
Research Article
Parametric Marcinkiewicz Integral and Its Higher-Order
Commutators on Variable Exponents Morrey-Herz Spaces

Omer Abdalrhman Omer ,1 Khedoudj Saibi ,1 Muhammad Zainul Abidin ,1,2

and Mawia Osman 1

1College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
2Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Jiangsu 211100, China

Correspondence should be addressed to Omer Abdalrhman Omer; omeraomer@zjnu.edu.cn

Received 7 June 2022; Accepted 18 August 2022; Published 14 September 2022

Academic Editor: Andrea Scapellato

Copyright © 2022 Omer Abdalrhman Omer et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this article, we prove the boundedness of the parametric Marcinkiewicz integral and its higher-order commutators generated by
BMO spaces on the variable Morrey-Herz space. All the results are new even when αð·Þ is a constant.

1. Introduction

Throughout the entirety of this article, we assume that n ≥ 2,
ℝn is the n-dimensional Euclidean space, and Sn−1 is the
unit sphere in ℝn equipped with the normalized Lebesgue
measure dρ. The function Ω is assumed to be homogeneous
of degree zero on ℝn with Ω ∈ L1ðSn−1Þ and

ð
Sn−1

Ω x′
� �

dρ x′
� �

= 0, ð1Þ

where x′ = x/jxj for any x ∈ℝn \ f0g. For ρ ∈ ð0, nÞ, the
parametric Marcinkiewicz integral Mϱ

Ω of higher dimen-
sions is defined as follows:

M
ϱ
Ω fð Þ xð Þ≔

ð∞
0

t−ϱ
ð

x−yj j≤t

Ω x − yð Þf yð Þ
x − yj jn−ρ dy

�����
�����
2
dt
t

 !1/2

:

ð2Þ

Let B be a ball with a radius τ > 0, and a center x ∈ℝn. A
locally integrable function Λ is said to be in the BMO space,

if it satisfies

Λk k∗ ≔ sup
B

1
Bj j
ð
B
Λ zð Þ −ΛBj jdz <∞, ð3Þ

where ΛB = jBj−1Ð BΛðtÞdt and jEj denotes the Lebesgue
measure of the set E in ℝn. For Λ ∈ BMO, i ∈ℕ, the i
-order commutator for the parametric Marcinkiewicz inte-
gral Mϱ

Ω,Λi is defined as follows:

M
ϱ
Ω,Λi fð Þ xð Þ≔

ð∞
0

t−ϱ
ð

x−yj j≤t
Λ xð Þ −Λ yð Þð Þi Ω x − yð Þf yð Þ

x − yj jn−ρ dy

�����
�����
2
dt
t

 !1/2

:

ð4Þ

If ρ = 1 in (2), then the operator Mϱ
Ω is equivalent to the

classical Marcinkiewicz function M1
Ω, which was initially

introduced by Stein [1] in 1958. When Ω ∈ LipβðSn−1Þ, β
∈ð0, 1�, Stein [1] demonstrated that M1

Ω is bounded on Lp

for p ∈ ð1, 2�. Subsequently, the authors of [2] established
the Lp-boundedness of M1

Ω for every p ∈ ð1,∞Þ when Ω ∈
ℂ1ðSn−1Þ. On the other hand, Calderón [3] proved that the
commutator the Hilbert transform H generated by Λ ∈
BMO, defined by ½Λ, T�f ≔ΛTð f Þ − TðΛf Þ, is bounded on
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L2ðℝnÞ. Coifman et al. [4] arrived at the conclusion that the
commutator, which was generated by the Calderón-
Zygmund operator T and the Λ ∈ BMO, is bounded on Lp

for p ∈ ð1,∞Þ. Since then, the commutators of the
Calderón-Zygmund operator have played an essential role
in the study of the regularity of solutions to second-order
elliptic, parabolic, and ultraparabolic partial differential
equations, see for example [5–11]. Moreover, the bound-
edness of the commutators of various operators generated
by a BMO function has been widely studied. Particularly,
Torchinsky and Wang [12] studied the weighted Lp

-boundedness of M1
Ω,Λi , where M1

Ω,Λi is the i-order com-
mutator of Marcinkiewicz integral. The authors of [13]
studied the behaviour of the Hardy-Littlewood maximal
operator and the action of commutators in generalized
local Morrey spaces and generalized Morrey spaces. For
further research works studying the commutators on dif-
ferent function spaces, we refer to [9, 14–21] and refer-
ences therein.

The parametric Marcinkiewicz integral Mϱ
Ω was origi-

nally introduced by Hörmander in [22] where the author
established the boundeness of M

ϱ
Ω on Lp for p ∈ ð1,∞Þ

under the condition Ω ∈ LipβðSn−1Þ, ðβ ∈ ð0, 1�Þ and ϱ > 0.
Shi and Jiang [23] investigated the weighted Lp-bounded-
ness of Mϱ

Ω and M
ϱ
Ω,Λi . Since that time, the boundedness

of the parametric Marcinkiewicz integral, as well as its
related commutator, in several types of function spaces have
attracted the attention of many researchers. Deringoz and
Hasanov [24] considered the boundedness of the operator
M

ϱ
Ω on generalized Orlicz-Morrey spaces. On generalized

weighted Morrey spaces, Deringoz [25] investigated the
boundedness of rough parametric Marcinkiewicz integral
M

ϱ
Ω and its higher-order commutator M

ϱ
Ω,Λi . For more

applications and recent developments on the research of
the parametric Marcinkiewicz function, see [26–31].

In the last decades, the variable Lebesgue spaces have
been intensively studied since the pioneering work of [32]
by Kovácık and Rákosnık. Additionally, different studies
on variable function spaces, such as variable exponents
Fourier-Besov-Morrey spaces [33–35], variable exponents
Fourier-Besov spaces [36, 37], variable exponent Morrey
spaces [38], variable Bessel potential spaces [39, 40], and
variable exponent Hardy spaces [41, 42], were developed
due to their applications in the modeling of electro-
rheological fluids, PDEs with nonstandard growth, and
image restoration. Recently, Izuki studied the Herz spaces
_K
α
pð·Þ,q in [43, 44]. As a generalization, Izuki [45] introduced

the variable Morrey-Herz spaces M _K
α,σ
pð·Þ,q. In fact, the author

of [45] found that vector-valued sublinear operators which
satisfy a certain size condition are bounded on the variable
Morrey-Herz spaces. Furthermore, Almeida and Drihem

[46] enhanced the variable case of the Herz spaces _K
αð·Þ
pð·Þ,q

and established the boundedness results for a class of sub-
linear operators. Lu and Zhu [47] generalized Izuki’s result

for the M _K
αð·Þ,σ
pð·Þ,q . For further information and applications,

consult [48–54].

Inspired by the research mentioned above, the main goal
of this article is to prove the boundedness of the rough para-
metric Marcinkiewicz integral and its higher-order commu-
tators on the variable exponents Morrey-Herz spaces.

Henceforth, wherever the symbol C appears, it repre-
sents a positive constant whose value may vary but is inde-
pendent of the basic variables. The expression f ≲ g
denotes the existence of constant C such that f ≤ Cg, and f
≍g means that f ≲ g ≲ f . If no further instructions are pro-
vided, the symbol for any space denoted by XðℝnÞ is repre-
sented by X . For instance, LpðℝnÞ is abbreviated as Lp.

2. Definitions and Preliminaries

In this section, we review some notations, definitions, and
properties related to our work.

A variable exponent is a measurable function pð·Þ: ℝn

⟶ ð0,∞�. For any variable exponent pð·Þ, we set p− ≔
essinf fpðxÞ: x ∈ℝng and p+ ≔ esssup fpðxÞ: x ∈ℝng.
Define the sets P by

P ≔ p xð Þ ismeasurable function : 1 < p− and p+<∞f g: ð5Þ

Let pð·Þ ∈P . The variable Lebesgue space Lpð·Þ consists of
all measurable functions f on ℝn such that

fk kLp ·ð Þ ≔ inf ϑ ∈ 0,∞ð Þ: ℘p ·ð Þ f xð Þð Þ ≤ 1
n o

<∞, ð6Þ

where

℘p ·ð Þ fð Þ≔
ð
ℝn

f xð Þj jp xð Þdx: ð7Þ

It is obvious that the variable exponent Lebesgue norm

has the following property kj f jβkLpð·Þ = k f kβ
Lβpð·Þ

, β ≥ 1/p−.
Define the set B by

B≔ p xð Þ ∈P : MHL is bounded on variable Lpf g, ð8Þ

where MHL stands for the Hardy-Littlewood maximal func-
tion, which is defined as follows:

MHL fð Þ xð Þ = sup
B∋x,
B⊂ℝn

1
B x, τð Þj j

ð
B x,τð Þ

f zð Þj jdz, f ∈ L1loc:

ð9Þ

Definition 1 (see [46]). Let Θð·Þ be real function on ℝn.

(i) If there exists a constant Clog > 0 such that

Θ xð Þ −Θ 0ð Þj j ≤ Clog

log e + 1/ xj jð Þð Þ , for all x ∈ℝ
n, ð10Þ

then the function Θð·Þ is said to be a log-Hölder continuous
at the origin (or has a log decay at the origin).
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(ii) If there exist Θ∞ ∈ ð0,∞Þ and a constant Clog > 0
such that

Θ xð Þ −Θ∞j j ≤ Clog

log e + xj jð Þ , for all x ∈ℝ
n, ð11Þ

then the function Θð·Þ is said to be a log-Hölder continuous
at the infinity (or has a log decay at the infinity).

If pð·Þ ∈P , then the following expression of Hölder’s
inequality is valid:

ð
ℝn

f xð Þg xð Þj jdx ≤ 1 + 1
p−

−
1
p+

� �
fk kLp ·ð Þ gk kLp′ ·ð Þ : ð12Þ

See [55].
Here and hereafter, p′ð·Þ denotes the conjugate exponent

of pð·Þ, i.e., p′ð·Þ≔ pð·Þ/ðpð·Þ − 1Þ. It is well-known that if pð·Þ
belongs to B, then p′ð·Þ ∈B (see [56]).

For any ℓ ∈ℤ, let Bℓ ≔ fx ∈ℝn : jxj ≤ 2ℓg,Rℓ ≔ Bℓ \
Bℓ−1, and denote byχℓ ≔ χRℓ

the characteristic function of
Rℓ.

Definition 2 (see [46]). Let q ∈ ð0,∞�, αð·Þ ∈ L∞ and let pð·Þ
∈P . The homogeneous variable Herz space _K

αð·Þ
pð·Þ,q is defined

as the set of all functions f ∈ Lpð·Þloc ðℝn \ f0gÞ such that

fk k _K
α ·ð Þ
p ·ð Þ,q

≔ 〠
ℓ∈ℤ

2ℓα ·ð Þ fχℓ

��� ���q
Lp ·ð Þ

 !1/q

<∞, ð13Þ

for q <∞, and the usual modification should be made when
q =∞.

Definition 3 (see [47]). Let σ ∈ ½0,∞Þ, αð·Þ ∈ L∞, q ∈ ð0,∞�
and let pð·Þ ∈P . The homogeneous variable Morrey-Herz

space M _K
αð·Þ,σ
q,pð·Þ is defined as the set of all functions f ∈ Lpð·Þloc ð

ℝn \ f0gÞ such that

fk kM _K
α ·ð Þ,σ
q,p ·ð Þ

≔ sup
κ∈ℤ

2−κσ 〠
κ

ℓ=−∞
2ℓα ·ð Þ fχℓ

��� ���q
Lp ·ð Þ

 !1/q

<∞, ð14Þ

for q <∞, and the usual modification should be made when
q =∞.

Lemma 4 (see [44]). Let pð·Þ ∈B: Then, for any ball B in ℝn,

χBk kLp ·ð Þ χBk kLp ′ ·ð Þ ≤ C Bj j: ð15Þ

Lemma 5 (see [44]). Let p♭ð·Þ ∈B, ♭ = 1, 2. Then, there are
positive constants δ♭1, δ♭2 ∈ ð0, 1Þ, such that for any ball B
in ℝn and any measurable subset S ⊂ B,

χSk k
L
p♭
′ ·ð Þ

χBk k
L
p♭
′ ·ð Þ

≲
Sj j
Bj j

� �δ♭2

, and χSk kLp♭ ·ð Þ

χBk kLp♭ ·ð Þ
≲

Sj j
Bj j

� �δ♭1

: ð16Þ

Proposition 6 (see [47]). Let αð·Þ ∈ L∞, q ∈ ð0,∞Þ, σ ∈ ½0,∞Þ,
and let pð·Þ ∈P . If the function αð·Þ is log-Hölder continuous
function both at origin and at infinity, then the following
inequalities hold:

Lemma 7 (see [46]). Let αðxÞ ∈ L∞ and τ1 > 0. If the function
αðxÞ is log-Hölder continuous both at origin and infinity,
then the following inequality holds:

τ
α xð Þ
1 ≲ τ

α yð Þ
2 ×

τ1
τ2

� �α+

, 0 < τ2 ⩽
τ1
2
,

1, τ1
2

< τ2 ⩽ 2τ1,

τ1
τ2

� �α−

, τ2 > 2τ1,

8>>>>>>><
>>>>>>>:

ð18Þ

for every x ∈ Bð0, τ1Þ \ Bð0, τ1/2Þ and y ∈ Bð0, τ2Þ \ Bð0, τ2/2Þ
.

Lemma 8 (see [56]). Let pð·Þ, q∗ðxÞ ∈P , and let q ∈ ð0,∞Þ
such that ð1/pðxÞÞ = ð1/qÞ + ð1/q∗ðxÞÞ. Then, for any measur-
able functions f ∈ Lpð·Þ and g ∈ Lq∗ð·Þ,

f gk kLp ·ð Þ ≲ fk kLq∗ ·ð Þ gk kLq : ð19Þ

Lemma 9 (see [57]). Let i be a positive integer, Λ ∈ BMO and
let pð·Þ ∈B. Then, there exists a positive C such that for all
ℓ, j ∈ℤðℓ > jÞ,

sup
B⊂ℝn

1
χBk kLp ·ð Þ

Λ −ΛBð ÞiχB

�� ��
Lp ·ð Þ≍ Λk ki∗, ð20Þ

fk kq
M _K

α ·ð Þ,σ
q,p ·ð Þ

≍max sup
κ<0
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓqα 0ð Þ fχℓk kqLp ·ð Þ , sup

κ⩾0
κ∈ℤ

2−κσq 〠
−1

ℓ=−∞
2ℓqα 0ð Þ fχℓk kqLp ·ð Þ + sup

κ⩾0
κ∈ℤ

2−κσq 〠
κ

ℓ=0
2ℓqα∞ f χℓk kqLp ·ð Þ

8>>><
>>>:

9>>>=
>>>;
: ð17Þ
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and

Λ −ΛBj

� �i
χBℓ

����
����
Lp ·ð Þ

≲ ℓ − jð Þi Λk ki∗ χBℓ

��� ���
Lp ·ð Þ

: ð21Þ

The main results of this article are as follows.

Theorem 10. Suppose that pð·Þ ∈B and Ω ∈ LsðSn−1Þ with
s > ðp′Þ+ satisfying (1). Let ϱ ∈ ð0, nÞ, q ∈ ð0,∞�, σ > 0, and α
ð·Þ be log-Hölder continuous both at the origin and at infinity,
such that

−nδ1 + σ < α− ≤ α+ <
− n − 1ð Þ

s
+ nδ2, ð22Þ

where δ1, δ2 ∈ ð0, 1Þ are the constants mentioned in Lemma

5. Then, the operator Mρ
Ω is bounded on M _K

αð·Þ,σ
q,pð·Þ .

Theorem 11. Suppose that pð·Þ ∈B and Ω ∈ LsðSn−1Þ with
s > ðp′Þ+ satisfies (1). Let ϱ ∈ ð0, nÞ, q ∈ ð0,∞�, b ∈ BMO, σ >
0, i ∈ℕ and αð·Þ be log-Hölder continuous both at the origin
and at infinity, such that

−nδ1 + σ < α− ≤ α+ <
− n − 1ð Þ

s
+ nδ2, ð23Þ

where δ1, δ2 ∈ ð0, 1Þ are the constants mentioned in Lemma

5. Then, the operator Mϱ
Ω,Λi is bounded on M _K

αð·Þ,σ
q,pð·Þ .

It is worth noting that if σ = 0, then the variable Morrey-

Herz space M _K
αð·Þ,0
q,pð·Þ dates back to the variable Herz space

_K
αð·Þ
q,pð·Þ. Thus, by letting σ = 0 in Theorems 10 and 11, we will

get the following results on the variable exponents Herz
spaces.

Corollary 12. Suppose that pð·Þ ∈B and Ω ∈ LsðSn−1Þ with
s > ðp′Þ+ satisfies (1). Let ρ ∈ ð0, nÞ, q ∈ ð0,∞�, and αð·Þ be
log-Hölder continuous both at the origin and at infinity, such
that

−nδ1 < α− ≤ α+ <
− n − 1ð Þ

s
+ nδ2, ð24Þ

where δ1, δ2 ∈ ð0, 1Þ are the constants mentioned in Lemma

5. Then, the operator Mϱ
Ω is bounded on _K

αð·Þ
q,pð·Þ.

Corollary 13. Suppose that pð·Þ ∈B and Ω ∈ LsðSn−1Þ with
s > ðp′Þ+ satisfies (1). Let ϱ ∈ ð0, nÞ, q ∈ ð0,∞�, b ∈ BMO and
i ∈ℕ and αð·Þ be log-Hölder continuous both at the origin
and at infinity, such that

−nδ1 < α− ≤ α+ <
− n − 1ð Þ

s
+ nδ2, ð25Þ

where δ1, δ2 ∈ ð0, 1Þ are the constants mentioned in Lemma

5. Then, the operator Mϱ
Ω,Λi is bounded on _K

αð·Þ
q,pð·Þ.

Remark 14. If αð·Þ is a constant function, i.e., αð·Þ = α, then
the results of Corollaries 12 and 13 can be founded in [30].

3. Proofs of Theorems 10 and 11

Proof of Theorem 10. Let f ∈M _K
αð·Þ,σ
q,pð·Þ . For any j ∈ℤ, let f j

≔ fχj, then we have

f xð Þ = 〠
∞

j=−∞
fχj xð Þ≔ 〠

ℓ+1

j=ℓ−1
f j xð Þ + 〠

ℓ−2

j=−∞
f j xð Þ + 〠

∞

j=ℓ+2
f j xð Þ:

ð26Þ

Using the definition of M _K
αð·Þ,σ
q,pð·Þ , we have

M
ϱ
Ω fð Þ�� ��q

M _K
α ·ð Þ,σ
q,p ·ð Þ

= sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ Mϱ

Ω fð Þ�� ��χℓ

��� ���q
Lp ·ð Þ

≲ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ 〠

ℓ−2

j=−∞
M

ϱ
Ω f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ 〠

∞

j=ℓ+2
M

ϱ
Ω f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

≕T1 +T2 +T3:

ð27Þ

First, we estimate T1. By Proposition 6, we obtain

T1≍max sup
κ<0
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα 0ð Þq 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

, sup
κ≥0
κ∈ℤ

2−κσq 〠
−1

ℓ=−∞
2ℓα 0ð Þq 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ≥0
κ∈ℤ

2−κσq 〠
κ

ℓ=0
2ℓα∞q 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

8>>><
>>>:

9>>>=
>>>;
:

ð28Þ
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Using the fact that 2αð·Þ≍2αð0Þ, and the boundedness of
M

ρ
Ω on Lpð·Þ(see [30]), we deduce

For the term T2, we firstly estimate 2ℓαðxÞjMϱ
Ωð f jÞðxÞj.

2ℓα xð Þ Mϱ
Ω f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲ 2ℓα xð Þ
ð xj j

0
t−ϱ
ð

x−yj j≤t

Ω x − yð Þf j yð Þ
x − yj jn−ϱ dy

�����
�����
2
dt
t

 !1/2

· χℓ xð Þ

+ 2ℓα xð Þ
ð∞

xj j
t−ϱ
ð

x−yj j≤t

Ω x − yð Þf j yð Þ
x − yj jn−ρ dy

�����
�����
2
dt
t

 !1/2

· χℓ xð Þ:
ð30Þ

It is clear that if x ∈Rk, j + 2 ≤ ℓ, andy ∈Rj, then jx − yj
≍jxj≍2ℓ. Thus, for ϱ ∈ ð0, nÞ, by the mean value theorem,
we have

1
x − yj j2ϱ −

1
xj j2ϱ

����
���� ≤ yj j

x − yj j2ρ+1 : ð31Þ

By (31) and the Minkowski’s inequality, it follows that

2ℓα xð Þ Mϱ
Ω f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲ 2ℓα xð Þ
ð
ℝn

Ω x − yð Þj j f j yð Þ
��� ���

x − yj jn−ϱ ·
ð xj j

x−yj j

dt
t2ρ+1

 !1/2

dy · χℓ xð Þ

+ 2ℓα xð Þ
ð
ℝn

Ω x − yð Þj j f j yð Þ
��� ���

x − yj jn−ϱ ·
ð∞

xj j

dt
t2ρ+1

 !1/2

dy · χℓ xð Þ

≲ 2ℓα xð Þ
ð
R j

Ω x − yð Þj j f j yð Þ
��� ���

x − yj jn−ϱ · 1
x − yj j2ϱ −

1
xj j2ϱ

����
����
1/2
dy

· χℓ xð Þ + 2ℓα xð Þ
ð
R j

Ω x − yð Þj j f j yð Þ
��� ���

x − yj jn−ϱ · 1
xj jϱ dy · χℓ xð Þ

≲ 2ℓα xð Þ
ð
R j

Ω x − yð Þj j f j yð Þ
��� ���

x − yj jn−ϱ · yj j1/2
x − yj jρ+ 1/2ð Þ dy · χℓ xð Þ

+ 2ℓα xð Þ
ð
R j

Ω x − yð Þj j f j yð Þ
��� ���

x − yj jn dy · χℓ xð Þ

≲
2ℓα xð Þ

xj jn
ð
R j

f yð Þj j Ω x − yð Þj jdy · χℓ xð Þ:

ð32Þ

By Lemma 7, we deduce

2ℓα xð Þ Mϱ
Ω f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲
1
xj jn
ð
R j

2ℓα xð Þ f yð Þj j Ω x − yð Þj jdy · χℓ xð Þ

≲
1
xj jn
ð
R j

2ℓα xð Þ2 j−jð Þα yð Þ f yð Þj j Ω x − yð Þj jdy · χℓ xð Þ

≲
2 ℓ−jð Þα+

xj jn
ð
R j

2jα yð Þ f yð Þj j Ω x − yð Þj jdy · χℓ xð Þ:

ð33Þ

It follows from Hölder’s inequality (12) that

2ℓα xð Þ Mϱ
Ω f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲ 2 ℓ−jð Þα+ xj j−n Ω x − ·ð Þχj

��� ���
Lp′ ·ð Þ

2jα ·ð Þ f
��� ���

Lp ·ð Þ
χℓ xð Þ:

ð34Þ

Since s > ðp′Þ+, we can find a variable exponent p∗ð·Þ > 1
such that ð1/p′ð·ÞÞ = ð1/sÞ + ð1/p∗ð·ÞÞ, then by Lemma 8, it
follows that

Ω x − ·ð Þχj

��� ���
Lp′ ·ð Þ

≲ Ω x − ·ð Þχj

��� ���
Ls

χj

��� ���
Lp

∗ ·ð Þ

≲ Ωk kLs Sn−1ð Þ2 ℓ−jð Þ n−1ð Þ/sð Þ χBj

��� ���
Lp ′ ·ð Þ

,
ð35Þ

where the last inequality (35) is based on the fact that
kχjkLp∗ð·Þ≍jBjj−1/skχjkLp ′ð·Þ ; see [18]. From (34) and (35),

T1 ≲max sup
κ<0
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα 0ð Þ fχℓj j
��� ���q

Lp ·ð Þ
, sup
κ≥0
κ∈ℤ

2−κσq 〠
−1

ℓ=−∞
2ℓα 0ð Þ fχℓj j
��� ���q

Lp ·ð Þ
+ sup
κ≥0
κ∈ℤ

2−κσq 〠
κ

ℓ=0
2ℓα∞ fχℓj j�� ��q

Lp ·ð Þ

8>>><
>>>:

9>>>=
>>>;

≲ fk kq
M _K

α ·ð Þ,σ
q,p ·ð Þ

:

ð29Þ
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Lemmas 4 and 5, we can deduce

2ℓα ·ð ÞMϱ
Ω f j
� �

χℓ

��� ���
Lp ·ð Þ

≲
1
2ℓn

≲ 2 ℓ−jð Þ α+− n−1ð Þ/sð Þð Þ χBj

��� ���
Lp ′ ·ð Þ

2jα ·ð Þ f j
��� ���

Lp ·ð Þ
χBℓ

��� ���
Lp ·ð Þ

≲ 2 ℓ−jð Þ α+− n−1ð Þ/sð Þð Þ χBj

��� ���
Lp′ ·ð Þ

2jα ·ð Þ f j
��� ���

Lp ·ð Þ

2ℓn Bℓj j
χBℓ

��� ���
Lp′ ·ð Þ

≲ 2 j−ℓð Þ nδ2+ n−1ð Þ/sð Þ−α+ð Þ 2jα ·ð Þ f j
��� ���

Lp ·ð Þ
:

ð36Þ

To estimate T2, we need to consider two cases: 0 < q ≤ 1
and 1 < q <∞.

Case 1. 1 < q <∞, by the fact that nδ2 − α+ + ððn − 1Þ/sÞ > 0,
the Hölder’s inequality, and the inequality (36), it follows
that

T2 ≲ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
〠
ℓ−2

j=−∞
2ℓα ·ð ÞMϱ

Ω f j
� �

χℓ

��� ���
Lp ·ð Þ

 !q

≲ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
〠
ℓ−2

j=−∞
2q/2 j−ℓð Þ nδ2−α++ n−1ð Þ/sð Þð Þ 2jα ·ð Þ f j

��� ���q
Lp ·ð Þ

 !

· 〠
ℓ−2

j=−∞
2q′/2 j−ℓð Þ nδ2−α++ n−1ð Þ/sð Þð Þ

 !q/q′

≲ sup
κ∈ℤ

2−κσq 〠
κ−2

j=−∞
2jα ·ð Þ f j
��� ���q

Lp ·ð Þ
〠
κ

ℓ=j+2
21/2 j−ℓð Þq nδ2−α++ n−1ð Þ/sð Þð Þ

≲ sup
κ∈ℤ

2−κσq 〠
κ−2

j=−∞
2 jα ·ð Þ f j
��� ���q

Lp ·ð Þ
≲ fk kq

M _K
α ·ð Þ,σ
q,p ·ð Þ

:

ð37Þ

Case 2. 0 < q ≤ 1, we use the inequality

〠
∞

j=1
ℵj

 !q

≤ 〠
∞

j=1
ℵq

j , ℵ1,ℵ2,⋯>0ð Þ, ð38Þ

and obtain

T2 ≲ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
〠
ℓ−2

j=−∞
2ℓα ·ð ÞMϱ

Ω f j
� �

χℓ

��� ���q
Lp ·ð Þ

≲ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
〠
ℓ−2

j=−∞
2q j−ℓð Þ nδ2−α++ n−1ð Þ/sð Þð Þ 2jα ·ð Þ f j

��� ���q
Lp ·ð Þ

≲ sup
κ∈ℤ

2−κσq 〠
κ−2

j=−∞
2jα ·ð Þ f j
��� ���q

Lp ·ð Þ
〠
κ

ℓ=j+2
2 j−ℓð Þq nδ2−α++ n−1ð Þ/sð Þð Þ

≲ fk kq
M _K

α ·ð Þ,σ
q,p ·ð Þ

:

ð39Þ

For the term T3, by applying Proposition 6, we can get

T3 ≲max sup
κ<0,κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα 0ð Þ 〠

∞

j=ℓ+2
M

ϱ
Ω f j
� �

χℓ

�����
�����
q

Lp ·ð Þ

, sup
κ≥0,κ∈ℤ

2−κσq 〠
−1

ℓ=−∞

8<
:

� 2ℓα 0ð Þ 〠
∞

j=ℓ+2
M

ϱ
Ω f j
� �

χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ≥0,κ∈ℤ

2−κσq 〠
κ

ℓ=0
2ℓα∞ 〠

∞

j=ℓ+2
M

ϱ
Ω f j
� �

χℓ

�����
�����
q

Lp ·ð Þ

9=
;

≕max T1
3,T2

3
� 	

:

ð40Þ

For T3, it is clear that if x ∈Rℓ, j − 2 ≥ ℓ, andy ∈R j, then
jx − yj≍jyj. By (31), (12), and the Minkowski’s inequality, we
deduce that

M
ϱ
Ω f j
� �

xð Þ
��� ��� · χℓ xð Þ ≲

ð yj j

0
t−ϱ
ð

x−yj j≤t

Ω x − yð Þ
x − yj jn−ϱ f j yð Þdy

�����
�����
2
dt
t

 !1/2

· χℓ xð Þ +
ð∞

yj j
t−ϱ
ð

x−yj j≤t

Ω x − yð Þ
x − yj jn−ϱ f j yð Þdy

�����
�����
2
dt
t

 !1/2

· χℓ xð Þ ≲
ð
R j

f j yð Þ
��� ��� Ω x − yð Þj j

x − yj jn−ϱ · xj j1/2
x − yj jϱ+ 1/2ð Þ dy

· χℓ xð Þ +
ð
R j

f j yð Þ
��� ��� Ω x − yð Þj

x − yj jn dy · χℓ xð Þ

≲
1
yj jn
ð
R j

f j yð Þ
��� ��� Ω x − yð Þj jdy · χℓ xð Þ

≲ 2−nj Ω x − ·ð Þχj

��� ���
Lp′ ·ð Þ

f j
��� ���

Lp ·ð Þ
χℓ xð Þ:

ð41Þ

Similar to (35), we conclude

Ω x − ·ð Þχj

��� ���
Lp′ ·ð Þ

≲ Ω x − ·ð Þχj

��� ���
Ls

χj

��� ���
Lp

∗ ·ð Þ
≲ Ωk kLs Sn−1ð Þ χBj

��� ���
Lp ′ ·ð Þ

:

ð42Þ

From (42), Lemmas 4 and 5, it follows that

〠
∞

j=ℓ+2
M

ϱ
Ω f j
� �

χℓ

�����
�����
Lp ·ð Þ

≲ 〠
∞

j=ℓ+2
M

ϱ
Ω f j
� �

χℓ

��� ���
Lp ·ð Þ

≲ 〠
∞

j=ℓ+2

1
2jn χBj

��� ���
Lp′ ·ð Þ

f j
��� ���

Lp ·ð Þ
χBℓ

��� ���
Lp ·ð Þ

≲ 〠
∞

j=ℓ+2
f j
��� ���

Lp ·ð Þ
χBℓ

��� ���
Lp ·ð Þ

2−jn Bj

�� ��
χBj

��� ���
Lp ·ð Þ

≲ 〠
∞

j=ℓ+2
f j
��� ���

Lp ·ð Þ
2 ℓ−jð Þnδ1 :

ð43Þ

To estimate T1
3, we need to consider two cases below: 0

< q ≤ 1 and 1 < q <∞.
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Case 3. 0 < q ≤ 1, combining the above inequalities and using
(38), we can obtain

T1
3 ≲ sup

κ<0κ∈ℤ
2−κσq 〠

κ

ℓ=−∞
2ℓα 0ð Þq 〠

κ−1

j=ℓ+2
2q ℓ−jð Þnδ1 f j

��� ���q
Lp ·ð Þ

+ sup
κ<0κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα 0ð Þq 〠

∞

j=κ
2q ℓ−jð Þnδ1 f j

��� ���q
Lp ·ð Þ

≕T1′
3 +T1′′

3 :

ð44Þ

For T1′
3 , in view of αð0Þ + nδ1 > α− + nδ1 > 0, we get

T1′
3 ≲ sup

κ<0κ∈ℤ
2−κσq 〠

κ−1

j=−∞
2qjα 0ð Þ f j

��� ���q
Lp ·ð Þ

〠
j−2

ℓ=−∞
2q ℓ−jð Þ α 0ð Þ+nδ1ð Þ

≲ sup
κ<0κ∈ℤ

2−κσq 〠
κ−1

j=−∞
2qjα 0ð Þ f j

��� ���q
Lp ·ð Þ

≲ fk kq
M _K

α ·ð Þ,σ
q,p ·ð Þ

:

ð45Þ

Now, let us deal with T1′′
3 , noting that σ − nδ1 − αð0Þ <

σ − nδ1 − α− < 0, it follows that

T1′′
3 ≲ sup

κ<0κ∈ℤ
2−κσq 〠

κ

ℓ=−∞
2qℓα 0ð Þ 〠

∞

j=κ
2q ℓ−jð Þnδ12−jqα 0ð Þ2jσq2−jσq 〠

j

I=−∞
2Iα 0ð Þq f Ik kqLp ·ð Þ

≲ sup
κ<0κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2qk α 0ð Þ+nδ1ð Þ 〠

∞

j=κ
2jq σ−nδ1−α 0ð Þð Þ fk kq

M _K
α ·ð Þ,σ
q,p ·ð Þ

≲ fk kM _K
α ·ð Þ,σ
q,p ·ð Þ

:

ð46Þ

Case 4. 1 < q <∞, we have

T1
3 ≲ sup

κ<0κ∈ℤ
2−κσq 〠

κ

ℓ=∞
2ℓqα 0ð Þ 〠

∞

j=ℓ+2
2 ℓ−jð Þnδ1 f j

��� ���
Lp ·ð Þ

 !q

≲ sup
κ<0κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓqα 0ð Þ 〠

κ

j=ℓ+2
2 ℓ−jð Þnδ1 f j

��� ���
Lp ·ð Þ

 !q

+ sup
κ<0κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓqα 0ð Þ 〠

∞

j=κ+1
2 ℓ−jð Þnδ1 f j

��� ���
Lp ·ð Þ

 !q

≕T1⋄
3 +T1⋄⋄

3 :

ð47Þ

For T1⋄
3 , by the fact that αð0Þ + nδ1 > 0 and using Hölder

inequality, we infer that

T1⋄
3 ≲ sup

κ<0κ∈ℤ
2−κσq 〠

κ

ℓ=∞
〠
κ

j=l+2
2qjα 0ð Þ f j

��� ���q
Lp ·ð Þ

2 q/2ð Þ ℓ−jð Þ α 0ð Þ+nδ1ð Þ

· 〠
κ

j=l+2
2 q′/2ð Þ ℓ−jð Þ α 0ð Þ+nδ1ð Þ

 !q/q′

≲ sup
κ<0κ∈ℤ

2−κσq 〠
κ

j=−∞
2jqα 0ð Þ f j

��� ���q
Lp ·ð Þ

〠
j−2

ℓ=−∞
2 q/2ð Þ ℓ−jð Þ α 0ð Þ+nδ1ð Þ

≲ fk kM _K
α ·ð Þ,σ
q,p ·ð Þ

:

ð48Þ

For T1⋄⋄
3 , from the inequality (36) and using the method

as for T1′′
3 , we obtain

T1⋄⋄
3 ≲ fk kq

M _K
α ·ð Þ,σ
q,p ·ð Þ

: ð49Þ

By combining T1′
3 , T

1′′
3 , T1⋄

3 , and T1⋄⋄
3 estimates, we

arrive at

T1
3 ≲ fk kq

M _K
α ·ð Þ,σ
q,p ·ð Þ

: ð50Þ

By the similar method used in the estimate for T1
3, it is

not difficult to show that

T2
3 ≲ fk kq

M _K
α ·ð Þ,σ
q,p ·ð Þ

: ð51Þ

Thus, we have

M
ϱ
Ω fð Þ�� ��

M _K
α ·ð Þ,σ
q,p ·ð Þ

≲T1 +T2 +T3 ≲ fk kM _K
α ·ð Þ,σ
q,p ·ð Þ

: ð52Þ

The proof for Theorem 10 is finished.

Proof of Theorem 11. Let Λ ∈ BMO, f ∈M _K
αð·Þ,σ
q,pð·Þ . For any j

∈ℤ, let f j ≔ f χj, then we have

f xð Þ = 〠
j∈ℤ

fχj xð Þ≔ 〠
ℓ+1

j=ℓ−1
f j xð Þ + 〠

ℓ−2

j=−∞
f j xð Þ + 〠

∞

j=ℓ+2
f j xð Þ:

ð53Þ

7Journal of Function Spaces



Using the definition of M _K
αð·Þ,σ
q,pð·Þ , we have

M
ϱ
Ω,Λi fð Þ

��� ���q
M _K

α ·ð Þ,σ
q,p ·ð Þ

= sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ Mϱ

Ω,Λi fð Þ
��� ���χℓ

��� ���q
Lp ·ð Þ

≲ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω,Λi f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ 〠

ℓ−2

j=−∞
M

ϱ
Ω,Λi f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα ·ð Þ 〠

∞

j=ℓ+2
M

ϱ
Ω,Λi f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

≕Y1 +Y2 +Y3:

ð54Þ

Let us first estimate Y1. From Proposition 6 and the
boundedness of Mρ

Ω on Lpð·Þ(see [30]), and using the similar
methods as that for T1, it is not difficult to see that

Y1≍max sup
κ<0
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα 0ð Þq 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω,Λi f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

, sup
κ≥0
κ∈ℤ

2−κσq 〠
−1

ℓ=−∞
2ℓα 0ð Þq

8>>>><
>>>>:

� 〠
ℓ+1

j=ℓ−1
M

ϱ
Ω,Λi f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

+ sup
κ≥0
κ∈ℤ

2−κσq 〠
κ

ℓ=0
2ℓα∞q 〠

ℓ+1

j=ℓ−1
M

ϱ
Ω,Λi f j
� ���� ���

 !
χℓ

�����
�����
q

Lp ·ð Þ

9>>>>=
>>>>;

≲ Λk ki∗ max sup
κ<0
κ∈ℤ

2−κσq 〠
κ

ℓ=−∞
2ℓα 0ð Þ fχℓj j
��� ���q

Lp ·ð Þ
, sup
κ≥0
κ∈ℤ

2−κσq 〠
−1

ℓ=−∞
2ℓα 0ð Þ fχℓj j
��� ���q

Lp ·ð Þ

8>>>><
>>>>:

+ sup
κ≥0
κ∈ℤ

2−κσq 〠
κ

ℓ=0
2ℓα∞ fχℓj j�� ��q

Lp ·ð Þ

9>>>>=
>>>>;

≲ Λk ki∗ fk kq
M _K

α ·ð Þ,σ
q,p ·ð Þ

:

ð55Þ

Now, let us turn to the estimates of Y2. We consider
2ℓαðxÞjMϱ

Ω,Λð f jÞðxÞj

2ℓα xð Þ Mϱ
Ω,Λ f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲ 2ℓα xð Þ
ð xj j

0
t−ϱ
ð

x−yj j≤t
Λ xð Þ −Λ yð Þð Þi Ω x − yð Þ

x − yj jn−ρ f j yð Þdy
�����

�����
2
dt
t

 !1/2

· χℓ xð Þ + 2ℓα xð Þ
ð∞

xj j
t−ϱ
ð

x−yj j≤t
Λ xð Þ −Λ yð Þð Þi Ω x − yð Þ

x − yj jn−ρ f j yð Þdy
�����

�����
2
dt
t

 !1/2

· χℓ xð Þ:
ð56Þ

It is clear that if x ∈Rℓ, j + 2 ≤ ℓ, andy ∈Rj, then jx − yj
≍jxj. Thus, for ρ ∈ ð0, nÞ, we use the Minkowski’s inequality

to get

2ℓα xð Þ Mϱ
Ω,Λ f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲ 2ℓα xð Þ
ð
ℝn

Λ xð Þ −Λ yð Þj ji
Ω x − yð Þj j f j yð Þ

��� ���
x − yj jn−ρ

·
ð xj j

x−yj j

dt
t2ρ+1

 !1/2

dy · χℓ xð Þ

+ 2ℓα xð Þ
ð
ℝn

Λ xð Þ −Λ yð Þj ji
Ω x − yð Þj j f j yð Þ

��� ���
x − yj jn−ρ

·
ð∞

xj j

dt
t2ρ+1

 !1/2

dy · χℓ xð Þ

≲ 2ℓα xð Þ
ð
R j

Λ xð Þ −Λ yð Þj ji
Ω x − yð Þj j f j yð Þ

��� ���
x − yj jn−ρ

· yj j1/2
x − yj jρ+ 1/2ð Þ dy · χℓ xð Þ

+ 2ℓα xð Þ
ð
R j

Λ xð Þ −Λ yð Þj ji
Ω x − yð Þj j f j yð Þ

��� ���
x − yj jn dy · χℓ xð Þ

≲
2ℓα xð Þ

xj jn
ð
R j

Ω x − yð Þj j Λ xð Þ −Λ yð Þj ji f j yð Þ
��� ���dy · χℓ xð Þ:

ð57Þ

Using Lemma 7 and inequality (12), it follows that

2ℓα xð Þ Mϱ
Ω,Λi f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲
1
xj jn
ð
R j

2ℓα xð Þ Λ xð Þ −Λ yð Þj ji Ω x − yð Þj j f yð Þj jdy · χℓ xð Þ

≲
1
xj jn
ð
R j

2ℓα xð Þ2 j−jð Þα yð Þ Λ xð Þ −Λ yð Þj ji Ω x − yð Þj j f yð Þj jdy

· χℓ xð Þ 2
ℓ−jð Þα+

xj jn Λ xð Þ −ΛBj

��� ���i
ð
R j

2jα yð Þ Ω x − yð Þj j f yð Þj jdy
 

+
ð
R j

2jα yð Þ Ω x − yð Þj j Λ yð Þ −ΛBj

��� ���i f yð Þj jdy
!
· χℓ xð Þ:

ð58Þ

Applying Hölder’s inequality (12), the inequality (35),
and Lemmas 4–8, we obtain

2ℓα ·ð Þ Mϱ
Ω,Λi f j
� �

xð Þ
��� ���χℓ

��� ���
Lp ·ð Þ

≲ xj j−n2 ℓ−jð Þα+ Λ −ΛBj

� �i
χℓ

����
����
Lp ·ð Þ

Ω x − ·ð Þχj

��� ���
Lp ′ ·ð Þ

�

+ ΛBj
−Λ
�� �i

Ω x − ·ð Þχj

����
����
Lp′ ·ð Þ

χℓk kLp ·ð Þ

�
2jα ·ð Þ f j
��� ���

Lp ·ð Þ

≲ xj j−n2 ℓ−jð Þα+ Λ −ΛBj

� �i
χℓ

����
����
Lp ·ð Þ

Ω x − ·ð Þχj

��� ���
Ls

χj

��� ���
Lp

∗ ·ð Þ

�
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+ ΛBj
−Λ

� �i
χj

����
����
Lp

∗ ·ð Þ
Ω x − ·ð Þχj

��� ���
Ls

χℓk kLp ·ð Þ

�
2jα ·ð Þ f j
��� ���

Lp ·ð Þ

≲ xj j−n2 ℓ−jð Þα+ Λ −ΛBj

� �i
χℓ

����
����
Lp ·ð Þ

Ω x − ·ð Þχj

��� ���
Ls

χj

��� ���
Lp

∗ ·ð Þ

�

+ Λk ki∗ χj

��� ���
Lp

∗ ·ð Þ
Ω x − ·ð Þχj

��� ���
Ls

χℓk kLp ·ð Þ

�

� 2jα ·ð Þ f j
��� ���

Lp ·ð Þ
2−ℓn2 ℓ−jð Þ α++ n−1ð Þ/sð Þð Þ

· ℓ − jð Þi Λk ki∗ χℓk kLp ·ð Þ + Λk ki∗ χℓk kLp ·ð Þ
� 	

χℓk kLp′ ·ð Þ 2jα ·ð Þ f j
��� ���

Lp ·ð Þ

≲ 2 ℓ−jð Þ α++ n−1ð Þ/sð Þ−nδ2ð Þ ℓ − jð Þi 2jα ·ð Þ f j
��� ���

Lp ·ð Þ
Λk ki∗:

ð59Þ

Hence, combining the above estimate and using the
same approach as the one used for estimating T2, we con-
clude that

Y2 ≲ Λk ki∗ fk kM _K
α ·ð Þ,σ
q,p ·ð Þ

: ð60Þ

Finally, we estimate Y3. It is clear that if x ∈Rℓ, j + 2 ≤
ℓ, andy ∈Rj, then jx − yj≍jyj≍2jn. By (31), the Minkowski’s
inequality, and the inequality (12), we deduce, for ρ ∈ ð0, nÞ,

M
ϱ
Ω,Λi f j
� �

xð Þ
��� ��� · χℓ xð Þ

≲
ð yj j

0
t−ρ
ð

x−yj j≤t
Λ xð Þ −Λ yð Þð Þi Ω x − yð Þ

x − yj jn−ρ f j yð Þdy
�����

�����
2
dt
t

 !1/2

· χℓ xð Þ +
ð∞

yj j
t−ρ
ð

x−yj j≤t
Λ xð Þ −Λ yð Þð Þi Ω x − yð Þ

x − yj jn−ρ f j yð Þdy
�����

�����
2
dt
t

 !1/2

· χℓ xð Þ

≲
ð
R j

Λ xð Þ −Λ yð Þj ji
Ω x − yð Þj j f j yð Þ

��� ���
x − yj jn−ρ · xj j1/2

x − yj jρ+ 1/2ð Þ dy · χℓ xð Þ

+
ð
R j

Λ xð Þ −Λ yð Þj ji
Ω x − yð Þj j f j yð Þ

��� ���
x − yj jn dy · χℓ xð Þ

≲ yj j−n
ð
R j

Λ xð Þ −Λ yð Þj ji Ω x − yð Þj j f j yð Þ
��� ���dy · χℓ xð Þ

≲ yj j−n Λ −ΛBj

� �i����
���� Ω x − ·ð Þχj

��� ���
Lp′ ·ð Þ

�
+ ΛBj

−Λ
�� �i

Ω x − ·ð Þχj

����
����
Lp′ ·ð Þ

�
χℓ xð Þ f j

��� ���
Lp ·ð Þ

:

ð61Þ

From this, Lemmas 4–8 and (38), we deduce

M
ϱ
Ω,Λi f j
� �

xð Þχℓ

��� ���
Lp ·ð Þ

≲ yj j−n Λ −ΛBj

� �i
χℓ

����
����
Lp ·ð Þ

Ω x − ·ð Þχj

��� ���
Lp′ ·ð Þ

�

+ ΛBj
−Λ
�� �i

Ω x − ·ð Þχ j

����
����
Lp′ ·ð Þ

χℓk kLp ·ð Þ

�
f j
��� ���

Lp ·ð Þ

≲ yj j−n Ωk kLs Sn−1ð Þ j − ℓð Þi χℓk kLp ·ð Þ + Λk ki∗ χℓk kLp ·ð Þ
� 	

χj

��� ���
Lp ·ð Þ

f j
��� ���

Lp ·ð Þ

≲ Ωk kLs Sn−1ð Þ f j
��� ���

Lp ·ð Þ
Λk ki∗2 l−jð Þnδ1 j − ℓð Þi:

ð62Þ

Thus, combining the above estimates and using the same
approach as for the T2 estimate, we deduce that

Y2 ≲ Λk ki∗ fk kq
M _K

α ·ð Þ,σ
q,p ·ð Þ

: ð63Þ

Summing up the estimates ofY1,Y2, andY3, we conclude
that

M
ϱ
Ω,Λi fð Þ

��� ���
M _K

α ·ð Þ,σ
q,p ·ð Þ

≲Y1 +Y2 +Y3 ≲ Λk ki∗ fk kM _K
α ·ð Þ,σ
q,p ·ð Þ

: ð64Þ

The proof for Theorem 11 is finished.
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