þ⟶ ∇F t, uð Þ, in L2Δ J ,ℝN� �
: ð102Þ

Let fung, u ∈Wα,p
Δ,a+ such that un ⇀ u inWα,p

Δ,a+ (n⟶∞).
Using the Hölder inequality on time scales and (73) in Propo-
sition 45, we can obtain

H ′ unð Þ −H ′ uð Þ�� ��
Wα,p

Δ,a+ð Þ∗

= sup
v∈Wα,p

Δ,a+ ,∥v∥=1
H ′ unð Þ −H ′ uð Þ
� �

v
��� ���

= sup
v∈Wα,p

Δ,a+ ,∥v∥=1

ð
J0
∇F t, un tð Þð Þ−∇F t, u tð Þð Þð Þv tð ÞΔt

����
����

≤ sup
v∈Wα,p

Δ,a+ ,∥v∥=1
∥∇F ·, un ·ð Þð Þ−∇F ·, u ·ð Þð Þ∥L2Δ∥v ·ð Þ∥L2Δ

≤ sup
v∈Wα,p

Δ,a+ ,∥v∥=1
∥∇F ·, un ·ð Þð Þ−∇F ·, u ·ð Þð Þ∥L2Δ

bα

Γ α + 1ð Þ
T
aD

α
t v

�� ��
L2Δ

= C sup
v∈Wα,p

Δ,a+ ,∥v∥=1
∥∇F ·, un ·ð Þð Þ−∇F ·, u ·ð Þð Þ∥L2Δ ⟶ 0:

ð103Þ

So, H ′ðuÞ is continuous.
Next, we will prove J ∈ C1ðWα,p

Δ,a+ ,ℝÞ. For any given u,
v ∈Wα,p

Δ,a+ , by the Hölder inequality on time scales, we have
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J ′ uð Þ, v
D E��� ��� = ð

J0

T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ, TaDα

t v tð Þ� �
Δt

����
����

≤
ð
J0

T
aD

α
t u tð Þ�� ��p−1 T

aD
α
t v tð Þ�� ��Δt

≤
ð
J0

T
aD

α
t u tð Þ�� ��p−1� �p/ p−1ð Þ

Δt
� � p−1ð Þ/p

�
ð
J0

T
aD

α
t v tð Þ�� ��pΔt� �1/p

=
ð
J0

T
aD

α
t u tð Þ�� ��pΔt� � p−1ð Þ/p

vk k = uk kp−1 vk k:

ð104Þ

That is, J ′ðuÞ is bounded. It is obvious that J ′ðuÞ is lin-
ear. Hence, for any u ∈Wα,p

Δ,a+ , J ′ðuÞ ∈ ðWα,p
Δ,a+Þ

∗
.

Define g : Wα,p
Δ,a+ ⟶ LpΔ′ðJÞ, gðuÞ =jTaDα

t u∣
p−2T

aD
α
t u, ∀u ∈

Wα,p
Δ,a+ , where 1/p + 1/p′ = 1. Now, it is time for us to demon-

strate g is continuous in the following two cases:

(1) If p ∈ ð2,∞Þ, then, for u, v ∈Wα,p
Δ,a+ , using Hölder

inequality on time scales, we can deduce that

ð
J0
g uð Þ − g vð Þj jp′Δt

=
ð
J0
∣TaD

α
t u∣

p−2T
aD

α
t u−∣

T
aD

α
t v∣

p−2T
aD

α
t v

��� ���p′Δt
≤ β
ð
J0

T
aD

α
t u−

T
aD

α
t v

�� ��p′ ∣TaDα
t u∣+∣TaDα

t v ∣
� �p′ p−2ð Þ

Δt

≤ β
ð
J0

T
aD

α
t u−

T
aD

α
t v

�� ��p′� �p/p′
Δt

	 
p′/p

�
ð
J0

∣TaD
α
t u∣+∣TaDα

t v ∣
� �p′ p−2ð Þ� �p/p′ p−2ð Þ

Δt
	 
p′ p−2ð Þ/p

= β∥TaD
α
t u−

T
aD

α
t v∥

p
LpΔ
′ ∥∣TaDα

t u +j jTaDα
t v∣∥

p
LpΔ
′ p−2ð Þ

≤ �C∥u − v∥p′ ∥u∥+∥v∥ð Þp′ p−2ð Þ:

ð105Þ

(2) If p ∈ ð1, 2�, then, for u, v ∈Wα,p
Δ,a+ , we have

ð
J0
g uð Þ − g vð Þj jp′Δt

=
ð
J0

T
aD

α
t u∣

p−2T
aD

α
t u −

��� ���T
a
Dα
t v∣

p−2T
aD

α
t v

����
����
p′
Δt

≤ β
ð
J0

T
aD

α
t u−

T
aD

α
t v

�� ��p′ p−1ð Þ
Δt ≤ �C1∥u − v∥:

ð106Þ

Consequently, when p > 1, g is continuous.
Now, for u, v ∈Wα,p

Δ,a+ , we will show that

∥J ′ uð Þ − J ′ vð Þ∥ Wα,p
Δ,a+ð Þ∗ ≤ k∥g uð Þ − g vð Þ∥LpΔ′: ð107Þ

In fact, for u, v ∈Wα,p
Δ,a+ , by Hölder inequality on time

scales, we have

∥J ′ uð Þ − J ′ vð Þ∥ Wα,p
Δ,a+ð Þ∗

= sup
φ∈Wα,p

Δ,a+ ,∥φ∥=1
J ′ uð Þ − J ′ vð Þ, v
D E��� ���

= sup
φ∈Wα,p

Δ,a+ ,∥φ∥=1
∣
ð
J0

T
aD

α
t u tð Þ�� ��p−2 T

aD
α
t u tð Þ,TaDα

t φ tð Þ� �
Δt

−
ð
J0

T
aD

α
t v tð Þ�� ��p−2 T

aD
α
t v tð Þ,TaDα

t φ tð Þ� �
Δt∣

= sup
φ∈Wα,p

Δ,a+ ,∥φ∥=1

ð
J0

g uð Þ − g vð Þ, T
aD

α
t φ tð Þ� �

Δt
����

����
≤ sup

φ∈Wα,p
Δ,a+ ,∥φ∥=1

ð
J0
g uð Þ − g vð Þj j T

aD
α
t φ tð Þ�� ��Δt

≤ sup
φ∈Wα,p

Δ,a+ ,∥φ∥=1

ð
J0
g uð Þ − g vð Þj jp′Δt

� �1/p′ ð
J0

T
aD

α
t φ

�� ��pΔt� �1/p

≤ ∥g uð Þ − g vð Þ∥LpΔ′∥φ∥ = ∥g uð Þ − g vð Þ∥LpΔ′:
ð108Þ

Combining with the continuity of g, we see that J ∈
C1ðWα,p

Δ,a+ ,ℝÞ.
In conclusion, (ii) is proven. The proof is complete.

We deduce from Lemma 51 and (87) that

J′σ uð Þ, u
D E

=
ð
J0

T
aD

α
t u tð Þ�� ��pΔt − r

ð
J0
F t, u tð Þð ÞΔt

− σ
ð
J0
ω tð Þ u tð Þj jqΔt:

ð109Þ

It is easy to see that the energy functional Jσ is not
bounded below on the space Wα,p

Δ,a+ , but it is bounded below
on a suitable subset ofWα,p

Δ,a+ . In order to study problem (85),
we define the constraint set

N σ ≔ u ∈Wα,p
Δ,a+ \ 0f g: J′σ uð Þ, u

D E
= 0

n o
: ð110Þ

Note that N σ contains every nonzero solution of (85),
and u ∈N σ if and only if

∥u∥p − r
ð
J0
F t, u tð Þð ÞΔt − σ

ð
J0
ω tð Þ u tð Þj jqΔt = 0: ð111Þ

In order to get the existence of solutions, we decompose
N σ into three parts: corresponding to local minima, local
maxima, and points of inflection are Δ-measurable sets
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defined as follows:

N +
σ ≔



u ∈N σ : p − 1ð Þ∥u∥p − r r − 1ð Þ

ð
J0
F t, u tð Þð ÞΔt

− σ q − 1ð Þ
ð
J0
ω tð Þ u tð Þj jqΔt > 0

�
,

N −
σ ≔



u ∈N σ : p − 1ð Þ∥u∥p − r r − 1ð Þ

ð
J0
F t, u tð Þð ÞΔt

− σ q − 1ð Þ
ð
J0
ω tð Þ u tð Þj jqΔt < 0

�
,

N 0
σ ≔



u ∈N σ : p − 1ð Þ∥u∥p − r r − 1ð Þ

ð
J0
F t, u tð Þð ÞΔt

− σ q − 1ð Þ
ð
J0
ω tð Þ u tð Þj jqΔt = 0

�
:

ð112Þ

Next, we give some important attributes of N +
σ , N

−
σ and

N 0
σ. Let �p be such that 1/p + 1/�p = 1 and put

η0 =
p − rð ÞΓq αð Þ α − 1ð Þ�p + 1ð Þq/p

q − rð Þ∥ω∥∞b1+q α−1/pð Þ

� q − pð ÞΓr αð Þ α − 1ð Þ�p + 1ð Þr/p
Kr q − rð Þb1+r α−1/pð Þ

 ! q−pð Þ/ p−rð Þ
:

ð113Þ

Then, we have the following crucial result.

Lemma 52. If σ ∈ ð0, η0Þ, then N 0
σ =∅.

Proof.We proceed by contradiction to show that N 0
σ =∅ for

all σ ∈ ð0, η0Þ. If there exists u0 ∈N 0
σ, then, in view of (111),

we get

p − rð Þ∥u0∥p − σ q − rð Þ
ð
J0
ω tð Þ u0 tð Þj jqΔt = 0, ð114Þ

q − pð Þ∥u0∥p − r q − rð Þ
ð
J0
F t, u0 tð Þð ÞΔt = 0: ð115Þ

By Proposition 45 and (114), we have

p − rð Þ∥u0∥p = σ q − rð Þ
ð
J0
ω tð Þ u0 tð Þj jqΔt

≤ σ q − rð Þ∥ω∥∞b∥u0∥
q
∞

≤ bσ q − rð Þ∥ω∥∞
b α−1/pð Þq

Γq αð Þ α − 1ð Þ�p + 1ð Þq/p
T
aD

α
t u0

�� ��q
LpΔ

= σ q − rð Þ∥ω∥∞
b1+ α−1/pð Þq

Γq αð Þ α − 1ð Þ�p + 1ð Þq/p
u0k kq,

ð116Þ

which implies that

∥u0∥ ≥
p − rð ÞΓq αð Þ α − 1ð Þ�p + 1ð Þq/�p
σ q − rð Þ∥ω∥∞b1+q α−1/pð Þ

 !1/ q−pð Þ
: ð117Þ

Moreover, combining with Proposition 45, (88), and
(115), one has

q − pð Þ∥u0∥p = r q − rð Þ
ð
J0
F t, u0 tð Þð ÞΔt

≤ r q − rð Þ
ð
J0
K u0j jrΔt

≤ Kr q − rð Þ∥u0∥r∞b

≤ Kr q − rð Þb b α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
T
aD

α
t u0

�� ��r
LpΔ

= Kr q − rð Þ b1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
u0k kr:

ð118Þ

Hence,

∥u0∥ ≤
Kr q − rð Þb1+ α−1/pð Þr

q − pð ÞΓr αð Þ α − 1ð Þ�p + 1ð Þr/�p
 !1/ p−rð Þ

: ð119Þ

It follows from (47) that

σ ≥
p − rð ÞΓq αð Þ α − 1ð Þ�p + 1ð Þq/p
∥u0∥

q−p q − rð Þ∥ω∥∞b1+q α−1/pð Þ , ð120Þ

and that

∥u0∥
1/ q−pð Þ ≥

q − pð ÞΓr αð Þ α − 1ð Þ�p + 1ð Þr/�p
Kr q − rð Þb1+ α−1/pð Þr

 ! q−pð Þ/ p−rð Þ
:

ð121Þ

Combining with (120) and (120), we gain that

σ ≥
p − rð ÞΓq αð Þ α − 1ð Þ�p + 1ð Þq/p

q − rð Þ∥ω∥∞b1+q α−1/pð Þ

� q − pð ÞΓr αð Þ α − 1ð Þ�p + 1ð Þr/�p
Kr q − rð Þb1+ α−1/pð Þr

 ! q−pð Þ/ p−rð Þ
= η0:

ð122Þ

Namely, σ ≥ η0, which leads to a contradiction. This
completes the proof of Lemma 52.

Lemma 53. If σ ∈ ð0, η0Þ, then Jσ is coercive and bounded
below on N σ.
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Proof. Let u ∈N σ, then, by (88) and Proposition 45, we gain

ð
J0
F t, u tð Þð ÞΔt ≤ K

ð
J0
u tð Þj jrΔt ≤ K∥u∥r∞b

≤
Kb1+r α−1/pð Þ

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
T
aD

α
t u

�� ��r
LpΔ

= Kb1+r α−1/pð Þ

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
∥u∥r:

ð123Þ

Hence, in view of (111), one gets

Jσ uð Þ = 1
p
∥u∥p −

ð
J0
F t, u tð Þð ÞΔt − σ

q

ð
J0
ω tð Þ u tð Þj jqΔt

= q − p
qp

∥u∥p −
ð
J0
F t, u tð Þð ÞΔt + r

q

ð
J0
F t, u tð Þð ÞΔt

= q − p
qp

∥u∥p −
q − r
q

ð
J0
F t, u tð Þð ÞΔt

≥
q − p
qp

∥u∥p −
K q − rð Þb1+r α−1/pð Þ

qΓr αð Þ α − 1ð Þ�p + 1ð Þr/�p
∥u∥r:

ð124Þ

Since r < p < q, Jσ is coercive and bounded below on N σ.
The proof of Lemma 53 is now completed.

Now as we know, the Nehari manifold is closely related
to the behavior of the functions Θu : ½0,∞Þ⟶ℝ defined as

Θu sð Þ = Jσ suð Þ: ð125Þ

Such maps are called fibering maps. For u ∈Wα,p
Δ,a+ , we

define

Θu sð Þ = Jσ suð Þ
= 1
p
∥su∥p −

ð
J0
F t, u tð Þð ÞΔt − σ

q

ð
J0
ω tð Þ su tð Þj jqΔt

= sp

p
∥u∥p − sr

ð
J0
F t, u tð Þð ÞΔt − σ

sq

q

ð
J0
ω tð Þ u tð Þj jqΔt:

ð126Þ

Then, one obtains

Θu′ sð Þ = sp−1∥u∥p − rsr−1
ð
J0
F t, u tð Þð ÞΔt − σsq−1

ð
J0
ω tð Þ u tð Þj jqΔt,

ð127Þ

Θ″u sð Þ = p − 1ð Þsp−2∥u∥p − r r − 1ð Þsr−2
ð
J0
F t, u tð Þð ÞΔt

− σ q − 1ð Þsq−2
ð
J0
ω tð Þ u tð Þj jqΔt:

ð128Þ

Then, it is obvious to see that su ∈N σ iff Θ′uðsÞ = 0, and
in particular, u ∈N σ iff Θ′uð1Þ = 0.

Before using fiber mapping to study the behavior of
Nehari manifolds, let us introduce some symbols.

F± = u ∈Wα,p
Δ,a+ \ 0f g:

ð
J0
F t, u tð Þð ÞΔt ≶ 0


 �
,

F0 = u ∈Wα,p
Δ,a+ \ 0f g:

ð
J0
F t, u tð Þð ÞΔt = 0


 �
,

Π± = u ∈Wα,p
Δ,a+ \ 0f g:

ð
J0
ω tð Þ u tð Þj jqΔt ≶ 0


 �
,

Π0 = u ∈Wα,p
Δ,a+ \ 0f g:

ð
J0
ω tð Þ u tð Þj jqΔt = 0


 �
:

ð129Þ

We will study the fibering map Θu according to the signs
of
Ð
J0ωðtÞjuðtÞjqΔt and

Ð
J0Fðt, uðtÞÞΔt. To this end, let us

define ρu : ½0,∞Þ⟶ℝ by setting

ρu sð Þ = sp−r∥u∥p − σsq−r
ð
J0
ω tð Þ u tð Þj jqΔt: ð130Þ

Hence, for s > 0, one gets

Θ′u sð Þ = sp−1∥u∥p − rsr−1
ð
J0
F t, u tð Þð ÞΔt − σsq−1

ð
J0
ω tð Þ u tð Þj jqΔt

= sr−1 ρu sð Þ − r
ð
J0
F t, u tð Þð ÞΔt

� �
,

ð131Þ

which implies that su ∈N σ iff s is a solution of the following
equation:

ρu sð Þ = r
ð
J0
F t, u tð Þð ÞΔt: ð132Þ

Furthermore, obviously, ρuð0Þ = 0 and

ρ′u sð Þ = p − rð Þsp−r−1∥u∥p − σ q − rð Þsq−r−1
ð
J0
ω tð Þ u tð Þj jqΔt:

ð133Þ

Lemma 54. If u ∈F0 ∩Π0 , then Θu has no critical point.

Proof. In this case, Θuð0Þ = 0 and Θ′uðsÞ > 0 for all s > 0,
which yields that Θu is strictly increasing and hence has no
critical point. The proof is complete.

Lemma 55. If u ∈F0 ∩Π+, then Θu possesses a unique crit-
ical point that corresponds to a global maximum point. More-
over, there exists s0 > 0 such that s0 ∈N

−
σ and Jσðs0uÞ > 0.

Proof. In this case, there exists a unique �s ∈ ð0,∞Þ such that
ρ′uð�sÞ = 0. In addition, ρ′uðsÞ > 0 for s ∈ ð0,�sÞ and ρ′uðsÞ < 0
for s ∈ ð�s,∞Þ. Note that ρuð0Þ = 0 and ρuðsÞ⟶ −∞ as s
⟶∞. So, for u ∈F−, there exists a unique s0 such that
ρuðs0Þ =

Ð
J0Fðt, uðtÞÞΔt. Consequently, according to (131),
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we get Θ′uðsÞ > 0 for 0 < s < s0, and Θ′uðsÞ < 0 for s > s0. That
is, Θu is increasing on ð0, s0Þ and decreasing on ðs0,∞Þ.
Therefore, Θu has exactly one critical point at s0, which is
a global maximum point. Thus, by (128), s0u ∈N

−
σ . The

proof is complete.

Lemma 56. If u ∈F+ ∩Π0 , then Θu possesses a unique crit-
ical point that corresponds to a global minimum point. More-
over, there exists s1 > 0 such that s1 ∈N

+
σ and Jσðs1uÞ < 0.

Proof. In this case, it is easy to see that ρuð0Þ = 0 and ρ′uðsÞ > 0
for all s > 0, which implies that ρu is strictly increasing. Since
u ∈F+, there exists a unique s1 > 0 such that ρuðs1Þ =

Ð
J0Fðt,

uðtÞÞΔt. This implies thatΘu is decreasing on ð0, s1Þ, increas-
ing on ðs1,∞Þ andΘ′uðs1Þ = 0. Thus,Θu has exactly one crit-
ical point corresponding to global minimum point. Hence,
s1u ∈N

+
σ . Moreover, since Jσð0Þ = 0, then we have Jσðs1uÞ

< 0. The proof is complete.

Lemma 57. If u ∈F+ ∩Π+, then there exists η1 > 0 such that
for σ ∈ ð0, η1Þ,Θu has a positive value and Θu has exactly two
critical points that correspond to the local minimum and local
maximum. Moreover, there exists s2 > 0 such that s2 ∈N

+
σ

and Jσðs2uÞ < 0.

Proof. Let u ∈Wα,p
Δ,a+ . As in above, we define

Ξu sð Þ = sp

p
∥u∥p − σ

sq

q

ð
J0
ω tð Þ u tð Þj jqΔt: ð134Þ

Then,

Ξ′u sð Þ = sp−1∥u∥p − σsq−1
ð
J0
ω tð Þ u tð Þj jqΔt: ð135Þ

Let Ξ′uðsÞ = 0, we have

~s = ∥u∥p

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 !1/ q−pð Þ
, ð136Þ

which is the maximum value point of Ξu. Moreover,
one has

Ξu ~sð Þ = ~sp

p
∥u∥p − σ

~sq

q

ð
J0
ω tð Þ u tð Þj jqΔt

=~sp 1
p
∥u∥p − σ

~sq−p

q

ð
J0
ω tð Þ u tð Þj jqΔt

� �

=~sp
 
1
p
∥u∥p − σ

∥u∥p/σÐ J0ω tð Þ u tð Þj jqΔt
� � q−pð Þ/ q−pð Þ

q

�
ð
J0
ω tð Þ u tð Þj jqΔt

!

=~sp 1
p
∥u∥p −

1
q
∥u∥p

� �
=~sp∥u∥p 1

p
−
1
q

� �

= ∥u∥p

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 !1/ q−pð Þ
∥u∥ q−pð Þ/ q−pð Þ

2
4

3
5
p

1
p
−
1
q

� �

= 1
p
−
1
q

� �
∥u∥p+q−p

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 !p/ q−pð Þ

= 1
p
−
1
q

� �
∥u∥q

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 !p/ q−pð Þ
,

Ξ″u ~sð Þ = p − 1ð Þ~sp−2∥u∥p − σ q − 1ð Þ~sq−2
ð
J0
ω tð Þ u tð Þj jqΔt

=~sp−2 p − 1ð Þ∥u∥p − σ q − 1ð Þ~sq−p
ð
J0
ω tð Þ u tð Þj jqΔt

	 


=~sp−2
"
p − 1ð Þ∥u∥p − σ q − 1ð Þ ∥u∥p

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 ! q−pð Þ/ q−pð Þ

�
ð
J0
ω tð Þ u tð Þj jqΔt

#

=~sp−2 p − 1ð Þ∥u∥p − q − 1ð Þ∥u∥p� �
=~sp−2∥u∥p p − qð Þ

= p − qð Þ ∥u∥p

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 ! p−2ð Þ/ q−pð Þ
∥u∥p

= p − qð Þ ∥u∥p q−2ð Þ/ q−pð Þ

σ
Ð
J0ω tð Þ u tð Þj jqΔt

� � p−2ð Þ/ q−pð Þ
< 0:

ð137Þ

In consideration of Proposition 45, we deduce that

Ξu ~sð Þ = 1
p
−
1
q

� �
∥u∥q

σ
Ð
J0ω tð Þ u tð Þj jqΔt

 !p/ q−pð Þ

≥
q − p
qp

∥u∥q

σ∥ω∥∞∥u∥q∞b

� �p/ q−pð Þ

≥
q − p
qp

∥u∥q

bσ∥ω∥∞ b α−1/pð Þq/Γq αð Þ α − 1ð Þ�p + 1ð Þq/p
� �

∥u∥q

0
@

1
A

p/ q−pð Þ

= q − p
qp

Γq αð Þ α − 1ð Þ�p + 1ð Þq/�p
σ∥ω∥∞b1+q α−1/pð Þ

 !p/ q−pð Þ
≔ δ,

ð138Þ

which is independent of u. We now prove that there exists
η1 > 0 such that Θ′uð~sÞ > 0. Taking (16) and Proposition 45
into consideration, one obtains
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~sr
ð
J0
F t, u tð Þð ÞΔt ≤~sr

ð
J0
K u tð Þj jrΔt

≤~srK∥u∥r∞b

≤
∥u∥p

σ
Ð
J0g tð Þ u tð Þj jqΔt

 !r/ q−pð Þ
K

b1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
∥u∥r

= ∥u∥p

σ
Ð
J0g tð Þ u tð Þj jqΔt

 !r/ q−pð Þ
Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p

� ∥u∥r· q−pð Þ/r
� �r/ q−pð Þ

= Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
∥u∥q

σ
Ð
J0g tð Þ u tð Þj jqΔt

 !r/ q−pð Þ

= Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
pq
q − p

� �r/p
Mu ~sð Þð Þr/p:

ð139Þ

Hence, we have

Θu ~sð Þ = Ξu ~sð Þ −~sr
ð
J0
F t, u tð Þð ÞΔt

≥ Ξu ~sð Þ − Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
pq
q − p

� �r/p
Ξu ~sð Þð Þr/p

≥ δ − δr/p
Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
pq
q − p

� �r/p

= δr/p+ p−rð Þ/p − δr/p
Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
pq
q − p

� �r/p

= δr/p δ p−rð Þ/p −
Kb1+ α−1/pð Þr

Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
pq
q − p

� �r/p
 !

> 0,

ð140Þ

for 0 < σ < η1, where δ is the constant given in (138) and

η1 =
q − p
qp

Γq αð Þ α − 1ð Þ�p + 1ð Þq/p
∥ω∥∞b1+q α−1/pð Þ

· Γr αð Þ α − 1ð Þ�p + 1ð Þr/�p
Kb1+r α−1/pð Þ · q − p

pq

� �r/p
" # q−pð Þ/ p−rð Þ

:

ð141Þ

The same arguments used in the proof of Lemma 55
show that Θu has exactly two critical points which corre-
spond to the local minimum and local maximum. Further-
more, there exists s2 > 0 such that s2u ∈N

+
σ and Jσðs2uÞ < 0.

The proof of Lemma 57 is now completed.

From now on, we define σ0 by

σ0 = min η0, η1ð Þ: ð142Þ

Note that if 0 < σ < σ0, then all the above related lemmas
are true.

Lemma 58. Let u be a local minimizer for Jσ on subsets N +
σ

or N −
σ of N σ such that u ∉N 0

σ. Then, u is a critical of Jσ.

Proof. Since u is a minimizer for Jσ under the constraint

Iσ uð Þ≔ J′σ uð Þ, u
D E

: ð143Þ

Then, applying the theory of Lagrange multipliers, we
get the existence of η ∈ℝ such that

J′σ uð Þ = ηI′σ uð Þ: ð144Þ

Therefore, one has

J′σ uð Þ, u
D E

= η I′σ uð Þ, u
D E

= ηΘ′′u 1ð Þ = 0, ð145Þ

but u ∉N 0
σ and so Θ′′uð1Þ ≠ 0. Hence, η = 0, which gives the

proof of Lemma 58. The proof is complete.

In the following, we assume that 1/2 < α < 1 and 1 < r
< p < q. Let σ0 be the constant given by (56). Then, the proof
of Theorem 50 is based on the following two propositions.

Proposition 59. Suppose that assumptions of Theorem 50
are satisfied. Then, for all 0 < σ < σ0, Jσ achieves its mini-
mum on N +

σ.

Proof. In view of σ ∈ ð0, σ0Þ and Lemma 53, we have Jσ
which is bounded below on N σ and also on N +

σ . Therefore,
there exists a minimizing sequence fukg ⊂N +

σ such that

lim
k⟶∞

Jσ ukð Þ = inf
u∈N +

σ

Jσ uð Þ: ð146Þ

As Jσ is coercive on N σ, fukg is a bounded sequence in
Wα,p

Δ,a+ up to a subsequence; there is fukg ⊂Wα,p
Δ,a+ such that

ukuσ weakly in Wα,p
Δ,a+ .

Let u ∈Wα,p
Δ,a+ such that

Ð
J0Fðt, uðtÞÞΔt > 0. So, using

Lemmas 56 and 57, there is s1 > 0 such that s1u ∈N
+
σ and

JσðuÞ < 0. Therefore, inf
u∈N +

σ

JσðuÞ < 0.

Because of fukg ⊂N σ, we have

Jσ ukð Þ = 1
p
+ 1
q

� �
∥uk∥

p − 1 + r
q

� �ð
J0
F t, uk tð Þð ÞΔt, ð147Þ

which yields that

1 + r
q

� �ð
J0
F t, uk tð Þð ÞΔt = 1

p
+ 1
q

� �
∥uk∥

p − Jσ ukð Þ: ð148Þ

Letting k go to infinity in the above equation, we obtain

ð
J0
F t, uσ tð Þð ÞΔt > 0: ð149Þ
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Now, we declare that uk ⟶ uσ strongly inWα,p
Δ,a+ . Other-

wise, we have

∥uσ∥
p < liminf

k⟶∞
∥uk∥

p: ð150Þ

Since Θ′uσðs1Þ = 0, it follows from (150) that Θ′ukðs1Þ > 0
for sufficiently large k. Hence, we must have s1 > 1.

However, s1uσ ∈N
+
σ , and so,

Jσ s1uσð Þ < Jσ uσð Þ ≤ lim
k⟶∞

Jσ ukð Þ = inf
u∈N +

σ

Jσ uð Þ, ð151Þ

which gives a contradiction. Thus, uk ⟶ uσ strongly in
Wα,p

Δ,a+ ; as a consequence, uσ ∈N σ =N +
σ ∪N 0

σ. In addition,
it is easy to check by contradiction that uσ ∈N

+
σ . Therefore,

from (149), uσ is a nontrivial solution of (85). The proof is
complete.

Proposition 60. Suppose that assumptions of Theorem 50
are satisfied. Then, for all 0 < σ < σ0, Jσ achieves its mini-
mum on N −

σ.

Proof. Let u ∈N −
σ . Hence, by the result of Lemma 55, we

obtain the existence of η1 > 0 such that JσðuÞ ≥ η1. There-
fore, there is a minimizing sequence fvkg ⊂N −

σ such that

lim
k⟶∞

Jσ vkð Þ = inf
u∈N −

σ

Jσ uð Þ > 0: ð152Þ

Furthermore, in view of Lemma 53, we know that Jσ is
coercive, so fvkg is a bounded sequence in Wα,p

Δ,a+ up to a

subsequence, there is fvkg ⊂Wα,p
Δ,a+ such that vk ⇀ vσ weakly

in Wα,p
Δ,a+ .

Because of fvkg ⊂N σ, then we have

σ
1
r
−
1
q

� �ð
J0
ω tð Þ vk tð Þj jqΔt = Jσ vkð Þ − 1

p
−
1
r

� �
∥vk∥

p:

ð153Þ

Letting k go to infinity in (153), it follows from (152) that

ð
J0
ω tð Þ vk tð Þj jqΔt > 0: ð154Þ

Therefore, vσ ∈Π+, and so,Θvσ
has a global maximum at

some point ~s. Consequently, ~svσ ∈N
−
σ .

On the other hand, vk ∈N
−
σ implies that 1 is a global

maximum point for Θvk
, i.e.,

Jσ ~sukð Þ =Θvk
~sð Þ ≤Θvk

1ð Þ = Jσ vkð Þ: ð155Þ

Now, as in the proof of Proposition 59, we assert that
vk ⟶ vσ in Wα,p

Δ,a+ . Assuming it is not true, then

∥vσ∥
p < liminf

k⟶∞
∥vk∥

p: ð156Þ

It follows from 4.23 that

Jσ ~svσð Þ = ~sp

p
∥vσ∥

p −~sr
ð
J0
F t, vσ tð Þð ÞΔt − σ

~sq

q

ð
J0
ω tð Þ vσ tð Þj jqΔt

< liminf
k⟶∞

�
~sp

p
∥vk∥

p −~sr
ð
J0
F t, vk tð Þð ÞΔt

− σ
~sq

q

ð
J0
ω tð Þ vk tð Þj jqΔt

�
≤ lim

k⟶∞
Jσ ~svkð Þ =Θvk

~sð Þ ≤ inf
u∈N −

σ

Jσ vkð Þ
=Θvk

1ð Þ = inf
u∈N −

σ

Jσ uð Þ,

ð157Þ

which gives a contradiction. Therefore, vk ⟶ vσ, and so,
vσ ∈N

−
σ ∪N 0

σ.
Using Lemma 52, we have N 0

σ =∅, so vσ is a minimizer
for Jσ on N −

σ .
On the other hand, by (22), vσ is a nontrivial solution of

(1). Finally, since N −
σ ∩N +

σ =∅, uσ and vσ are distinct. That
is, the result of Theorem 50 holds true. The proof is com-
plete.

5. Conclusions

In this paper, we introduced a class of fractional Sobolev
spaces via the fractional derivative of Riemann-Liouville on
time scales and obtain some of their basic properties. As
an application, we use critical point theory to study the solv-
ability of a class of fractional boundary value problems on
time scales. The results and methods in this paper can also
be used to study the solvability of other boundary value
problems on time scales. At present, the concept of frac-
tional derivatives in different meanings is constantly being
proposed. Therefore, studying the theory and application
of fractional Sobolev spaces on time scales in other meanings
is our future direction.
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