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Digital technology is so broad today as to encompass almost everything. It eases the difficulties of day-to day life with internet. E-
commerce plays an important role in digital age of technology. Instead of many benefits of online system, it faces many types of
threats. Sometime, choosing the best e-commerce security has a lot of uncertainties and ambiguities to reduce the effect of threats.
To reduce these uncertainties, this article developed a new concept of complex cubic picture fuzzy set (CoCPFS) of fuzzy algebra
that explains the positive effect, neutral effect, and negative effect of any object and additionally discussed the Cartesian product
between two CoCPFSs, CoCPF relations, and their types. The relationship among the e-commerce securities and threats is
investigated for the first time in the history of fuzzy algebra. These relations show the ways of disabling the effects of a threat
by an effective security technique. Furthermore, the advantages and benefits of CoCPFS are explained through comparison

tests with preexisting frameworks of fuzzy sets.

1. Introduction

Uncertainty is a common feature of many every day deci-
sions. A situation of uncertainty arises when there can be
more than one possible consequence of selecting any course
of action/decision. Mostly, human decisions are uncertain
and unclear. It is an inevitable part of our lives. Meanwhile,
in mathematics, successfully detecting, processing, and
resolving uncertainty by using the theory of fuzzy sets
(FSs) in 1965 were proposed by Zadeh [1], which deal with
the uncertainty and ambiguousness of fuzziness. An FS
assigns a membership function to each element whose values
ranging between [0, 1] interval. Fuzzy set used to solve real
life problems easily with uncertainty and ambiguities, like
Chen et al. [2] proposed an application of fuzzy set in eco-
nomics. Adlassnig [3] used fuzzy set in field of medication
and Lu and Ruan [4] in 2007 proposed an application of

multiobjective group decision-making. The invention of
fuzzy set theory opened up new ways to handle and model
uncertainty. The relation of crisp sets was presented by Klir
and Wierman [5]; these sets just described two possibilities
yes or no. The crisp theory only deals with exact information
and cannot deal with uncertainty. Mendel [6] proposed the
concept of fuzzy relations (FRs) that are not limited to tell
just two possibilities yes or no but also describes the
strength, grade, and level of good relations between any pair
of FSs. If the value of membership is closer to 1, this implies
that the relation is good. If the value of membership is closer
to 0, it specifies that relation is in bad situation. Yu et al. [7]
measured uncertainty and gave some applications by using
FRs. In 1975, Zadeh [8] introduced the interval-valued fuzzy
set (IVESs) which replaced the single value of membership
with an interval of membership to reduce uncertainty in
decision-making. The extremes of interval belong to [0,1],
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i.e., the membership is subinterval of [0,1]. Bustince [9] gave
an application of fuzzy techniques to approximate reason-
ing. Bustince and Burillo [10] presented the concept of
interval-valued fuzzy relations (IVFRs), which is an exten-
sion of FRs. Gehrke et al. [11] commented on IVFSs. Roy
and Biswas [12] used IVFRs and Sanchez’s approach in
medical diagnosis. Atanassov [13] proposed an idea of intui-
tionistic fuzzy set (IFSs) which discuss the membership as
well as nonmembership of any element. It is a broader term
than FSs. Dengfeng and Chuntian [14] used IFS to measure
similarities and applied them to pattern recognition. Szmidt
and Kacprzyk [15] proposed an application of IFS in medi-
cal diagnosis. Burillo and Bustince [16] introduced the con-
cept of intuitionistic fuzzy relations (IFRs) which explain
effectiveness and ineffectiveness of any relation at the same
time. It is an extension of FRs. Wang et al. [17] described
the IFRs with compositional operators. Cuong and Kreino-
vich [18] invented a new notion of picture fuzzy set (PFSs)
which is an extension of FSs and IFSs. In this structure,
three stages of an element were discussed; one is level of
membership, second is level of indeterminacy, and level of
nonmembership and sum of membership, indeterminacy,
and nonmembership belong to [0,1]. They also introduced
the concept of picture fuzzy relations (PFRs). Ganie et al.
[19] invented some new correlation coefficients of PFS and
presented their applications.

After FS, a new innovation in fuzzy set which is an
extended form of fuzzy set was introduced by Ramot et al.
[20] known as the concept of complex fuzzy set (CoFS)
which represents the membership grades in the form of a
complex number, ie., @(u) = d&(u)e*® ) where §(u) is
called amplitude term and &(u) is called phase term. A CoFS
is capable of modeling a problem with periodicity and tells
both amplitude and phase term of an element. It reduces
the chances of errors and ambiguities. Further, he also
defines complex fuzzy relations (CoFRs). Li and Chiang
[21] comprehensively worked on the application of CoFSs.
Zhang et al. [22] established the data qualities of CoFRs.
Greenfield et al. [23] described the notion of complex
interval-valued FSs (CoIVFSs). In 2021, Nasir et al. [24]
described the complex interval-valued fuzzy relations
(CoIVFRs) as being used for studying the relationships
between two or more CoIVESs and also proposed an appli-
cation of medical diagnosis. Complex intuitionistic fuzzy
set (ColFS) was introduced by Rani and Garg [25] in which
membership and nonmembership are indicated in the form
of complex numbers. Jan et al. [26] introduced the complex
intuitionistic fuzzy relations (CoIFRs) with an application to
investigate the cybersecurity and cybercrimes in oil and gas
sector. Ngan et al. [27] represented CIFS by quaternion
numbers and application to decision-making. Akram et al.
[28] invented a new concept of complex picture fuzzy sets
(CoPFSs) which is an extension of CoIFS and contains an
extra level of indeterminacy expressing the neutral effect of
any element. All the three stages represent in form of com-
plex number and sum of right extremes of interval and
sum of left extremes of interval ranging between [0,1]. Nasir
et al. [29] proposed an application of CoPFRs in communi-
cation and network security.
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Cubic fuzzy set tells present and future of any object
firstly introduced by Jun et al. [30]. It is the generalization
of fuzzy set and interval-valued fuzzy set. Kim et al. [31]
revealed the idea of cubic fuzzy relations (CFRs) which is
the extended form of FRs and IVFRs. It describes the present
and future effect of an object. Kaur and Garg et al. [32]
described the notion of generalized cubic fuzzy set with t-
norm. In 2019, Garg and Kaur [33] give the notion of cubic
intuitionistic fuzzy set (CIFS) which is a broader term than
the cubic fuzzy set because it explains the effectiveness and
ineffectiveness of an object with present and future forecast-
ing. Jun et al. [34] introduced cubic interval-valued intuitio-
nistic fuzzy set and its application in BCK/BCI. Chinnadurai
et al. [35] introduce the notion of complex cubic fuzzy sets
(CoCEFS). CoCFS is a combination of the complex interval-
valued fuzzy set (CoIVES) and complex fuzzy set (CoFS).
In CoCEFS, there is an advantage to provide the membership
grade in complex numbers to solve problems with periodic-
ity. Zhou et al. [36] used CoCF aggregation operators in
group decision-making. Chinnadurai et al. [37] presented
the notion of complex cubic intuitionistic fuzzy set (CoCIFS)
which is a combination of complex cubic membership values
and complex cubic nonmembership values and define some
related operations on these sets. Rani and Garg [38]
proposed an application of complex intuitionistic fuzzy pref-
erence relation and their application in individual and group
decision-making. As a new extension of a cubic fuzzy set,
Gumaei and Hussain [39] proposed the concept of cubic pic-
ture fuzzy sets, which is an extension of cubic sets, picture
fuzzy sets, and interval-valued picture fuzzy sets.

This article develops a new concept of complex cubic
picture fuzzy set (CoCPEFS), complex cubic picture fuzzy
relation (CoCPFR), and Cartesian product of two COCPEFSs.
Moreover, the types of COCPFRs have been defined, includ-
ing converse, reflexive, symmetric, transitive, and equiva-
lence relation. Every definition is followed by a suitable
example for better understanding, and some interesting
results of CoCPER have also been proved. The innovative
concept proposed in this paper is superior to all existing
structures of FSs, CoFSs, IVESs, CoIVESs, PFSs, CoPFSs,
IVPEFSs, CoIVESs, CFSs, CoCFSs, CIESs, ColFSs, and CPFSs.
Since, CoCPFRs are the analyzing the relations between
CoCPESs, so they are composed of degree of membership,
indeterminacy, and nonmembership. This structure explains
the present and future impact of one object on the other.
Due to complex-valued mappings, it is capable to solve mul-
tiple variable problems with phase term easily. It gives more
accurate results to reduce the uncertainty and ambiguity.
This article also aimed to study the effect of e-commerce
threats with e-commerce securities in digital business
system. For this reason, a better framework is used because
it can cover all aspects of the problem, i.e., positive effects,
no effects, and negative effects with time phase. By using
CoCPFRs, investigate the relations among the set of e-
commerce securities and threats. Additionally, this applica-
tion problem is solved using preexisting structures which
are fail to used and reduce uncertainty. These structures
can extend to more superior and better structures to produce
good modeling techniques which can be used in economics,
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statistics, medical fields and information technology and
computer sciences, etc.

The arrangement of the remaining paper is as follows:
Section 2 consists of all preexisting and basic concepts of
fuzzy algebra that are used as basis of current research.
Section 3 contains the newly defined concepts of CoCPFSs,
Cartesian product of two CoCPFSs, CoCPFRs, and their
types. Some results of CoCPFRs have also been proved.
Section 4 contains an application of investigating the e-
commerce securities and threats. Section 5 studies the com-
parison between CoCPFSs and preexisting frameworks of
fuzzy set. Section 6 concludes the results.

2. Preliminaries

Here, we explained some fundamental concepts of fuzzy algebra.
We define the FS, CFS, IVES, CoIVES, IFS, ColFS, IVIES, PFS,
CoPES, IVPES, CoIVPES, CFS, CoCEFS, CIFS, ColFS and CPFS.

Definition 1 (see [1]). A fuzzy set (FS) £ on a universe U
with a mapping GD : U — [0, 1] can be expressed as

F={(a,@(a)): oei}}, (1)
where G)(0) denotes the degree of membership of .

Deﬁmtzon 2 (see [20]). A complex fuzzy set (CoFS) F on uni-
verse U with mappings &, & : U — [0, 1] is defined as

F= { (a, éZG—)(a)e(zm)'E@(")): o€ U}, (2)

where ¢ and &5 denote the amplitude and phase terms of
degree of membership of o.

Definition 3. (see [23]). A complex interval-valued fuzzy set
(CoIVFS) F on a universe U with mappings &), &), &

&l U — [0, 1] can be written as
jo {(07 [ (0), & (0)] P E@E@)] . 5 U) }, (3)

where & (o) and ¢ (o) are right and left ends of amplitude
term of membership grade of an interval, respectively, and
& (0) and & (o) are right and left ends of amplitude term
of membership grade of the interval, respectively. Moreover,

4 (0) <& (0) and g (0) < &G (0).
Definition 4 (see [13]). An intuitionistic fuzzy set (IFS) F

on a universe U with a mapping (), 9 : U —[0,1] can
be defined as

F= {(a, @(0), 9(0)): o € U} (4)

Given that 0 < G(0) + 9(0) < 1, where G)(o) and 9(0)
are membership and nonmembership grades.

Definition 5 (see [25]). A set on a universe U7 is said to be
complex intuitionistic fuzzy set (CoIFS) F such as

F _ { (0_) (:ermj(U) e(zm)fa-)(a)’ (:x’e(a)e(zni)ES(a)): O € U}, (5)

where ), & : U —[0,1] denote the amplitude terms of
membership and nonmembership grades, respectively, and

IR U— [0, 1] denote the phase terms of membership
and nonmembership grades, given that &g +dg<1 and
f@ + { 9 < ].

Definition 6 (see [18]). A picture fuzzy set (PES) F on a uni-

verse U with real-valued mappings G), 3,9 : U—10,1]
can be defined as

F= {0, (o), O(0), I(0): o € U} (6)

where a condition 0 < G(0) + @(0) + 9(c) < 1 and G)(0),
?(0),9(o) are membership, indeterminacy, and nonmem-
bership grades of o.

Definition 7 (see [28]) A complex picture fuzzy set (CoPES)
F on a universe U can be expressed as
E= {g, lgy(0)e 00§ (0)e@50(0), g ()em0(0) }
(7)

where &), dg, d : U —10,1] are amplitude terms and
E, 84,89 : U—[0,1] are phase terms of membership
indeterminacy and nonmembership grades, respectively.
Moreover, &g + dg+ dg<land &g + & + &g < 1.

Definition 8 (see [30]). A cubic fuzzy set (CFS) Fona
universe U can be defined as

F= {(U,A(U),B(G)): oe U} (8)

where A : U — [0,1] denotes the membership and B(o)
=@, @ 3@ ,G : U—[0,1] denotes the interval
of membership.

Definition 9 (see [35]). On a universe U, a complex cubic
fuzzy set (CCFS) F can be defined as

F= {(0 @.(0), [G"D;(a), G“Dj(a)D: e U} 9)

where (), (0) denotes the complex membership and B[G).
(0), @ (0)] denotes the interval of complex membership.



Definition 10 (see [33]). A cubic intuitionistic fuzzy set
(CIFS) Fon a universe U is defined by

i={ (0. (@(0),%0)), (|@ (). @' (0)]. [ (0), 9" (0)] ) ): 0 € U},
(10)

where G)(0) and 9(c) are membership and nonmember-
ship, respectively, and [@ (0), @ (0)] and [9 (), 9*(0)]
are intervals of membership and nonmembership,
respectively.

Definition 11 (see [37]). A complex cubic intuitionistic fuzzy
set (CoCIFS) F on a universe U is defined by

E={(0: (@0).340)). (| @2 (0. @L(0)]. [8:(0).8:(0)] ): 0 € T,
(11)

where ()(0) and 9(o) are complex membership and complex
nonmembership, respectively, and [ (0), @' (0)] and
[97(0),9"(0)] are intervals of complex membership and
complex nonmembership, respectively.

Hence, a CoCIFS can be expressed as

such that (o) + d9(0) <1 and &z (0) +&(0) < 1. More-
over, &' (o) + &§(0) <1 and &5 (0) +&5(0) < 1.

Definition 12 (see [39]). A cubic picture fuzzy set (CPES) F
on a universe U can be defined as

F= {0, (D(0), 0(0), 9(0)), ([G"J (0), G"J*(a)], [0 (a), 0" (0)],
[9°(0), 9" (0)]): 0 € U},
(13)

where G)(0),D(0), and 9(o) are membership, indetermi-
nacy, and nonmembership, respectively, and [@ (), G
(0)], 9 (0),D"(0)], and [9 (0),9%(0)] are intervals of
membership, indeterminacy, and nonmembership,
respectively.
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Hence, a CPFS can be expressed as

3. Main Results

By using previously defined basic concepts, the CoCPFESs,
Cartesian product of two CoCPFSs, CoCPFRs, and their
types are defined.

Definition 13. A complex cubic picture fuzzy set (CoCPES) F
on a universe U can be defined as

U= {0, (@c(0), 0,(0).8.,(0)). ([ (0). D (0)]. 107 (0), 0L (@)
[97(0), 97 (0)]): 0 € U},
(15)

where G),(0) and [@),(0), G} (0)] are complex-valued
membership and complex interval-valued membership
grades, @.(0) and [, (o), @7 (0)] are complex-valued inde-
terminacy and interval-valued indeterminacy grades, and
9.(0) and [9_(0), 9! (0)] are complex-valued nonmember-
ship and interval-valued nonmembership grades, respec-
tively. CCPES can also be defined as

&G_D(G)e(hi)i@(a)

>

(16)

with condition 0<dy), &g, dg &g €9 <1, & <&,
o<y &< and 0<Eg & by EhEpEi <] and
Ep <&, Ey<Ep, &5 <&
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Definition 14. Take two CoCPFSs

& (0) 1) {a;ﬂ(g)e(zm)i&a(a), & (0) e(zm)s;@(g)] ’
U={0,| dg(0)e?@), |, {a—(a)e(zm)ﬁé(a)’ %(G)eum)zg(g)] setr b
& o(0) el % () [ d5(0)e®50) 4 () e(2ni)£§(o)}
s e (17)
b (1)), [a@(r)e@m)%(r), & (1) e(znl),s@(T)] ’
VL1 | gy(r)e® 5, |, [a-(f)eunosw, %(T)eam)s;,m} el
& o(7)e2™5()

Then, their Cartesian product is

de(0, T)e(zﬂi)fcb(w),

UxV={(0,7), dy(o, T)e(zni)g@(g,r>’ ’

& (0, T)e(Zﬂi)Es(G,ﬂ

where dgp (0, 7) = min {dp(0). deo (1)}, d(0,7) = min (i
(0):do(D} dy(0.7) = max {&(0) dy(T)}, Epl(0,7) = min
{£0(0),Ep(T)}, En(0,7) = min {£5(0), Ep(r)}> Eyl(07) =
max {£(0), &(1)}. by (0,7) = min {&,(0), &, (1)}, s (0,
7) = {5 (0), 45 (1)}, dp (02 7) = min {d (0), (7)), (o
1) =min {&)(0), &(r) )5 (0, 7)= max {& (0), & (1)}, &5
(0 7) = max {65 (0), &3 (1)} £p(0 7) = min {E5(0), Egp(7)

0.3060.21(27'[1') , 0.3 leO,IO(ZHi)’
on 0.32¢"57(2m) ’

{ do(0,7) e2m)Eo(07) i (0, 7) 6(2711')52,(0,1)} i

[0.1060.23(2711‘) 0'2060.36(2711’)] [0.33e0‘14<2”i) 0'4960.21(2;11')}

(el 71500, 5 (0, 7)o,

co,T1eU S,

(18)

[‘:’25 (0_, T)e(Zﬂi>€5(o’T>, ‘:’2;)— (O', T)e(Zni)fg(G,r):|

b Ep(0,7) =min {£65(0),Ei5(7)}, Eg(0,7) = min {E,(0)
2 Ep(1)} €gy(0,7) = min {€5,(0), &5 (1)}, £y (0, 7) = max {€ (
0),&5(7)}, and & (0, 7) = max {§3(0), &5(7)}-

Example 1.
Let O be a CoCPFS defined as

( 0.50¢"-20(2mi) () 120-25(2mi)
0,

0.32¢0-55(2mi)

( 0.112092m) () 3g,0-33(2mi)
03

0.51¢047(2mi)

)

[0.11e0'34(2”i) 0.2960.41(2711')}
[0.3060,23(2711') 0.4360.26(2711')} [0.1360.14(2;11‘) 0.1960418(2711')}
[0_21 0:45(2m) (9 79 eo.sa(zm)]

[0.37e0'03(2”i> 0.496016(2711')} [0.236014(2711') 0.26e0‘31<2”i)}

{0. 11e%312m) o 1560.39(2711‘)}
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The Cartesian product O x O is

0.30¢0212m)_( 31,0-10(2m) 0 102327 0.20¢" 36(2’“)] {0 3301427 (9,490 2"’
(04, ,
vo) 0.32¢"57(2m) [0' 11¢034(2m) 0.296041(2711')]
0.3060200) 0 190000\ ( [0:106"27,0.206"250], 0.13¢" 427, 0,19 142
(00 22). 0.32¢"7(2m) 0.45(27i) 0.56(2mi) ’
¢ [0.21e ,0.29¢ ]
0.112990270) () 310-10C) 0 10e%9327) 0 20" 16(2”’)] {0 23¢014(7) ) 26" 21(2”’
04,0 i
(003 ( 0.51¢"57(2m) ) [0.1130'34(2””, 0.2930'41(2”i)]
0.30¢%200) () 19,0-10(2m) 0 10e°23%) 0.20¢" 26(2”’)] [0 13¢%14(27) (. 19¢0-18( 2"’)
0,, ,
(©2 0.32¢0-57(2) [0.2180,45(2711')) 0.2960,56(2711')]
0.5060200) 0 190025\ [0:306"07,0.43¢"250], 0,136 427, 0,19 142
Ox0= (03, 0,), ( 0.55(2m) > , , , (20)
0.32¢ [0.2160.45(27“)’ 0.2960.56(2111)]
0.1162992m) () 190-25(2m) 0 30e™03m) 0,436 26(2’“)] {0 13214027 (. 19¢0-18(27) ]
(0,0 i
20 0) 0.51¢%552m) [0.2130‘45(2”i), 0.2930‘56(2”i)]
0.116999C7) (3101007 [0 10£%9327) 0. 20" 16(2m):| {0.2360.14(2@’ 0.26e°'21(2”i)],
(05, ,
’ < 05177 ) [0-116 3427, 0.29¢0 41270
0.116299(2m) () 190-25(2m) [0 30e%037) 0.43¢" 26(2”’)] {0.13(30'14(2”"), O.l9e°"8<2ﬂi)] R
05,0 i
(63:¢2) ( 0.51¢%55m) > [0.21e0‘45(2”i), 0.296056(2711')]
0.116099Cm) () 38,0.33(2m) 0 37e"03C2m) 0,496 16(2”’)] [0.23e0'14(2"i), 0.26e0'31(2"i)] R
(03:03) 0.51¢%47(2m) 0.31(27i) 0.39(2rti)
Sle [0.113 310mi) () 15¢0- }

Definition 15. Any subcollection of the Cartesian products of ~ Example 2. From Equation (20), the subset R is a CoCPFR
CoCPFSs is known as CoCPF relation (CoCPFR) and on CoCPFS 0.

denoted by R.
0.300212m) 0 31,0102 [0.10e0'23<2"i), 0.2060.36(2710} i [0.3360.14(2711')’ 0.4960.21(2711')} ,
(01’ 01)’ :) i ' > >
0.32¢%%7(2) 0 110-342m) () 2904102
0.306720270) () 126210070 [0.1060.23(2111‘)’0.2060.26(2711‘)] {0 130 14(2i) 0.1960.18(2711‘)}
R: (01) 02)’ ;572 . ’ bl _ . A 3
0.32¢%°7(2m) 0.21™45271) () 290-56(2m)
0.110%Cm) o 31,0100 [0'1060403(27“')’ 0.2060.16(2711‘)} i [0'2380.14(2711'), 0.2660‘21(2"i)],
(01; 03)3 :) i ’ 5 _ _ N
0.51¢%7(m) 0.116034(2m) () 29¢0:41(2i)
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Definition 16. A CoCPF relation R is said to be complex
cubic picture reflexive fuzzy relation (CoCP reflexive FR)

on a CCPFS U, if

& @(g)e(Zﬂi)faa(G),
V[o | dy(0)e@%@, |, [%(G)eumm(a), %(U)eam)zaw)} c .
& 9 (O')e(ZHi)ES(U)

This implies

b (0, 7)) |d(0,0)e 07, g5 (0, 0) Pl |,
< G—J > >

V| (0,0), | &p(0,0)e?™%l), 1, [é’cé(ma)e“””‘b‘“’“%éza(o,a>e<2””f%<‘w>], €R.

& (0, g)e(zni)fs(a,a) {&5 (o, a)e@m)g;(g,o)’ &1 (0, 0) e(zm)zg(a,a)]

Definition 17. A CoCPF relation R is said to be complex
cubic picture symmetric fuzzy relation (CoCP symmetric

FR) on CoCPFES U, if

aG—D(T)e(Z"i>‘5®(T>,
o | (el || [ (x)e 0, gh(me 0], | | 0.
& S(T)e(zm)fs(r) [a’ (T)e@m)g;(f)’ & (1) o(2mE; (r)]
If
(o yeiaton) \ [ (G0 I, g 0,2y

V| (0,7), | dg(o,7)e® ol |, [é@(o,T)e(z”i)’fé’“”r),éé},(a,r)e(z”i)gé’(”’T)}, eR.

& 9(0’ T)e(eri)fs(O,T) [&5 (0,7) (2 (07) & (0,7) 22mEs (J,r)}

(25)
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Then, there exists

deo (1, 0) e (70) [t (7, 0)e 50, 5 (7, 0)e ()
e > >

(1,0), | dy(z, 0)e®Rolmo) |, [é@(r, 0)e®o(m0) gt (7, ) e<2”i)£‘5<7’0)] , €R. (26)

&7, g)e(zni)fs(r,a) [% (1, 0) 2 (v0), &5 (T, O,)e(zm)fg(r,o)}

Definition 18. A CoCPF relation R is said to be complex
cubic picture transitive fuzzy relation (CoCP transitive FR)
on CoCPFS U, if

) - (2mi)Eg (0,7) g+ (Zni):t(q,r)] .
Fip (02 7)o o), [cho(a,r)e @@, gk (0, 7)eP @@ | o (72 )P T80,

V]| @7 | do(o,r)elmboton, |, [%(U’T)e(ZﬂOEZa(mT),%(U,T)e(lm)%(w)]) and| (1,W), | dp(r, w)e@ o),

(0, T)e<zni)is<a,r> [% (0,7) Q2T (07), (0, 7) e(zm)zg(a,r)] do(T, g)e@m)fe(nw)
- 2mi)E ()t 271i)Ef (7 5 2mi)E g (o) at 271i)E g (0.
[ )00, g (B0 (o, e otow \ ([0 )BT, (0, welalow ],
{%(1, )@t gt (7, g)e(lﬂiﬁé(rw)], eR= | (0. W), | dy(o,w)eolow |, [éé;,(a, w)e@ o1 &t (g, g)eanoéa(w)}, €R.
. - ” (2 (o) - -
{@5 (7, )5 W) 4t (7, g)e(sz\q(w)] & 5(0s e ™ [“5 (0, w)e®m 5 W) g% (g, ) 2™ mu)}
(27)
Definition 19. A CoCPF relation R is said to be complex (iii) CoCP transitive FR

cubic picture fuzzy equivalence relation, if it is

i) CoCP reflexive FR
(i) CoCP reflexive Definition 20. A CoCPF relation is known as complex cubic pic-

(if) CoCP symmetric FR ture antisymmetric fuzzy relation (CoCP anti-symmetric FR), if

>

& (0, T)e@ @) [‘?@5(0 , 1) 0l gt (o, T)e(m)%(mr)]

V| (0,7), | dp(o,7)e@olon) |, {é’@(d, 7)e@ 00 gt (g, T)e<2”i)’35(“’T)}, €R. (28)

& (0, T)e(Zni)Es(a,r) [%(0’ T)e(Zni)fg(a,T), & (o, T)e(zm)Eg(a,r)}

Then,

|:(§ZZ;9(T, 0)e@Ra(r) gt (1, a)e(z”i)EEJ(T’“)} ,

deo(T, g)e(Zﬂi)f@(f»@,

(1,0), | dg(z, 0)e®Rolmo) |, {‘X(—a (1, 0)e®o (7o), (T, o)e(zm')%(”’)} , ¢ R. (29)

éz S(T) O_)e(Zni)fs(Tﬁ) |:é£§ (T, 0) e(zm)f;(‘rﬁ)) ézg (T, 0_)6(2711')55 (T,O’):|
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Definition 21. A CoCPF relation R is said to be complex (iii) CoCP transitive FR
cubic partial order fuzzy relation, if

(i) CoCP reflexive FR
(ii) CoCP antisymmetric FR

Definition 22. A CCPF relation R is said to be complex cubic
picture complete fuzzy relation (CCP complete FR), if

&G—j(a)e(z’“)f@ ), {a&—j (g)e(ZHi)EZD(U), i (0) e(Zni)E@(d)} i
V| o | dy(0)e®@), |, {%(o)e@m)wf), i (c,)e(zm‘)fa(o)} ,
(:,29((;)6(2711‘)59(0) {&5 ( O,)e(zrri)fg(a), & (o) e(2m‘)§§(0):|
- (30)
&@(T)e(zm)s@ 0, [o%j (T)e<2m)5@(f)’ o (T) e(Zm)E@(r)} X
| e, || [E(r)e e, gh(r)e ], | | e O,
% (2mi)Es(7) - -
Gg(r)e ™™ {a—@)e(zﬁzm (5), &5 (7)el25 (1)}
Then, there exist
(?ZG‘j (0, T) €(2ﬂi>5®(0"r>, |:(:)EE;D (O', T) e(zni)f(}j(d,‘l’)) (?2+G§(0’ T) e(Zﬂi)E@(G,‘r):|
(@.7), | do(o, 7)o, (o0 7)), g (g, m)elrblen], || e
éz 9(0’) T) e(ZHi)fs(UyT) I:&g (G, T) e(zm){; (0,1)) &g (G, T>e(2ﬂi)f§(0,‘r):|
] (31)
b (1, 0)elm 0 (1), {‘:’2&3(7’ 0)el a9, iy (1,0 )e(m)s@(w)] ’
or | (1,0), | dg(r,0)e>o(m), [d(7.0)e%0(), 5 (7, 0)e %L €R.
& 9(T’ 0’) e(27‘[i)59(‘r,0)

[ (1,0)e 8, (7, 0) 7%+

Definition 23. A CoCPF relation R is said to be complex

Definition 25. A CoCPF relation R is said to be complex
cubic picture preorder fuzzy relation (CoCP preorder FR),
if it is

cubic picture linear order fuzzy relation (CoCP linear order
FR), if it is
(i) CoCP reflexive FR

(i) CoCP reflexive FR
(ii) CoCP transitive FR (if) CoCP anti symmetric FR

(iii) CoCP transitive FR
Definition 24. A CoCPF relation R is said to be complex

(iv) CoCP complete FR
cubic picture strict order fuzzy relation (CoCP strict order
FR), if it is

Example 3. Considering the Cartesian product in Equation
(i) CoCP irreflexive FR

(20), the following relations are given as
(ii) CoCP transitive FR

(a) the CoCP equivalence FR R, on O is
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01,

(01,0,),

(02,01)5

(05, 0,),

(03,03)s

P e — — __
[\jo
L2

|

(
(
(

0. 3060 21 2711 0 3160 10 27i)

0. 3260 .57(2mi)

0. 3060 20 2711 0 1260 10 2711

0. 3260 .57 (27i)

0.30¢ 0.20(27i) 0 12¢ 0.10(27ri)

0.50¢ 02027‘[1 0 12¢ 025 27'[1
0.32¢ 0.55(27i)

0.1 10092711 0.38¢ 03327‘[1

0. 5180 .47 (27i)

0.30¢ 0.21(27i) ,0.31e 0.10(27i)

0. 3260 .57(2mi)

0.30¢ 0.20(27i) ,0.12¢ 0.10(27i)

0. 32@0 .57(2mi)

0. 1160 .09(2rmi) ,0. 3160 10(27i)

0. 5160 .57(2mi)

0. 5060 20(27ti) ,0. 1260 .25(27i)

0. 32@0 .55(27i)

0. 1160 .09(2ri) 0 1260 25(2mi)

0. 5160 .55(2mi)

0. 1160 09(27ti) ,0. 3860 .33(27i)

0. 5160 .47 (27i)

)
)
)
)
)

)
)
)
)
)
)
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[0'1060‘23(271;‘) 0.206036(2710} [0.33e0'14(2”i> 0.49e0‘21<2”i)}

{0, 110347 0_2960.41(2711')}

[0.1060-23(2711‘), 0.2060'26(2ﬂi):| i {0. 13014027) (. 1960.18(2ni):|
(02164507, 0.29¢0 %007 |

{0'106023(2711‘)) 0.206026(2711')} , {0'136014(2711'), 0'196018(2711‘)}
{0.2160.45(2711')) 0.29e0.56(2m‘):|

{0.3060.23(2@, 0_4360,26(27ri):| i {0_ 130-140m) 0.1960.18(27ri)j|

[0.21e0‘45<2"i) 0.296056(2711‘)}

[0.3760.03(2711‘) 0'4960.16(2ni):| [0.2360.14(2;11') 0.26e0'31(2"i)}

[0. 1103127) (. 1560439(2711')]

(b) the CoCP partial order FR R, on O is

{0. 11¢"34(2mi) 0.296()‘41(2711')}
{0.1060.23(2711‘)) 0'2060.26(2ni):| i {0.1360.14(2;11')’ 0.1960.18(2711‘)}
{0.2160.45(2;11'), 0.2960,56(27[1‘)}
[0.10e°‘°3<2”i), O.ZOeoAle(zm)} ’ [0.23e0'14(2”i>, 0.26e°‘21<2”i)} ,
O 11e342m0) (92904127
{0.3060.23(2711‘)’0.4360.26(2ni):| {O 13¢0-14(2mi) 0.1960.18(2711‘)}
0 21 ¢0-45(2mi) .0.29¢" 56(27i) |

[0.30e0'03<2”i) 0‘4360.26(2711‘)} [0 13¢0-14(2mi) 0'1960.18(2711')}

'0.2160.45(2;11') 0.29e0.56(2m‘)_

[0.3760.03(2711‘) 0.4960.16(2711')} [0.236014(27”') 0.2660'31(2”i)}

[0. 1123107 ¢ 156039(2;11‘)}

(32)
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o
&

0. 5060 20(27i) ,0. 1260 .25(2mi) >

0.30¢ 0.21(27i) ,0.31¢ 0.10( 27Tl

0 3260 57 2711

0. 3060 20(2mi) ,0. 1260 10( 2m

0. 3260 .57 (27i)

0.11" .09(27i) ,0. 31" 10( 2711

0 5160 57 271’1

0. 3260 .55(27i)

0 1160 09(271’1 0 1260 25 27‘[1

0. 5160 .55(27ti)

0.11e% 09(27ti) ,0. 38 .33( 2m

0. 5180 .47 (27i)

(c) the CoCP preorder FR R, on O is

[0'1060423(2711')’ 0.2060.36(2711‘)} i [0.33e0'14(2”i), 0'4960421(2711')} ’
{0. 11¢034Cm) 0.29@0'41(2"’7}
{0.1060.23(2711‘)) 0.206026(2711')] i {0. 13¢0-1402mi) 0.1960.18(2710}
{0.2160.45(2711')) 0.29e0.56(2m'):|
[O.IOeO‘OS(Z”i), 0.2060.16(2711‘)} i [0.2360,14(2711')) 0.26e°‘21<2’”')} ’
{0. 11¢034(2mi) 0_2960.41(2@}

{0.3060.23(2711‘)) 0.4360.26(2711')] X {0. 13¢0-142m) ¢, 19e0.18(2m‘):|
{0.2160.45(2;11'), 0.2960.56(2ni):|
{0_3060403(2711‘)) 0.4360.26(2ni):| i [011360.14(2711‘)) 0.1980418(2711')] ’

[0.21e0‘45(2”i) 0.296056(271:‘)}

[0.3760.03(2;11‘) 0_4960.16(27”‘)] [0.2360414(2;11') 0.2660'31(2ﬂi)}

[0. 11603127) o 1560‘39(27:1')}

Definition 26. The converse of a CoCPF relation R is

defined as

R =

V| (o,7),

(1,0),

(1 %63

& (T, a)e(Zﬂi)E@(Tﬂ))

ézﬂ (T, O_)e(Zrti)E@(‘r,U))
éz 9(1’ a)e(zni)ES(T’U)
(0-, T) e(Z?Ti)f@(O‘,T) N
Czi@(O', T) e(eri)éf@(a;r) ,

& 9(0’ T) 6(2711'){3(0,1)

>

>

{é@—j(ﬁ 7)e@ e (ro) & (T, O_)e(Zm) (70)],
{% (1, 0)e™o(™) gt (7, a)eem)%(m)} :
[‘1’6 (1,0)el519), gt (7,0 )e(m)fg(w)}

{%_J(G) T)e (2711)5@(01) ”G"J((” T)e (Zm)s‘@(w)},

[é@(a, 7)e@o(en) g (g, T)e(z’”)‘%("’ﬂ] , €R

{% (0,7) 2mi)E (07) & (o, T)e(zm)fg(o,r)}

11

(35)
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Definition 27. Let Rjand R, be two CoCPF relations on a For any

CoCPFS U. Then, the complex cubic picture composite
fuzzy relation R, o R, is defined as follows:

b (0, 7)) [‘?%3(07 7)), ¢t (o, T)e‘z"i)gd’(a’r)} :
(0,7), | dglo, T)e@ho(01), {%(G, T)e@mo (1), &(0,7) e(Zni)EE,(a,T)} €R,

{)2 9(0-’ T) e(2ni)fs(0>‘l’) [ézé (O', T)e(zni)fé(g,r)’ é@ (O’, T) e(2ni)£§(0,‘r):|

+

{{)21 (1,0)ePRa(r) gt (1, 0)e<2"i)5@<7’“)} ,

&CD (T, O_)e(Zﬂi)ECD(T,O') (€9

(‘[) [’I\J), ‘ZX,Q (T, U)e<2ﬂi)£@(‘f,0>,

>

[%(7, o')e(Zﬂi)«E;,(r,g), (T, o‘)e(zm)%(f"ﬂ , €R,.

(T, g)e(zm')fs(r,o) {% (7, 0_)6(27”')55(1',0)’ & (7, 0) e(zm)E:,f(T,a)}

Then,

&G_D (0_ g)e(zm)gé(g’w) |:é2_GmD (O', Iy) e(zni)EE‘D(U,LIJ) ) ‘:’%“3 (0-, T:g) e(zﬂi)'f@(d,w):| )

(0:w), | (0, w)e?Eol@w),

y (2mi)Ey(ow) - -
dg(0, et {é@(g, w)ePHEW) g (g, g)eum)%(aw}

Definition 28. For CoCPF equivalence fuzzy relation R, the
CoCPF equivalence class of o modulo R is defined as

{éa_)(‘oe@ni)f&,(r)’ éza_j(.[>e(27ri)fa—;(r):| ,
[% (2)e2 (™), g (1) e(zm)sa(r)}

{% (1) e(2ni)£‘§(r)) (%(T) e(zm)Eé(r)}

b (1, 0) 2 (50) {‘%(T’ 0)e@ et g (z, G)e(m%(r’g)] ’

(m0) | dy(r.0) 2mEo(10). [é@(r, o) 2o (v0) i(1,0) e(zm),:;(m)]) cR

& (T U)e(Zﬂi)Es(w)

[‘:’25 (T, o.)e(eri)Eg(‘r,a)’ @5 (T, O-)e<2ni)f§(r,a):|

[(Xé(o-, w) e(zni)gé(o)[.y)) ézé(o.’ w) e(Zni)EE)(J»Q)} , € Rl o R2'
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(37)
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Theorem 29. A CoCPFR Ris a CoCP symmetric FR on a  Proof. Necessity condition:

CoCPFS U if R=R" Suppose that R is a CoCP symmetric FR on a CoCPFS U.
Then,
o0, el oton [ [§(@ D), B 0, 1)l e,

(0.7), | dy(o,7)elmolon |, [%(G,T)e<zm>sa<w>, &0, T)e(znosamr)],

& o(0, T)eF %) & (0, 7)) gt (g 7)elmEi (o)
9 > > 29 > (39)
) bon(T. 0 e(2ni)£g;j(r,0) &(t.o 6(2711)58—3(1’,0)
b (1, 0)el @), Yo(%.0) 4o(0) ’
“€Re= | (1,0), | du(T, g)e<2"i)5@(fﬂ), , [%(T, g)e(Zﬂi%(w},% (z, g)e(Zﬂi%(W)], €R.
éz S(T’ g)e(Zni)‘Es<T,0) |:(:)£5 (T, O_>e(2m')§§ (T,O’)’ ézg (T, O,)e(ZHi)fg(T,U):|
However,
Y 2711 E (T . 2,+_’
éé@(‘l', o-)e(ZHi)‘EG'J(T"7>, |:‘LXG—D(T’ O')e( 7i)E o (T U)) q+GmD(T’ G)e( i) (T 0)j| ,
(T, 0—)’ (:)2@(_[) o.)e(zm){g,(r,a), , [“b (T, O.)e(Zﬂi)Eé,(r,a)) (X%(T, O.)e(zm)rf;ﬁ,(r,o)} , € RS
” (2mi)€g(1,0) - Nt
Q(S(T, O')e 9 [é@ (T, O_)e(Zm)E‘9 (T,G‘)’ ‘:)25(7’ O.>e(2m)fs (1,0)}
==R=R". (40)
Sufficient condition: Let R = RS, then
5 i) (0T) 2mi)E s (0
b (0, 7)o (@), [q‘c@("’ 7)eP0 (), g (0, T)el Mol T)}’
(@.7), | dy(o, T)e@ R0l |, {% (0, 7)), gt (g, T)e(ZﬂiKé(o,f)], €R. (41)
” (2mi)€g(0,T) . A
&0, T)e [ag (0, 7)e5 0D gt (o, T)e<2m>ss<a,r>}
We have
&G?)(T 0_) 6(2771‘)56"3(7)0') |:(i)z&j('[, O')e(zni)EED(T,U>, ‘:’%J (T, G)e(Zﬂi)f@(T,a)} ,
(1,0), | dg(r, o)) |, [éé(},(‘r, )@ g (1, a)e(z’”)%(rm}, €R. (42)

(:72 9 (T, 0’)@(27‘[059(1’,0) |:&§ (T, a>e(2ni)fg(r,a) , &5 (T, U)e<2ni>£§(T’a>:|
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This implies that
&@(T O-)e(ZHi)EC?D(T’O-) |:(:722i“9(‘f, U)e(zﬂi)f&3<T,0')’ (?ZE—D(T’ 0—>e(271i)£@(‘l’,0')j| ,
(1,0), | (T, o)), |, [%(7, 0)ea(vo) gt (7, U)e(Zﬂi)%(m)], €R. (43)
&7, g)e(zni)fs(r,a) [%(T) G)e(zm)gg(f,a)’ &5 (T, U)e(zm)fg(r,o)}
This is required result. O Proof. Necessity condition
Assume that R is an CoCP transitive FR on CoCPFS U.
Theoremv30. A CoCPFR R is a CoCP transitive FR on a Let
CoCPFS U if ReRCR.
(0, 1)) [%(a, )P, g (g, Lg)e(Zm)f@(a,w)} ,
(@ w), | dy(o, w)e?olom |, [% (0, )T 0@W) g (o, 1) e(2ni)f+o(0,w)}, €RoR. (44)

. (2mi)&g(0,w) - S
& g(o, w)el e [%(a, ) @) gt (g, g)eum)ss(ow)}

Then by definition of transitivity

dep(o T)e(zﬂi)f@(o,r> [‘?&D(U » T)e(zni)fg‘"’wﬁ)» &p(0, T)e(m)%w)} ’
(@7) | dolor)elolon, || [do(o, 7)™ 50000, g (0, 7)o, €R.

&4(0, T)e(zni)ﬁs(o,ﬂ [% (o, T)e(zm)g;(m)’ 8 (0,7) L2mEs (0,1)}

) (45)
g (1> )T () (o, 0)e (), i (7, @)K,
(1w), | dg(r,0)e?™olm), |, [%(ﬂ o) % (07), g (1, U)e@"”aé’(f"’)} ; €R.
v (2mi)€y(7,0) - A pt
(7, 0)e {0@ (1, 0)e @) g2 (7, 0)6(2711)59(%0)}
This implies
&@ (O', I',g) e(zm){(ﬁ(mg% |:é2&j (O', Ly) e(zﬂt)EG)(U,LU)’ (:)28"3 (0—’ ];g)e(Zm)EG“j(U,LU)} S
@ W), | dolo,m)elolew, || [dy(0,w)e ), (0, w)e o], | | eR=RoRCR.  (46)

” (27i) &g (o) . gt
dg(0, e [a; (0, )W) gt (g w)e@m)zg(w)}
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Conversely, assume that R R € R, then

o e aton [ [Fle DR, G (o, m)elrI e,
@7) | do(o, 1)o@, |, | [do(0, 7)™ olo), g0, T)el el | | €R.

iy (0,7) (28 (0:7) [‘% (0,7) e(zrri){g(a,-r), éff,f( 0,7) e(zm‘)zg(u,r)]

And
&G*g (T a)e(zm)‘f@(f’”) {(XEI—D (T, O') e(zni)fz;“g(r,d), a*c'l_j(.r’ O.)e(ZHi)f@(T,U):| ,
(W) | do(r o)), || [dg(r,0)e® ™), gy(r,0)e )], | | eR.
& o(Ts o)e(zm‘)%(m) [% (,0) (285 (r.0) & (1, 0) e(zm‘)sg(r,a)]
This implies
- i (o) g 2mi)Efy (o
(:)ECD(U, g)e(zm)%(“’w, |:(‘XG—3(U, l’g) e( i)§ e (0 EJ), (‘X"(';_J (U, U\J) e( 1)E 5 (0 EJ):| )
(@ W), | dolo, w0, |, | g0 w)e™ W), 5 (0, w)el™5o0)], | | eReRCR
. (2mi)Ey(ow) . -
& g(o, w)et N {%(g, ) e % (@) gt (g, w)e(Zm)%(mw)]
So,
- 2mifEg(ow) 4 2miEL (0,
to (o ayemkolem) [ [Fl0 @B, i (0wl
(0.w), | dg(o, w)e® oW |, [é@(o, w)e@ oW g (o, g)e(z”")%(""g)}, €R.
(0, g)e(zni)fs(a,vg) {% (o, w)e(zm)s;(a,w), & (0, w) e(2ni)£§(o‘,ly)]
Hence, R is CoCP transitive FR on U. OO0  Proof. Assume that

Theorem 31. Suppose R is a CoCPF equivalence FR on
CoCPFS U, then RoR =R.

o 21 (0,7) % 2mi)EL (0,
(0, 7)) {qc@(a, 7)eRa(0n) gt (g, 7)ol a] )
@7 | dolos 1) o0n, |, | [0, 7)e 5000, g0, 1)o7, | eR.

d4(0,7) o(2mi)Es(ovT) [% (o, T)e(z,n-)g; (@), i (0,7) e(zm)gg(m)]

15

(47)

(48)

(49)

(50)
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Then by symmetry of CoCP equivalence FR,

b (T, 7)), [‘:’Z&J(T’ 0)e?m a0, ¢t (1,0 )e(w)%(m)} ’
(1,0), | dy(z, 0)e®™olmo) |, [@zé(r,a)e@m%“’“%ézg(r,o)e<2"f>fé<m)], €ReR. (52)

(:X’ 9(7) O') 6(2711')59(‘60) |:é2§ (T, O') e(2ni){§(‘r,¢7>’ ézér(T) U) e(2ni)f§ (T,O’):|

Now by using transitive property,

[é@(o, 0)e? o0 g (o, 0)e<2”i)fzf>(""’)} ,

& (0, a)e<2m)5@(w))
(0,0), | &p(0,0)e@™oleo) |, [é@(o, 0)eo(e0) gt (g, 0)6(2”")’55(""’)} , €ReR. (53)
& 9(0’ U) e(2ﬂi)fs(0,o’)

{% (0,0) )& (0:0) & (0, 0) e(2ni)£§(0,a)]

Hence, by definition of CoCP composite FR,

b (0, 7)) [‘1’3&9(0’ 0)eTe(79), gt (o, G)e<2"i)£‘z’(a’g)} :
(0:0). | dolo,0)e o), |, | [d5(0,0)e ™50, G (0,0)e0lo)], | | eReRoR. (54)

& 5(0, @)l [‘?35 (0,0)e?™%(99) 4t (g, o)e(zmﬁ(mﬂ

Thus, Conversely, suppose that (o, 7) € RoR. Then, Jwe Y >
(0,w) €R and (w, 1) €R. Since, R is a CoCP equivalence
FR, R is also a CoCP transitive FR. Thus,

RCRoR (55)
R L= L A B
(0,7), | dy(o, T>e(2”f)f@(gﬁ), , [&E) (0,7) 2o (o) &b (o, T)e(Zﬂi)'fé(Uﬂ')} , €R (56)

Ay (Zﬂi)£ (U’T) N g N gt
d (0, T)e {0@ (0, 7)e?™5 (@7 4t (g, T)eam)es(w)}

This implies 4. Application

In this section, an application of newly proposed concepts
RoRCR. (57) CoCPESs, CoCPFRs and theirs types is discussed.

4.1. Protection of E-Commerce from Digital Extortions. E-
From (55) to (57), ReR=R 00 commerce is buying and selling of goods over internet. In
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Securities

Read the

assign

grades

FIGURE 1: Algorithm of application.

such transactions, these products and goods are sold through
an electronic medium without using any paper document.
Almost everything can be purchased through e-commerce. It
focuses on the use of information and communication tech-
nology to enable the external activities and relationships of
the business with individuals, groups, and other businesses.
It facilitates the human lives to buy things at home. The recent
outbreak of COVID-19 has dramatically changed the current
business climate. For stores that have closed their doors, for
the time being, having a reliable e-commerce platform can
help to create stable revenue and save business. This pandemic
has affected consumer behavior. People are now choosing to
shop online to avoid contacts with other. This rapid grow of
e-commerce is facing many types of threats and risks. These
threats can put negative impact on e-commerce, which results
in losses of money. Some threats and methods used for
security purposes are discussed below. Figure 1 presents the
algorithm of application.

Here, each threat has been assigned membership, inde-
terminacy, and nonmembership grades. These all grades

0.41%-35(27) () 09g0-74(2mi)
SCS, ’ ",
0.3446055(2711')

(2) Securing Payment Gateway. It is a payment gateway as a
merchant service that processes credit cards payments for e-

0.05¢047(71) () 39¢051(271)
SPG, _ ,
0.226051(2711)

(3) Mobile Devices. Mobility is an essential part of busi-
ness these days. However, while it is necessary, the use
of personal phones and mobile devices for work can
open your business to additional security risks. If you
plan to allow your employees to use their personal

[0.2160.‘5(2711‘)’ 0.7360,67(2711')} i {0.5660'41(2’”), 0.7860,64(2ni):| i

[0.2560.31(2711‘) 0.45e°‘37(2"i>} [0.516042(27:1') 0.67e°'51(2ﬂi)}
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TaBLE 1: Summary of securities.
Securities Abbreviations
Strong cybersecurity SCS
Securing payment gateway SPG
Mobile devices MD
Solid rock firewall SRF

Antimalware software AMS

are set by experts according to their work. The membership
grade of threats indicates its weakness; indeterminacy indi-
cates neutral effect, indeterminacy indicates the neutral
effect of threat, and nonmembership grades show the
strength of threats. Amplitude term indicates the term which
indicates the level of strength or weakness, and phase term
show the time duration of level of strength or weakness.

4.1.1. Securities. The method use to secure e-commerce is
discussed below and assigned membership, indeterminacy,
and nonmembership to each security. Table 1 contains all
the abbreviations for security measures.

(1) Strong Cybersecurity. A strong cybersecurity is the appli-
cation of technologies, processes, and controls to protest sys-
tem, devices, and data from cyberattacks. It protects against
the unauthorized exploitation of system. A robust cyberse-
curity strategy is the best defense against attack but many
organizations do not know where to begin.

(58)
[0.3760.45(2711‘)’ 0.9360485(2711')]

commerce sites and traditional brick and motor stores. Pop-
ular payment gateways include PayPal, Stripe, and Square.

(59)
[0.6160‘54(2”i>, 0.856089(2710}

devices for business purposes, you need to be sure you
have security policies in place, including requirements
that devices be password-protected to prevent outside
access to confidential data in the event that devices are
lost or stolen.
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0.04¢%5127) () 45037(2mi)
MD, >
0.53¢0-67(2i)

(4) Solid Rock Firewalls. Use effective e-commerce software
and plugins to bar untrusted networks and regulate the
inflow and outflow of website traffic. They should provide

SRF 0.556042(271i), 00960'38(27[1’),
’ 0.39¢0-48(27i) ’

(5) Antimalware Software. The electronic devices, computer
systems, and web system need a program or software that
detects and block malicious software, otherwise known as

0.66%3827)_().33¢043(2mi)
AMS, >
0.110-322m)

Now the set of securities I is

SCS <0 41@0 56 2711 0 0960 74 27‘[1

0 346055 27‘[1

SPG,

0. 0560 .47 (27i) 0 3960 .51 2m
( 0. 2260 51(27i)

I= MD,

0 5360 67 27‘[1

0. 3960 48(27i)

(0 046051 (2mi) 045603727[1 )

0.11e 0.32(27i)

(0 556042 (27ri) 0 0960 38( 27r1

0.66¢ 0.58(27i) ,0.33¢ 0.43(27i) )

{0.2160‘55(2711')) 0.7360.67(2711‘)} i [0.56e0'41(2”i>, 0.78@054(2”1')} ’
{0.2560.31(2;11')’ 0_4560.37(2711‘)} i [0'5160442(27“')’ 0.6760'51(2ﬂi)} ;
|:0.1760.27(2m'), 0.196039(2711‘)} i [0.4760.32(2711‘)’ 0.6760‘55<2"i)] i
[0.03e0‘55<2”i>, 0.1960.57(2711')} i [0.43e0'14(2"i), 0'8960481(2711')} ,

[0'3360.23(27:1') 0.41e0'31(2”i)} [O.SZeOAZ(Zﬂ") 0'6360.69(2711')}
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[0.17e0‘27<2”i) 0.19e039(2”i)} [0.4760.32(2711‘) 0.6760A55(2ni)}

(60)
{0.73e°'41(2”i), 0'7580.78(2711')}

selective permeability, only permitting trusted traffic to go
through. You can trust the Astra firewall to stop spam, mal-
ware, and many other attacks on your website.

[0.03e°'55(2”i> 0.19e°‘57<2"i)] [O.43e°‘14<2"i) 0.8960.81(2ni):|

(61)

[O.SleoAsz(zm‘) 0'806087(2711’)}

malware. Such protective software is called antimalware soft-
ware. An effective antimalware should render all the hidden
malware on your website.

[0.3360.23(2;11') 0'4180.31(2711')} [0.52e0‘42(2”i> 0.6360.69(2711‘)}

(62)

[0.7760.54(2711‘), 0.9660'95(2’”')}

[0.376045(2711') 0.936085(2711')}

[0.6160'54(2”i) 0.8560.89(2711')}

[0.7360.41(2711‘) 0'7560478(2711')]

{0.516062(27:1') 0.8060,87(2711‘)]

[0.7760.54(2;11') i 0.9660'95(2ﬂi)}
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4.1.2. Threats. Some common threats faced in e-commerce (1) Phishing. It is cyberattack that uses disguised email as a
are explained below and assigned the level of membership, =~ weapon. The goal is to steal sensitive data like credit cards
level of abstinence, and level of nonmembership to them.  and login information.

Table 2 contains all the abbreviations for security threats.

<0 308021270 0.470090) > [0.5060‘23(2711'))0.4360.76(2ni):|’ [0.4360.14(2711')’0.8960481(2711')}’
N o ", (64)

0.32¢057(2m) [0.6160‘45(2”i) 0.79e°'91(2"">}

(2) Spamming. Some hackers can leave infected links in their =~ Once you click on such links, they will direct you to their
comments and messages on blog post and contact forms.  spam websites, where you may end up being victim.

(0 L1210 .51 041(2m0) > [0'3160‘11(271;‘), 0.436089(2711')} i [0.4360.56(2711‘)’ 0.89e°‘91(2”i)],
T o ", (65)

0.17¢"67(2m) [0.6160'36(2’”) 0.67e°'54(2”i>}

(3) Bots. Some attackers develop special bots that can scrape  prices in their websites in an attempt to lower your sales and
your websites to get information about inventory and prices.  revenue.
Such hackers can then use the data to lower and modify the

0.22959C) 0 78990() [0.17@0'35(2”i>, 0.396076(2711’)]’ {0.71e°‘45(2"i), 0.7960.64(2ni):|,
' 0.57(2ri) ’ 0.45(27i 0.55(27i (€6)
0.81¢ 08167497, 0,89 550
(4) Man, in the Middle. A hacker may listen in on the com- and a user. If the user is connected to a vulnerable Wi-Fi
munication taking place between your e-commerce store  or network, then attackers can take advantage of that.
0.07%-09(27) () 571 ,0-98(2ri) [0.6160'09(2”i), 0‘63e°'21(2"")} , [0.54e0'23(2”i), 0.76e0'41<2’“')} ,
MIM, | U "l (67)
0.22¢%-43(27i) {0.81@0‘49<2"i), 0.9260,71(2711')}
(5) e-Skimming. It involves infecting a website’s checkout
pages with malicious software. The intention is to steal the
client’s personal data and payment details.
0.900207) 0. g7087(27) {0.21&"56(2”"), 0.29e°‘59<2’“'>}, {0.41e°-14<2”">, 0.49e°'8‘<2’“'>},
eS, | o ", (68)
0.31¢%-67(2mi) [0.11e°'32(2”i), 0.7160‘91(2711')}
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TABLE 2: Summary of threats.
Threats Abbreviations
Phishing P
Spamming S
Bots B
Man in the middle MIM
e-Skimming Es
Then the set of threats J is
030621270 414090(2) [0.50¢023(2m)0.43¢076C) | [0,43¢0-142m) 0 89g0$1(i) |
P’ ) . ) ) b
( 0.32¢%-57(271) ) [0.6104527) () 79,091(2i)|
011622127 95041027 [0.316%11C7),0,43¢089Cm) | [.43¢0-56(27) 0 89e091(2m)]
S’ ) } ) . b
( 0.17¢%-67(2mi) ) [0.61¢0-36(2m) O.67e°'54(2”i>_
0226055 78,090 '0_1760,35(2711')’ 0.39¢0-76(2mi)| i '0.7160,45(2;11‘)’ 0.79¢0-64(2mi) | k
J= B, - ) T i ) , (69)
0.81%57(27) 0.81%45(20) () g9 0-55(2ri)
0,070 0.5198() [0.6160'09(2ﬂi>, 0.63e°'21(2"i)] X {0.54e0'23(2”i), 0.7660.41(2711')} X
MIM, < 0.22¢043(2i) )’ ’

0.90¢%20(271) () 87087(27i)
es, >
0'3 160.67(27Ti)

Now the determining the effectiveness of each security
against each threat, calculate the Cartesian product I x] as
given in Table 3:

Each member of I x ] of Table 3 is an ordered pair,
which indicates the relation between that pair, i.e., the effect
of one factor on the other. The degree of membership indi-
cates the effectiveness of security to overcome a specific
threat in particular time duration. The degree of indetermi-
nacy shows the neutral effect of one parameter on the other
parameter over the time. The degree of nonmembership
describes the noneffectiveness of the security to overcome
any threat with phase duration. For example, any ordered

pair ((SRF, B), (

0.226042(2710 , 0.0960'38(2ﬂi> ,
0.81¢957(2i) ’

[0.0360.35(2ni)’ 0.1960‘57(27”‘)],
[0.4360‘14(2710 , 0.7960‘64(2"i)],
[0.8160‘62(2ﬂi), 0.89e0'87(2”i>]

) explains that bots can eas-

[0.2160.56((2111‘))’ 0.2960.59(2711‘)} i [0.4160414(2711‘)’ 0.4960.81(2ni):| i

[0.8160‘49(2"i) 0.9260.71(2;11')}

[O.lleo‘”(z’”) 0'716091(2;11‘)}

ily overcome the solid rock firewalls. Further it explains the
present and future effect of the ordered pair. Bots overcome
the threat of SRF, in present, and have low efficacy with
short time, low indeterminacy with short time period, but
a high ineffectiveness for a long period. Given ordered pair
predicts the future forecasting in the form of interval to
reduce the uncertainty. In future, bots have a lower effective-
ness with a normal time period, indeterminacy with long
time duration, and higher level of ineffectiveness for longer
time period. As for as the security concerns, the membership
with long time period is considered better, while nonmem-
bership with less time period is good.

5. Comparative Analysis

In this section, compare the proposed concept of CoOCPFRs
with preexisting concepts, i.e., cubic fuzzy relations (CFRs),
complex CFRs (CoCFRs), cubic intuitionistic fuzzy relations
(CIFRs), complex cubic intuitionistic fuzzy relations
(CoClIRs), and cubic picture fuzzy relations (CPFRs).
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TaBLE 3: Cartesian product I X J.
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Ordered pair

Complex picture fuzzy set

Complex interval-valued picture fuzzy set

(SCS, P)

(SPG, P)

(MD, P)

(SRF, P)

(AMS, P)

(SCS, 9)

(SPG, S)

(MD, S)

(SRE, S)

(AMS, S)

(SCS, B)

(SPG, B)

(MD, B)

(SRF, B)

(AMS, B)

(SCS, MIM)

(SPG, MIM)

(MD, MIM)

0.30e0-21( 27i) 0 09e% 74(27‘[1)
< 0. 346057(27ﬂ)

0. OSeO 21(2mi) 0 3960 .51(2mi)
0. 3260 .57(2mi)

<0 .04¢0-21(27) 0 41¢0-37(2m)

0. 5360 .67(271)

<0 30e"- 21(2mi) 0 09e: 38(2mi)

0. 3960 .57(2mi)

0. 3060 .21(2mi) 0 3360 .43(2mi)
< 0. 3260 57(2mi)

<O lleo 21(2mi) 0 09e041 (2ni)

0. 3460 .67(2mi)

0. 0560 .21(2mi) 0 2560 .41 (27i)
( 0. 2260 .67(27i)

<O 04¢e" 21(2mi) 0 25¢0- 37(2mi)

0. 5360 .67 (27i)

(0 1160 .21(27i) 0 0960 .38(2rmi)

0. 3960 67(2mi)

0. lleO 21(2mi) 0 25e041 (2ni)
0. 17e0 .67(2mi)

(0 22e0 .56(27i) 0 09e0 .74(2mi)

0. 8160 57(2mi)

0. 2280 59(2rmi) 0 3960 51(2rmi)
< 0. Sle() .51(2mi)

(0 0460 .51(27i) 0 4560 .37(2mi)

0. 8160 67(2mi)

(O 22e0 42(2mi) 0 09e" 38(2mi)

0. 81e057 (27i)

0. 22e0 .58(2ri) 0 33e0 .43(2mi)
( 0. 8160 57(2mi)

<O 07e0-09(2mi) 0 09e% .74(2mi)

0. 3460 .55(2mi)

0. 0560 .09(27i) 0 9e0 .51(2rmi)
( 0. 2260 51(27mi)

(O 04 .09(27i) 0 45¢0 37(2mi)

0. 5360 .67(2mi)

)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
[

[0.2160'23(27“), 0.4360'67(2ﬂi):| [0 4360 14(27i) ,0. 7860 .64( 2711
[0.61&0'45(2’“) , 0.93@091(27“)}

0 25e0 31(2mi) 0 43e0 37(2711)] [O 43e0 .42(27i) ,0. 67e0 51( 27‘[1
[0.61e0'54(2”i) , 0_85e0.89(2ﬂi)}

0 17e" 27(2mi) 0.1980.39(27[0] [0 47¢Y% 32(2nmi) ,0. 67e% 55( 2m
[0.6180A4S(27ﬁ) , 0.79e0A91(2n’i)}

0 03¢ .23(2mi) 0 19¢%- 57(2m)] [0 43¢ 14(2mi) ,0. 89¢"- .81( 2711
[0.61e0'62(2”i) , 0.8060'91(2711)}

0 33¢0- 23(2rmi) 0 41 31(2711)] [O 43¢ 14(27i) ,0. 63e’ .69( 2711
[0.77e°'54(2’“), 0.96e°'95<2”i)}

0 21e0 11(27i) 0 43e0 67(2m)] [O 43e0 .41(27i) ,0. 78@0 .64( 27‘[1
[0.61e0'45(2”i) , 0_93e0.85(2ﬂi)}

0 2580 11(27i) 0.4360.37(27[0] [0 43eO 42(2mi) ,0. 67e0 51( 2m
[0.61e°'54(2’“) , 0.856089(27“)}

0 1760 11(27i) 0 1960 39(27!1)] [0 4360 .32(2mi) ,0. 6760 55( 27‘[1
[0_73e0.41(2ﬂi) , 0_75e0.78(2ﬂi)}

0 03e0 11(27i) 0 1980 57(2711)] [O 4360 14(27i) ,0. 8960 91( 2711
[0.5180.62(27@ , 0.80e°'87<2”i)}

0 31e0 11(27i) 0 41e0 31(2m)] [O 4360 .42(2m1) ,0. 63@0 .69( 27‘[1
[0_77e054(2ﬂi) , 0_96e095(2ﬂi)}

0 17¢% 35(27mi) 0 39¢0: 67(2711)] [0 560 41(27i) ,0. 78e0- .64( 2m
[0.81e°'45(2’“) , 0.938085(27“)}

0 1760 31(2mi) 0 3960 37(27!1)] [0 51e0 .42(2m1) ,0. 6760 51( 27‘[1
[0_81e0.54(2ﬂi) , 0_85e0.89(2ﬂi)}

0 17¢0-27(27i) 0 19¢% 39(2711)] [O 47¢0-32(2mi) ,0. 67e0-55( 2711
[0.8180'45(2m) , 0.898078(2710}

0 0360 35(2rmi) 0 1960 S7(2m)] [O 4360 14(27i) ,0. 7960 .64( 27‘[1
[0_81e0A62(2Tti) , 0_89e0A87(2ﬂi)}

0 17e0 23(2mi) 0 39e0 31(27‘[1)] [0 5260 42(27i) ,0. 6360 .64( 2m
[0.776054270), 0.96¢95(27 |

0 2160 .09(27i) 0 6360 ZI(Zm)] [0 5460 .23(27i) ,0. 7660 .41 2m
[0.816049(27ﬂ), 0.93e0.85(2ni)]

0 25e0-09( 27i) 0 45¢" 21(2711)] [0 51e% .23(27i) ,0. 67 A41( 2711
[0.8180'54(2m) , 0.9280.89(271i)}

0 1760 .09(2ri) 0 1960 Zl(an)] [O 4760 .23(27i) ,0. 6760 L41( 27‘[1

[0.8160‘41(2711) , 0.92e0A78(2ﬂi)}

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
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TaBLE 3: Continued.
Ordered pair Complex picture fuzzy set Complex interval-valued picture fuzzy set
0. 0760 .09(27i) 0 0960 38( Zm 0 03¢ 09(27i) 0 19¢ 21(2711)] [0.4360.14(2710) 0.76e0'41(2”i)],
(SRF, MIM)
0. 3960 .48 (27i) 0 8160'62(2ni), 0.92e0.87(2ﬂi)}
0.07e" .09(2i) 0 3380 43( Zm 0 3360 .09(2mi) 0 41e0 21(2711)] [0_52e0,23(271i)) 0.63(30‘41(2”1)],
(AMS, MIM)
0. 2260 .43(27i) 0 81e0'54(2”i), 0_96e0.95(2ﬂi)}
0.41¢0-20(27i) 0 09e0-74( 2m 0 21e0-55(2i) 0 29¢0- 59(2711)] [0.41e0'14(2”i), 0.4960.64(2710] ,
(SCS, e8)
0. 3460 .55(27i) 0 37e0A45(27ri)’ 0.938091(2””}
0.05e% .20(27i) 0 39¢0- 51( Zm 0 2160 31(2mi) 0 2960 37(2m)] [0_4160,14(27'&)’ 044960‘51(27&)],
(SPG, eS)
0.31067(2i) 0 61e0-54(2m) 0.85e0'91<2"i)}
0. 0460 .20(27i) 0 4560 37( 2;-“ 0 17 27(2mi) 0 1980 39(27‘[1)] [0.4160.14(2710, 0.4960.55(2710] ,
(MD, eS)
0.53¢0-67(27i) 0 73e0-41(2m) 0.7580.91(2m)}
0. 5580 .20(27mi) 0 0980 .38( Zm 0 0360 55(2rmi) 0 19e0 57(2m)] [0_41e0A14(27Ti)) 0.4960481(27&)] ,
(SRE, eS)
0. 3960 .67 (27ri) 0 51e0.62(27ri) 0_80e0.87(2ﬂi)}
0. 66e0 .58(27i) ,0. 33e0 A43( 27-[1 0 21e% 23(2mi) ,0. 29¢0- 31(27‘[1)] [0.4160.]4(2710) 0.49e0.69(2ﬂi):| R
(AMS, eS)
0.31e% .67(27i) [0.77e0.54(27ﬂ)’ 0.966095(27“)}

5.1. CoCPFRs with CoFRs, CoIFRs, and CoPFRs. The CoFRs
only describe the membership grade with respect to ampli-
tude and phase terms of an entity. Although it possesses
the properties to model the uncertain problems with peri-
odicity, but it fails to cover the future aspects of a problem.
Moreover, the lack of nonmembership and indeterminacy
also makes it limited in practicality, whereas ColFRs and
CoPFRs are more generalized structure. They not only pos-

s 0.4162562m) (. 09¢0-74(2i) - 0.05¢%47(21) () 39¢0-51(2m1)
’ 0.34¢0-35(2i) ’ ’ 02251 (27i) ’

sess the property of amplitude and phase terms but also
define an object with membership, nonmembership, and
indeterminacy. But they also fall short when dealing with
the future aspects. Let us analyze this mathematically by
solving the application problem using complex picture
fuzzy information.

Consider the following CoPFESs for the sets of securities
and threats:

0.04¢%5127) () 456037(27i) _0.55%2027) () 09¢038(2mi)
1={ | MD, , , | SRE, ‘ S
0.5360'67(27”) 0.3960‘48(27”)
0.6660.58<2ni) R 0.33e0.43(2ﬂi) ,
AMS, ,

0.11¢"-32(2mi)

0.30¢2127) 0 41 0-900) 0.11e°2127) 0 25041(2mi)
P, 0.32¢"57(2i) S 0.17¢%67(2mi) ’

(70)

0.22%3027) () 78090(2mi) 0.07£%92m) () 51098(27i)
J= B, > | MIM, ;
0'8160.57(2711') 0.2260.43(2ﬂi)
0.90¢°20(271) () 8760-87(27i)
eS,
0.31 67 (2mi)
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TaBLE 4: Cartesian product I x J.
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TaBLE 5: Cartesian product I x J.

Ordered pair Membership Indeterminacy Nonmembership
(SCS, P) 0.30e%2127) (9 09e0-74(2m) 0.34057(2m)
(SPG, P) 0.05¢%-21(271) 0.39¢0-51(27) 0.32¢0-:57(2i)
(MD, P) 0.04¢0-21(27) 0.410-37(27) 0.53¢%-67(2i)
(SRF, P) 0.30e0212m) () 09e0-38(2mi) 0.39¢%-57(2)
(AMS, P) 0.30e0212m) () 33¢0-43(2mi) 0.320-57(27)
(8CS,S) 0.11e0212m) () 09ed-41(2m) 0.34¢%-67(27)
(SPG, S) 0.05e%-21(27) 0.25¢0-41(27i) 0.220-67(2)
(MD, S) 0.04¢%-2127) 0.25¢0-37(27i) 0.530-67(2m)
(SRE, S) 0.11e%21(27) 0.09¢0-38(27i) 0.39¢%-67(2i)
(AMS,S) 0.11e*21™) 025041 0.17¢%67(2m)
(SCS, B) 0.22¢0-56(2i) 0.09¢0-74(27) 0.81¢%57(2m)
(SPG, B) 0.22e0592m) () 390-51(2m) 0.81e%51(2m)
(MD, B) 0.04e0512m0) () 450-37(2mi) 0.81%-67(2i)
(SRF, B) 0.22e04202m) () 9e0-38(2i) 0.81e057(2m)
(AMS, B) 0.22¢0-58(27i) 0.33¢0-43(27i) 0.810-57(27)
(SCS,MIM)  0.07e>%°(™) 0.090-74(27i) 0.34¢0-55(2)
(SPG,MIM)  0.05¢*%(™) 0.9¢0-51(2i) 0226051 (27)
(MD, MIM) 0.04e0-09(27) 0.450-37(27) 0.53¢%-67(2i)
(SRF, MIM) 0.07e0-0927) 0.09¢0-38(27) 0.39¢0-48(27mi)
(AMS, MIM)  0.07¢%02(2) 0.33¢0-43(2i) 0.22e0:43(2m)
(SCS, eS) 0.41¢0%:20027) 0.09¢074(2m) 0.34¢0-55(27)
(SPG, eS) 0.05e0202m) () 390-51(2i) 0.31%-67(2i)
(MD, €5) 0.04e”20C™) 0.45¢%37C) 0.53¢"7)
(SREF, eS) 0.550-20(2i) 0.09¢0-38(27) 0.39¢%-67(2m)
(AMS, eS) 0.66e-38) 0.33¢0-43(2m) 0.31067(2ni)

Their Cartesian product is in Table 4:

Each ordered pair of I x ] in Table 4 shows the member-
ship, indeterminacy, and nonmembership grades with
amplitude term and phase term. Moreover, the interval part
is missing that is responsible to represent the future aspect
or prediction for a relationship, whereas CoCPFRs are
broader than CoFRs, ColFRs, and CoPFRs. So, the above-
mentioned structures give limited information.

5.2. CoCPFRs with CFRs, CIFRs, and CPFRs. CFR is a collec-
tion of FS and IVES. It explains only the amplitude term of
membership and interval-valued membership grades of
any object. CIFRs explain the amplitude term of member-
ship and nonmembership with single variable. CPFR dis-
cussed membership, indeterminacy, and nonmembership
with single variable. They are limited to solve only one-
dimensional problems. These structures are not capable to
solve the periodicity of the problem. On the other hand,
CoCPFSs discuss all the three stages, i.e., membership, inde-
terminacy, and nonmembership with multivariable.

Interval-valued picture
fuzzy grades

Picture fuzzy

Ordered pair grades

(SCS, P) (0.30,0.09,0.34) ([0.21,0.43],0.43,0.78], [0.61,0.93] )
(SPG, P) (0.05,0.39,0.32) ([0.25,0.43],0.43,0.67], [0.61,0.85] )
(MD, P) (0.04,0.41,0.53) ([0.17,0.19], [0.47,0.67], [0.61,0.79] )
(SRF, P) (0.30,0.09,0.39) ([0.03,0.19],[0.43,0.89], [0.61,0.80] )
(AMS,P)  (0.30,0.33,0.32) ([0.33,0.41],[0.43,0.63], [0.77,0.96] )
(SCS,S) (0.11,0.09,0.34) ([0.21,0.43], [0.43,0.78], [0.61,0.93] )
(SPG, S) (0.05,0.25,0.22) ([0.25,0.43], [0.43,0.67], [0.61,0.85] )
(MD, $) (0.04,0.25,0.53) ([0.17,0.19],0.73,0.75], [0.43,0.67] )
(SRE,S) (0.11,0.09,0.39) ([0.03,0.19],0.43,0.89], [0.51,0.80] )
(AMS,S)  (0.11,0.25,0.17) ([0.31,0.41],[0.43,0.63], [0.77,0.96] )
(SCS, B) (0.22,0.09,0.81) ([0.17,0.39],0.56,0.78], [0.81,0.93] )
(SPG, B) (0.22,0.39,0.81) ([0.17,0.39],0.51,0.67], [0.81,0.85] )
(MD, B) (0.04,0.45,0.81) ([0.17,0.19],0.47,0.67], [0.81,0.89] )
(SRF, B) (0.22,0.09,0.81) ([0.03,0.19],[0.43,0.79], [0.81,0.89] )
(AMS,B)  (0.22,0.33,0.81) ([0.17,0.39],[0.52,0.63], [0.77,0.96] )
(SCS,MIM) ~ (0.07,0.09,0.34) ([0.21,0.63],[0.54,0.76], [0.81,0.93])
(SPG,MIM)  (0.05,0.9,0.22) ([0.25,0.45],0.51,0.67], [0.81,0.92] )
(MD,MIM)  (0.04,0.45,0.53) ([0.17,0.19], [0.47,0.67], [0.81,0.92] )
(SRE,MIM)  (0.07,0.09,0.39) ([0.03,0.19],[0.43,0.76], [0.81,0.92])
(AMS, MIM) (0.07,0.33,0.22) ([0.33,0.41],[0.52,0.63], [0.81,0.96] )
(SCS,eS)  (0.41,0.09,0.34) ([0.21,0.29],[0.41,0.49], [0.37,0.93])
(SPG,eS)  (0.050.39,0.31) ([0.21,0.29],[0.41,0.49], [0.61,0.85])
(MD,eS)  (0.04,0.45,0.53) ([0.17,0.19], [0.41,0.49], [0.73,0.75] )
(SRE,eS)  (0.550.09,0.39) ([0.03,0.19],[0.41,0.49], [0.51,0.80])
(AMS,eS)  (0.66,0.33,0.31) ([0.21,0.29],[0.41,0.49], [0.77,0.96] )

Let consider the previous problem of e-commerce with
CPFSs:

(SCS, (0.41,0.09,0.34 ), ( [0.21,0.73], [0.56,0.78], [0.37,0.93] )),
(SPG, (0.05,0.39,0.22 ), ([0.25,0.45], [0.51,0.67], [0.61,0.85] )),
I={ (MD,(0.04,0.45,0.53),([0.17,0.19],[0.47,0.6], [0.73,0.75] )), ¥,
(SRF, (0.55,0.09,0.39 ), ( [0.03,0.19], [0.43,0.89], [0.51,0.80] )),
(AMS, (0.66,0.33,0.11 ), ( [0.33,0.41], [0.52,0.63], [0.77,0.96] ))

)
)

(P, (0.30,0.41,0.32 ), ([0.50,0.43], [0.43,0.89], [0.61,0.79] ) ),
(S,(0.11,0.25,0.17 ), ( [0.31,0.43], [0.43,0.89], [0.61,0.67] ),
J= (B, (0.22,0.78,0.81 ), ([0.1,0.39], [0.7,0.79], [0.81,0.89] )),
(MIM, (0.07,0.51,0.22), ( [0.61,0.63], [0.54,0.76], [0.81,0.92] )),
(€S, (0.90,0.87,0.31 ), ( [0.21,0.29], [0.41,0.49], [0.11,0.71] ))

(71)

Then, their Cartesian product is in Table 5:

Each ordered pair of I x J in Table 5 only shows mem-
bership grade without phase terms. CPFR just represents
the amplitude term, but complex fuzzy relations explain
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TABLE 6: Cartesian product I X J.

Ordered pair Complex picture fuzzy set Complex interval-valued picture fuzzy set

(SCS’ P) (0 3060 .21(27i) 0 34e057 (2mi) ) ( [O 2160 23(2mi) 0 4360 67(2711)] [0 6160 45(27i) ,0. 9360 91(2mi) } )
(SPG, P) (0 0560 21(27i) 0 3260 57(2mi) ) ( [O 2560 .31(27i) 0 4360 .37(2mi) ]’ [O 6160 .54(27i) O 85e0 .89(27i) } )
(MD, P) (0 0460 .21(27i) O 5360 .67 (27i) ) ( [0 1760 27(27i) O 1960 39(2mi) :I) [0 6180 .45(27ti) 0 79e0 91(27i) } )
(SRF, P) (0 3060 .21(27mi) 0 3960 .57(2mi) ) ( [O 0360 .23(271) 0 1960 .57(2mi) ] [O 6160 .62(27i) O 8060 .91(2mi) } )
(AMS, P) (0 3060 21(27i) 0 3260 57(2mi) ) ( [0 3360 .23(27i) 0 4160 .31(2mi) ]) [O 77e0 .54(27i) O 9660 .95(27i) } )
(SCS’ S) (0 lleO .21(2mi) 0 3460 .67 (27i) ) ( [0 2160 11(27i) O 4360 .67(2rmi) :I’ [0 6160 .45(27i) 0 9360 .85(27i) } )
(SPG, S) (0 0560 21 2711 0 2260 67 2711 ) ( [O 2560 11 2mi) 0 4360 37 2mi) ]’ [0 6160 .54(27i) 0 8560 .89(27ri) } )
(MD’ S) (0 0460 .21(2mi) O 5360 .67 (27i) ) ( [0 1760 11(27i) O 1960 39(2mi) :I) [0 7360 .41(27i) 0 75e0 78(2mi) } )
(SRF, S) (O lleo .21(27mi) O 3960 .67(2mi) ) ( [0 0360 11 27‘[1 0 1960 57 27‘[1 ]’ [O 51e0 62 27ri) O 80e0 87 27i) } )
(AMS, S) (O 116021 (27i) 0 176067 (27i) ) ( [0 316011 (27i) 04160 31( 2711]) [O 77e054 (27i) 096e095 (27i) } )
(SCS’ B) (0 22(30 .56(27i) 0 8160 .57 (27i) ) ( [O 1760 .35(27i) 0 3960 .67(2rmi) ], [0 8160 .45(27i) 0 9360 .85(27i) } )
(SPG, B) (O 2260 59(27i) O 8160 51(27i) ) ( [0 1760 .31(2mi) O 3960 .37(2mi) ], [0 8130 .54(27i) 0 8530 .89(27i) } )
(MD’ B) (0 0460 .51(2mi) O 8160 .67 (27i) ) ( [0 17e0 27(2mi) O 19e0 39(2rmi) :I’ [0 8180 45(27i) 0 89e0 78(2mi) } )
(SRF, B) (0 22e0 .42(27i) 0 816057 (27i) ) ( [O 0360 35 27‘[1 0 1960 57 27‘[1 ]’ [O 81e0 62 27ri) O 89e0 87 2mi) } )
(AMS, B) (0 2260 58 2m O 8160 57 Zm ) ( [0 1760 23 2711 O 3960 31 2711 :I) [O 77e0 54 27i) O 96e0 95 2mi) } )
(SCS, MIM) (0 0760 09 27i) 0 3460 55 27i) ) ( [0 2160 09 2m 0 6380 21 2m }) [0 81e049 2711 0 9360 85 Zm ] )
(SPG, MIM) (O 0560 09(27ri) O 2260 51(27i) ) ( [0 2560 .09(27ri) 0 4560 .21(2mi) ]) [O 8160 .54(27i) O 9280 .89(27i) } )
(MD, MIM) (0 04¢0- .09(27ri) 0 53¢0- .67 (27ri) ) ( [0 17e% 09(27i) 0 19¢0 21(2mi) :I’ [0 81041 (2mi) 0 92¢0- 78(2mi) } )
(SRF, MIM) (O 0760 .09(27i) O 3960 .48(27i) ) ( |:0 0360 09 2mi) 0 1960 21 2mi) ]’ [O 81e0 .62(27ri) O 92e0 .87(2mi) } )
(AMS’ MIM) (0 0760 09 271’1 O 2260 43 2m ) ( [0 3360 09 2m O 41e0 21 2m :I) [0 8180 54 27i) 0 96e0 95 2mi) } )
(SCS, es) (0 4160 .20(27i) 0 3460 .55(27i) ) ( [O 2160 .55 2m 0 2960 59 2m :|’ [0 3760 45 27{1 0 9360 91 27{1 } )
(SPG’ es) (O 0560 20 2m O 3160 67 2711 ) ( [O 2160 31 2mi) O 2960 37 2mi) ]) [O 61e0 .54(27i) O 85e0 .91(27i) } )
(MD, CS) (0 04¢0- .20(27ti) 0 53¢0- .67 (271i) ) ( [0 17e% .27(2mi) O 19¢0 39(2i) :I’ [0 73041 (27i) 0 75¢0-91 (2mi) } )
(SRF, es) (O 5560 .20(27ri) O 3960 .67 (27ri) ) ( [0 0360 .55(27i) 0 1960 .57(2mi) ] [O 51e0 .62 (27ri) O 80e0 .87(27i) } )
(AMS’ CS) (0 66(30 58(27mi) O 3160 .67 (27i) ) ( [0 21e0 23(2mi) O 2960 31(2mi) :I) [0 77e0 54(27i) 0 96e0 95(2mi) } )

TABLE 7: A complete comparison among all the structure based on different fuzzy information.

Structure Membership Indeterminacy Nonmembership Multidimensional Dual memberships
FR Yes No No No No

CFR Yes No No No Yes
CoCFR Yes No No Yes Yes

IFR Yes No Yes No No

CIFR Yes No Yes No Yes
CoCIFR Yes No Yes Yes Yes

PFR Yes Yes Yes No No

CPFR Yes Yes Yes No Yes
CoCPFR Yes Yes Yes Yes Yes
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both terms of membership. But CoCPFRs are broader than
FRs, CFRs, CIFRs, and CPFRs. So, the above-mentioned
structures give limited information.

5.3. CoCPFRs with CoCFRs and CoCIFRs. CoCFRs discuss
complex membership, and CoCIFRs only explain the
complex membership and complex nonmembership with
multivariable. These structures are capable to solve multidi-

0. 046051 (2mi) 0 536067 (27i)

I= (MD,
(

P’ 0 30¢ 0.21(27i) ,0.32¢ 0.57(27i)

/

022 059 27‘[1) 081 057 271’1

~
I
/_\

Their Cartesian product is in Table 6:

Each ordered pair of I x ] of Table 6 describes the effec-
tiveness and ineffectiveness of e-commerce securities against
threats through membership and nonmembership, respec-
tively. But do not tell about the neutral effect of securities
on threats. These structures give limited information and
not providing required results of given problem. CoCPFRs
produce better results that are required to obtained detailed
information. In Table 7, the complete comparison among
different structures is presented.

To summarize the above comparisons, the advantages of
the proposed concepts are stated below based on the exper-
imental results:

(a) CoCPFRs deal with three grades, which are member-
ship, nonmembership, and indeterminacy

(b) Their structure is composed of complex-valued
functions, so they model periodicity with the help
of phase terms, that is, the imaginary part

(c) They have dual degrees comprising of single-valued
and interval-valued membership, indeterminacy,
and nonmembership grades. This allows them to

(scs, (0 410-56(2m) () 3,440.55(2m) )’ ( [0 216055(271) (). 7360.67(27) } } )
(SPG, (0 0560472 26051 (2m) )) ( {0 25e031271) () 456037 Zm)} {O 61054Cm) () 500.89(2m) } ) ’
( )’ ( [0 176%27Cmi) (. 19¢039(2) } [0 7304127) () 75,0.78(2mi) } )
SRE, (0 55042(2mi) ) 39048(271) ), ( [ 0.03¢%53(27)_().19¢057(2m) }’ [0 51962(2m1) () 80087 (2m) } )
(AMS, 0.66¢"58(2) .110321) ), ( [O 33¢0-23(2m0) () 4703127 |
( [0 506023(2) () 43¢0 76(2711)}’_
(S, 0.110212m) (. 17¢067(2mi) ( [0 31011027) 0 43¢0 89(2711):|
( [0 17°352m) () 390 76(2711)]
(MIM, (0'0760‘09(2711')’ 0.22¢"43(2m) )) ( [O 61"9C7) .63 21(2;11)} [0 81049(2m1) () 96071 (2m)
0.

(eS, (0.9060'20(2"i),0.316067(2’”) >’ ( [ 21656(271) 0 29, 059(2711)} {0 11%-32027) () 77091 2711):| )
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mensional problems and also discuss the periodicity of the
problem. But CoCPFRs also describes the neutral effect of
one object on the other. It is the broader than CoCFRs and
CoCIFRs.

Here, an example is taken of previously presented appli-
cation problem and solve it with respect to CoCIFSs and
carry out a comprehensive analysis.

{0 376045(271) () 93,0-85(2) )
{0 776054(2mi) 9 96095 Zm):| )

)
)
)
)

72
0.61%4527) () 79¢091(2m) ] 72)

'0 61e36(271) () 670-542m) ] )
0.81045(271) () 890-55(27i) } )

)

1)
)

present two different time periods or stages in a
decision-making process

6. Conclusion

This research introduced the innovative concepts of complex
cubic picture fuzzy sets (CoCPESs), complex cubic picture
fuzzy relations (CoCPFRs), and Cartesian product of two
complex cubic picture fuzzy sets. Furthermore, various types
of CoCPFRs are also defined, including CoCP-reflexive-FR,
CoCP-symmetric-FR, CoCP-transitive-FR, CoCP-equiva-
lence-FR, CoCP-partial order-FR, CoCP-strict order-FR,
CoCP-linear order-FR, CoCP-composite-FR, and CoCPF
equivalence class, and were also studied with the help of suit-
able examples, properties, and some results which are also
proven. The idea of these newly defined concepts and novel
modeling techniques is used to address the security concerns
in e-commerce in digital business system. Online business
systems have recently been targeted by the hackers and
cybercriminals. The current study analyzes the relationships
among the effectiveness of e-commerce security and the
most serious and common risks to the digital business.
Then, by using CoCPFRs investigate the impact of security
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on the threats. This innovative structure explains the present
impact as well as the future forecasting of the impact in the
form of interval to reduce ambiguity of securities on threats.
The strength of this structure is it discussed all level of an
object which is level of membership, level of indeterminacy,
and level of nonmembership. As it is complex, it deals with
periodicity of an object with multivariables. These concepts
can be extended to other generalization of fuzzy sets which will
give rise to many structures with vast range of applications.
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