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The aim of this paper is to establish the Ulam stability of the Caputo-Fabrizio fractional differential equation with integral
boundary condition. We also present the existence and uniqueness results of the solution for the Caputo-Fabrizio fractional
differential equation by Krasnoselskii’s fixed point theorem and Banach fixed point theorem. Some examples are provided to
illustrate our theorems.

1. Introduction

Ulam [1] proposed to study the approximation degree of the
approximate solution and the exact solution of the equation
in 1940. Hyers [2] responded to Ulam’s proposal and
defined the Hyers-Ulam stability of equation in 1941. Later
on, Rassias [3] extended Hyers’s work and defined the
Hyers-Ulam-Rassias stability of equation in 1978. The
Hyers-Ulam stability and Hyers-Ulam-Rassias stability are
collectively referred to as the Ulam stability. Subsequently,
researchers initiated a research on the Ulam stability of
integer-order differential equations (see [4–10]). Obloza
[4], Cemil and Emel [5] proved the Hyers-Ulam stability
and Hyers-Ulam-Rassias stability of the first-order differen-
tial equation, respectively. Wang et al. [6] studied the Ulam
stability of the first-order differential equation with a bound-
ary value condition. Otrocol and Ilea [7] obtained the Ulam
stability of the first-order delay differential equation. Huang
and Li [8] also obtained the Hyers-Ulam stability of another
class of the first-order delay differential equation. Zada et al.
[9] studied the Hyers-Ulam-Rassias stability of the higher
order delay differential equation. However, the study on
the Ulam stability of fractional differential equations is in
its infancy.

Fractional differential equations are widely applied in
physics [11, 12], control systems [13], chemical technology
[14], and biosciences [15]. Fractional integral boundary

value problems have been explored by many researchers.
In particular, the integral boundary value problem provides
a feasible method for the modeling of population dynamics
and chemical engineering problems (see [16–18]). Although
fractional integral boundary value problems are widely used,
it is not easy to solve the equation, and the exact solution is
often not obtained. Therefore, it is necessary to study the
Ulam stability of fractional differential equations and use
the approximate solution to replace the exact solution. So
far, researchers have studied the Ulam stability and the exis-
tence and uniqueness of a solution for fractional differential
equations with Hilfer-Hadamard, Caputo, and Caputo-
Fabrizio fractional derivatives (see [19–22]). Abbas et al.
[19] proved the existence and the Ulam stability of a frac-
tional differential equation with the Hilfer-Hadamard
derivative.

In [20], Wang et al. established the Ulam stability and
data dependence for the Caputo fractional differential
equation

cDβx tð Þ = k t, x tð Þð Þ, t ∈ a,+∞½ Þ: ð1Þ

In [21], Dai et al. studied the Ulam stability of the
Caputo fractional differential equation with an integral
boundary condition
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x′ tð Þ + cDβ
0+x tð Þ = k t, x tð Þð Þ, t ∈ 0, 1½ �,

x 1ð Þ = Iγ0+x ηð Þ,

(
ð2Þ

where Iγ0+ð·Þ is the Riemann-Liouville fractional integral,
γ > 0.

In [22], Liu et al. obtained the Hyers-Ulam stability and
the existence of solutions for the Caputo-Fabrizio fractional
differential equation

CFD
β
x tð Þ = k t, x tð Þð Þ, t ∈ 0, T½ �, ð3Þ

where CFDβð·Þ is the Caputo-Fabrizio fractional derivative,
β ∈ ð0, 1Þ.

Motivated by [20–22], in this paper, our purpose is to
study the existence and uniqueness of a solution and the
Ulam stability of the following Caputo-Fabrizio fractional
differential equation with boundary value condition:

x′ tð Þ + CFD
β
x tð Þ = k t, x tð Þð Þ, t ∈ 0, 1½ �,

x 1ð Þ = Iγ0+x ξð Þ,

(
ð4Þ

where xðtÞ is a continuous differentiable function on ½0, 1�;
k : ½0, 1� ×ℝ⟶ℝ is continuous; CFDβð·Þ is the Caputo-
Fabrizio fractional derivative, β ∈ ð0, 1Þ; and Iγ0+ð·Þ is the
Riemann-Liouville fractional integral, γ > 0, ξ ∈ ½0, 1�.

Equation (4) is a new kind of the Korteweg-de Vries-
Bergers (KDVB) equation model. In [23], Equation (4) is
used to describe unusual irregularities and nonlinearities in
wave dynamics and liquids motions.

The main contributions are as follows: Firstly, we give
the definitions of the Hyers-Ulam stability and Hyers-
Ulam-Rassias stability for Equation (4). Then, we obtain a
sufficient condition to derive the uniqueness of the solution
for Equation (4) by the Banach contraction principle. Next,
we give a sufficient condition to prove the existence of the
solution for Equation (4) by Krasnoselskii’s fixed point the-
orem. On this basis, we give the Ulam stability results for
Equation (4) by the Laplace transform and inequality results.

The rest of our article is arranged as follows. Some basic
definitions and necessary theorems are presented in Section
2. We establish sufficient conditions to show existence and
uniqueness of solution for the Caputo-Fabrizio fractional
differential equation in Section 3. In Section 4, we prove
the Ulam stability of the Caputo-Fabrizio fractional differen-
tial equation. Two examples are provided in Section 5 to
illustrate our theorems.

2. Preliminaries

We will denote by C1½0, 1� the space of continuous differen-
tiable functions on ½0, 1� with norm

xk k = sup x tð Þj j, t ∈ 0, 1½ �f g: ð5Þ

Definition 1 [24]. The Caputo-Fabrizio fractional derivative of
order β of a continuous differentiable function x is given by

CFD
β
x tð Þ = 2 − βð ÞM βð Þ

2 1 − βð Þ
ðt
0
exp −

β

1 − β
t − τð Þ

� �
x′ τð Þdτ, t ≥ 0,

ð6Þ

the normalization function MðβÞ depends on β.

Definition 2 [25]. The Riemann-Liouville fractional integral
of order γ of a function x is given by

Iγ0+x tð Þ = 1
Γ γð Þ

ðt
0
t − τð Þγ−1x τð Þdτ, t ≥ 0: ð7Þ

Based on Definition 2 in [5] and Definition 2.1 in [9], we
give the definitions of the Hyers-Ulam stability and the
Hyers-Ulam-Rassias stability for Equation (4).

Definition 3. Equation (4) has the Hyers-Ulam stability if
and only if for any solution xðtÞ of

x′ tð Þ + CFD
β
x tð Þ − k t, x tð Þð Þ

��� ��� ≤ ε, t ∈ 0, 1½ �, ð8Þ

where ε > 0, there is a constant C > 0 and a solution yðtÞ of
Equation (4) satisfying

x tð Þ − y tð Þj j ≤ C × ε, t ∈ 0, 1½ �: ð9Þ

Definition 4. Equation (4) has the Hyers-Ulam-Rassias
stability if and only if for any solution xðtÞ of

x′ tð Þ + CFDβx tð Þ − k t, x tð Þð Þ
��� ��� ≤ δ tð Þ, t ∈ 0, 1½ �, ð10Þ

where δðtÞ ∈ Cð½0, 1�, R+Þ, there is a constant Kk,δ > 0 and a
solution yðtÞ of Equation (4) satisfying

x tð Þ − y tð Þj j ≤ Kk,δ × δ tð Þ, t ∈ 0, 1½ �: ð11Þ

Theorem 5 [26]. If x is a piecewise continuous function and
there exist K > 0 and μ such that

x tð Þj j ≤ Keμt , t ≥ t0, ð12Þ

then the Laplace transform L½xðtÞ�ðsÞ exists.

Theorem 6 [27]. Let β ∈ ð0, 1Þ. The Laplace transform of
CFDβxðtÞ is

L CFD
β
x tð Þ

h i
sð Þ = 2 − βð ÞM βð Þ

2 s + β 1 − sð Þð Þ sL x tð Þ½ � sð Þ − x 0ð Þð Þ, s > 0,

ð13Þ

where L½xðtÞ�ðsÞ is the Laplace transform of xðtÞ.
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Theorem 7. The solution of the following fractional problem

x′ tð Þ + CFD
β
x tð Þ = k t, x tð Þð Þ, t ∈ 0, 1½ �,

x 1ð Þ = Iγ0+x ξð Þ:

(
ð14Þ

is given by

x tð Þ = Iγ0+x ξð Þ +
ð1
0
G t, sð Þk s, x sð Þð Þds, ð15Þ

where

G t, sð Þ =
1 −

bβ
aβ

 !
exp −aβ t − sð Þ� �

− 1 −
bβ
aβ

 !
exp −aβ 1 − sð Þ� �

, 0 ≤ s ≤ t,

− 1 −
bβ
aβ

 !
exp −aβ 1 − sð Þ� �

−
bβ
aβ

, t ≤ s ≤ 1,

8>>>>><
>>>>>:

ð16Þ

aβ =
2β + 2 − βð ÞM βð Þ

2 1 − βð Þ , bβ =
2β

2 1 − βð Þ : ð17Þ

Proof. Since xðtÞ is continuous differentiable function on
½0, 1�, x′ðtÞ is bounded function on ½0, 1�. By Definition 1,
CFDβxðtÞ is also a bounded function. Then, there exist con-
stants k1, k2 > 0 and μ1, μ2 such that

x′ tð Þ�� �� ≤ k1e
μ1t , t ≥ t0 > 0,

CFD
β
x tð Þ

��� ��� ≤ k2e
μ2t , t ≥ t0 > 0:

ð18Þ

From Theorem 5, the Laplace transform of x′ðtÞ and
CFDβxðtÞ exists.

Taking the Laplace transform for the first formula of
Equation (14), we conclude

s~x sð Þ − x 0ð Þ + 2 − βð ÞM βð Þ
2 s + β 1 − sð Þð Þ s~x sð Þ − x 0ð Þð Þ = ~k s, x sð Þð Þ,

ð19Þ

or

~x sð Þ = 1
s
x 0ð Þ + 1

s + 2β + 2 − βð ÞM βð Þ/2 1 − βð Þð Þ
~k s, x sð Þð Þ

+ 2β/2 1 − βð Þ
s s + 2β + 2 − βð ÞM βð Þ/2 1 − βð Þð Þð Þ

~k s, x sð Þð Þ:

ð20Þ

Taking the Laplace inverse transform for the above
equation, we conclude

x tð Þ = x 0ð Þ + 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, x sð Þð Þds

+
bβ
aβ

ðt
0
k s, x sð Þð Þds:

ð21Þ

Then

x 1ð Þ = x 0ð Þ + 1 −
bβ
aβ

 !ð1
0
exp −aβ 1 − sð Þ� �

k s, x sð Þð Þds

+
bβ
aβ

ð1
0
k s, x sð Þð Þds:

ð22Þ

Since xð1Þ = Iγ0+xðξÞ, thus

x 0ð Þ = Iγ0+x ξð Þ − 1 −
bβ
aβ

 !ð1
0
exp −aβ 1 − sð Þ� �

k s, x sð Þð Þds

−
bβ
aβ

ð1
0
k s, x sð Þð Þds:

ð23Þ

Then

x tð Þ = Iγ0+x ξð Þ − 1 −
bβ
aβ

 !ð1
0
exp −aβ 1 − sð Þ� �

k s, x sð Þð Þds

−
bβ
aβ

ð1
0
k s, x sð Þð Þds + 1 −

bβ
aβ

 !ðt
0
exp

� −aβ t − sð Þ� �
k s, x sð Þð Þds + bβ

aβ

ðt
0
k s, x sð Þð Þds:

ð24Þ

By the definition of Gðt, sÞ, we conclude

x tð Þ = Iγ0+x ξð Þ +
ð1
0
G t, sð Þk s, x sð Þð Þds: ð25Þ

Remark 8.

ðt
0
G t, sð Þj jds =

ðt
0

1 −
bβ
aβ

 !
exp −aβ t − sð Þ� ������

− 1 −
bβ
aβ

 !
exp −aβ 1 − sð Þ� ������ds

≤
ðt
0

1 −
bβ
aβ

 !
exp −aβ t − sð Þ� �"

+ 1 −
bβ
aβ

 !
exp −aβ 1 − sð Þ� �#

ds

≤
ðt
0
exp −aβ t − sð Þ� �

+ exp −aβ 1 − sð Þ� �� �
ds

= exp −aβt
� �

+ exp −aβ
� �� �

·
ðt
0
exp aβs

� �
ds

= 1
aβ

· exp −aβt
� �

+ exp −aβ
� �� �

· exp aβt
� �

− 1
� �

≤
2
aβ

· 1 − exp −aβ
� �� �

= E:

ð26Þ
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Thus, there exists a constant E > 0 such that

ðt
0
G t, sð Þj jds ≤ E, t ∈ 0, 1½ �: ð27Þ

Theorem 9 (Krasnoselskii’s fixed point theorem). Let S be a
bounded convex closed subset of a Banach space W, and P,
Q : S⟶W satisfy the following:

(i) Px +Qy ∈ S, for all x, y ∈ S
(ii) P is completely continuous

(iii) Q is a contraction mapping

Then, P +Q has at least one fixed point.

3. Existence and Uniqueness Theorems for
Fractional Differential Equation

The following assumption will be needed throughout the
paper:

(S1): k : ½0, 1� ×ℝ⟶ℝ is a continuous function.
(S2): kðt, xÞ satisfies the following Lipschitz condition for

the second variable:

k t, x1ð Þ − k t, x2ð Þj j ≤ ck x1 − x2j j, x1, x2 ∈ℝ, t ∈ 0, 1½ �: ð28Þ

(S3): Let δðtÞ: ½0, 1�⟶ℝ+ satisfy

ðt
0
δ sð Þds ≤ Lδ · δ tð Þ, Lδ > 0, t ∈ 0, 1½ �: ð29Þ

.

Theorem 10. Suppose that (S1) and (S2) are satisfied; then
Equation (4) has a unique solution provided that ξγ/
ðΓðγ + 1ÞÞ + Eck < 1.

Proof. Since k ∈ Cð½0, 1� ×ℝ,ℝÞ, there exists T > 0 such that

T = max
t∈ 0,1½ �,s∈ℝ

k t, sð Þj j: ð30Þ

Similar to the proof of Theorem 3 in [22]. Let operator F
be given by

Fxð Þ tð Þ = Iγ0+x ξð Þ +
ð1
0
G t, sð Þk s, x sð Þð Þds: ð31Þ

Firstly, we prove that F maps a closed set into a closed
set.

Let Ub = fx ∈ C1ð½0, 1�,ℝÞ ∣ kxk ≤ b, b ≥ ET/1 − ξγ/Γðγ
+ 1Þ > 0g. For x ∈Ub, it follows that

Fxð Þ tð Þj j ≤ 1
Γ γð Þ

ðξ
0
ξ − sð Þγ−1 x sð Þj jds +

ð1
0
G t, sð Þj j k s, x sð Þð Þj jds

≤
ξγ

Γ γ + 1ð Þ b + ET ≤ b:

ð32Þ

This implies FUb ⊆Ub.
Then, we prove that F is a strict contraction.
Let x1, x2 ∈ C1ð½0, 1�,ℝÞ, for any t ∈ ½0, 1�; it follows that

∣ Fx1ð Þ tð Þ − Fx2ð Þ tð Þ∣ ≤ 1
Γ γð Þ

ðξ
0
ξ − sð Þγ−1 x1 sð Þ − x2 sð Þð Þds

�����
+
ð1
0
G t, sð Þ k s, x1 sð Þð Þ − k s, x2 sð Þð Þð Þds

����
≤

ξγ

Γ γ + 1ð Þ + Eck

� �
x1 − x2k k:

ð33Þ

As ξγ/ðΓðγ + 1ÞÞ + Eck < 1, for x1, x2 ∈ C1ð½0, 1�,ℝÞ, F is
a strict contraction. From the Banach fixed point theorem,
F has a unique fixed point x∗ðtÞ ∈ C1ð½0, 1�,ℝÞ; accordingly,
Equation (4) has a unique solution.

Theorem 11. Suppose that (S1) and (S2) are satisfied; then
Equation (4) has at least one solution provided that ξγ/ðΓ
ðγ + 1ÞÞ + Eck < 1.

Proof. Since k ∈ Cð½0, 1� ×ℝ,ℝÞ, there exists T > 0 such that

T = max
t∈ 0,1½ �,s∈ℝ

k t, sð Þj j: ð34Þ

Let Uc = fx ∈ C1½0, 1� ∣ kxk ≤ c, c ≥ ET/1 − ξγ/Γðγ + 1Þ >
0g.

Let operators P and Q be given by

Pxð Þ tð Þ = − 1 −
bβ
aβ

 !ð1
t
exp −aβ 1 − sð Þ� �

k s, x sð Þð Þds

−
bβ
aβ

ð1
t
k s, x sð Þð Þds,

Qxð Þ tð Þ = Iγ0+x ξð Þ + 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, x sð Þð Þ

− exp −aβ 1 − sð Þ� �
k s, x sð Þð Þds:

ð35Þ
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Firstly, for all x1, x2 ∈Uc, using Remark 8, it follows that

Px1 +Qx2k k = sup − 1 −
bβ
aβ

 !ð1
t
exp −aβ 1 − sð Þ� ������

� k s, x1 sð Þð Þds − bβ
aβ

ð1
t
k s, x1 sð Þð Þds + Iγ0+x2 ξð Þ

+ 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, x2 sð Þð Þ

− exp −aβ 1 − sð Þ� �
k s, x2 sð Þð Þds

����
≤ sup

ðt
0
G t, sð Þk s, x2 sð Þð Þds

����
+
ð1
t
G t, sð Þk s, x1 sð Þð Þds

����
+ sup 1

Γ γð Þ
ðξ
0
ξ − sð Þγ−1x2 sð Þds

�����
�����

≤ sup
ðt
0
G t, sð Þj j k s, x2 sð Þð Þj jds

	

+
ð1
t
G t, sð Þj j k s, x1 sð Þð Þj jds




+ sup 1
Γ γð Þ

ðξ
0
ξ − sð Þγ−1ds

�����
����� · c

≤ sup
ð1
0
G t, sð Þj jds

	 

· T + ξγ

Γ γ + 1ð Þ c

≤
ξγ

Γ γ + 1ð Þ c + ET ≤ c:

ð36Þ

Hence, we have Px1 +Qx2 ∈Uc.
Then, for all x1, x2 ∈ C1½0, 1�,

Qx1 −Qx2k k = sup Iγ0+x1 ξð Þ − Iγ0+x2 ξð Þ + 1 −
bβ
aβ

 !ðt
0

�����
� exp −aβ t − sð Þ� �

− exp −aβ 1 − sð Þ� �� �
· k s, x1 sð Þð Þ − k s, x2 sð Þð Þ½ �ds

�����
≤ sup 1

Γ γð Þ
ðξ
0
ξ − sð Þγ−1 x1 sð Þ − x2 sð Þj jds

�����
�����

+ sup
ðt
0
G t, sð Þj j · k s, x1 sð Þð Þ − k s, x2 sð Þð Þj jds

����
����

≤
ξγ

Γ γ + 1ð Þ + Eck

� �
x1 − x2k k:

ð37Þ

As ξγ/ðΓðγ + 1ÞÞ + Eck < 1, Q is a contraction mapping.
Finally, we prove operator P is completely continuous.

Step 1. Operator P is continuous.
Let xn be a convergent sequence, xn ⟶ x ∈ C1ð½0, 1�,ℝÞ,

by Remark 8 and ðS2Þ; it follows that

Pxnð Þ tð Þ − Pxð Þ tð Þj j = 1 −
bβ
aβ

 !ð1
t
exp −aβ 1 − sð Þ� �

k s, xn sð Þð Þð
�����
− k s, x sð Þð ÞÞds + bβ

aβ

ð1
t
k s, xn sð Þð Þð

− k s, x sð Þð ÞÞds
����� ≤
ð1
t
G t, sð Þj j k s, xn sð Þð Þj

− k s, x sð Þð Þjds ≤ Eck xn − xk k:
ð38Þ

Since xn ⟶ x, we have Pxn ⟶ Px; then operator P is
continuous.

Step 2. Operator P is bounded on Uc.

Pxð Þ tð Þj j = − 1 −
bβ
aβ

 !ð1
t
exp −aβ 1 − sð Þ� �

k s, x sð Þð Þds
�����
−
bβ
aβ

ð1
t
k s, x sð Þð Þds

����� =
ð1
t
G t, sð Þk s, x sð Þð Þds

����
����

≤
ð1
t
G t, sð Þj j k s, x sð Þð Þj jds ≤ ET:

ð39Þ

Step 3. Operator P is equicontinuous in C1ð½0, 1�,ℝÞ.
Let t1, t2 ∈ ½0, 1� and t2 < t1, x ∈Uc; it follows that

Pxð Þ t1ð Þ − Pxð Þ t2ð Þj j = 1 −
bβ
aβ

 !ðt1
t2

exp −aβ 1 − sð Þ� �
k s, x sð Þð Þds

�����
+
bβ
aβ

ðt1
t2

k s, x sð Þð Þds
�����

≤ 1 −
bβ
aβ

 !ðt1
t2

exp −aβ 1 − sð Þ� ��� ��ds + bβ
aβ

ðt1
t2

ds

" #

· T ≤ T · t1 − t2j j:
ð40Þ

Then, operator P is equicontinuous.
From Step 1-Step 3 and the Arzela-Ascoli theorem, P is

completely continuous. By Theorem 9, P +Q has at least
one fixed point, since

Px +Qxð Þ tð Þ = Iγ0+x ξð Þ +
ð1
0
G t, sð Þk s, x sð Þð Þds: ð41Þ

From Theorem 7, Equation (4) has at least one solution.

4. Stability Results

Theorem 12. Suppose that (S1) and (S2) are satisfied; then
Equation (4) has the Hyers-Ulam stability on ½0, 1�.
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Proof. Since ðS1Þ and ðS2Þ hold, by Theorems 10 and 11,
Equation (4) has a unique solution. From Theorem 7, Equa-
tion (4) has the unique solution

x tð Þ = x 0ð Þ + 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, x sð Þð Þds

+
bβ
aβ

ðt
0
k s, x sð Þð Þds:

ð42Þ

Let yðtÞ satisfy yð0Þ = xð0Þ and be a solution of the
inequality

y′ tð Þ + CFD
β
y tð Þ − k t, y tð Þð Þ

��� ��� ≤ ε, t ∈ 0, 1½ �: ð43Þ

Set

G tð Þ = y′ tð Þ + CFD
β
y tð Þ − k t, y tð Þð Þ, t ∈ 0, 1½ �: ð44Þ

Then

y′ tð Þ + CFD
β
y tð Þ =G tð Þ + k t, y tð Þð Þ, t ∈ 0, 1½ �,
G tð Þj j ≤ ε, t ∈ 0, 1½ �:

ð45Þ

From the proof of Theorem 7, we conclude

y tð Þ = y 0ð Þ + 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

G sð Þ + k s, y sð Þð Þ½ �ds

+
bβ
aβ

ðt
0
G sð Þ + k s, y sð Þð Þ½ �ds:

ð46Þ

Then

y tð Þ − y 0ð Þ − 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, y sð Þð Þds
�����

−
bβ
aβ

ðt
0
k s, y sð Þð Þds

����� = 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

G sð Þds
�����

+
bβ
aβ

ðt
0
G sð Þds

����� ≤ 1 −
bβ
aβ

 !ðt
0
G sð Þj jds + bβ

aβ

ðt
0
G sð Þj jds

≤
ðt
0
G sð Þj jds ≤ ε:

ð47Þ

Thus

y tð Þ − x tð Þj j = y tð Þ − x 0ð Þ − 1 −
bβ
aβ

 !ðt
0
exp

�����
� −aβ t − sð Þ� �

k s, x sð Þð Þds − bβ
aβ

ðt
0
k s, x sð Þð Þds

�����
≤ y tð Þ − y 0ð Þ − 1 −

bβ
aβ

 !ðt
0
exp

�����
� −aβ t − sð Þ� �

k s, y sð Þð Þds − bβ
aβ

ðt
0
k s, y sð Þð Þds

�����
+ 1 −

bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, y sð Þð Þj

− k s, x sð Þð Þjds + bβ
aβ

ðt
0
k s, y sð Þð Þ − k s, x sð Þð Þj jds

≤ ε + ck

ðt
0
y sð Þ − x sð Þj jds:

ð48Þ

From the Gronwall-Bellman inequality, we conclude

y tð Þ − x tð Þj j ≤ exp
ðt
0
ckds

� �� �
· ε ≤ exp ckð Þ · ε: ð49Þ

From Definition 3, Equation (4) has the Hyers-Ulam sta-
bility.

Theorem 13. Suppose that (S1), (S2), and (S3) are satisfied; then
Equation (4) has the Hyers-Ulam-Rassias stability on ½0, 1�.

Proof. Since (S1) and (S2) hold, by Theorems 10 and 11,
Equation (4) has a unique solution. From Theorem 7, Equa-
tion (4) has the unique solution

x tð Þ = x 0ð Þ + 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, x sð Þð Þds

+
bβ
aβ

ðt
0
k s, x sð Þð Þds:

ð50Þ

Let yðtÞ satisfy yð0Þ = xð0Þ and be a solution of the
inequality

y′ tð Þ + CFD
β
y tð Þ − k t, y tð Þð Þ

��� ��� ≤ δ tð Þ, t ∈ 0, 1½ �: ð51Þ

Set

G tð Þ = y′ tð Þ + CFD
β
y tð Þ − k t, y tð Þð Þ, t ∈ 0, 1½ �: ð52Þ
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Then

y′ tð Þ + CFD
β
y tð Þ =G tð Þ + k t, y tð Þð Þ, t ∈ 0, 1½ �,
G tð Þj j ≤ δ tð Þ, t ∈ 0, 1½ �:

ð53Þ

From the proof of Theorem 7, we conclude

y tð Þ = y 0ð Þ + 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

G sð Þ + k s, y sð Þð Þ½ �ds

+
bβ
aβ

ðt
0
G sð Þ + k s, y sð Þð Þ½ �ds:

ð54Þ

Then by ðS3Þ, it follows that

y tð Þ − y 0ð Þ − 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, y sð Þð Þds
�����

−
bβ
aβ

ðt
0
k s, y sð Þð Þds

����� = 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

G sð Þds
�����

+
bβ
aβ

ðt
0
G sð Þds

����� ≤ 1 −
bβ
aβ

 !ðt
0
G sð Þj jds + bβ

aβ

ðt
0
G sð Þj jds

≤
ðt
0
G sð Þj jds ≤

ðt
0
δ sð Þds ≤ Lδ · δ tð Þ:

ð55Þ

Thus

y tð Þ − x tð Þj j = y tð Þ − x 0ð Þ − 1 −
bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, x sð Þð Þds
�����

−
bβ
aβ

ðt
0
k s, x sð Þð Þds

����� ≤ y tð Þ − y 0ð Þ − 1 −
bβ
aβ

 !ðt
0
exp

�����
� −aβ t − sð Þ� �

k s, y sð Þð Þds − bβ
aβ

ðt
0
k s, y sð Þð Þds

�����
+ 1 −

bβ
aβ

 !ðt
0
exp −aβ t − sð Þ� �

k s, y sð Þð Þ − k s, x sð Þð Þj jds

+
bβ
aβ

ðt
0
k s, y sð Þð Þ − k s, x sð Þð Þj jds ≤ Lδ · δ tð Þ + ck

ðt
0
y sð Þ − x sð Þj jds:

ð56Þ

From the Gronwall-Bellman inequality, we conclude

y tð Þ − x tð Þj j ≤ Lδ × δ tð Þ +
ðt
0
Lδ × δ sð Þ × ck exp

ðt
s
ckdt

� �� �
ds

≤ Lδ + Lδ
2ck exp ckð Þ� �

× δ tð Þ:
ð57Þ

From Definition 4, Equation (4) has the Hyers-Ulam-
Rassias stability on ½0, 1�.

5. Example

In this section, we give two examples to illustrate our main
results.

Example 1. Consider the following problem of the Caputo-
Fabrizio fractional differential equation of form

x′ tð Þ + CFD
1
3x tð Þ = e−t

xj j + 8 , t ∈ 0, 1½ �,

x 1ð Þ = I
1
2
0+x

1
4

� �
,

8>>><
>>>:

ð58Þ

and the following inequality

y′ tð Þ + CFD
1
3y tð Þ − e−t

yj j + 8

����
���� ≤ δ tð Þ, t ∈ 0, 1½ �: ð59Þ

Let

β = 1
3 , γ =

1
2 , ξ =

1
4 : ð60Þ

Then

M
1
3

� �
= 6
5 , a1

3
= 2, b1

3
= 1
2 , ð61Þ

since

k t, xð Þ = e−t

xj j + 8 , t, xð Þ ∈ 0, 1½ � ×ℝ: ð62Þ

Then, it follows that

k t, x1ð Þ − k t, x2ð Þj j = e−t
1

∣x1∣+8
−

1
∣x2∣+8

����
����

≤ e−t
1

x1j j + 8ð Þ x2j j + 8ð Þ
����

����∣x1 − x2∣

≤
e−t x1 − x2j j

64 ≤
1
64 x1 − x2j j:

ð63Þ

Hence, ck = 1/64.

Therefore, ðS1Þ and ðS2Þ are satisfied, ξγ/ðΓðγ + 1ÞÞ +
Eck = ð1/4Þ1/2/Γð1/2 + 1Þ + 3 × 1/64 < 1. By Theorems 10
and 11, Equation (4) has a unique solution

x tð Þ = x 0ð Þ + 3
4

ðt
0
exp −2 t − sð Þð Þ e−s

xj j + 8 ds +
1
4

ðt
0

e−s

xj j + 8 ds:

ð64Þ

Set δðtÞ = et ∈ Cð½0, 1�, ð0,+∞ÞÞ, Ð t0δðsÞds = Ð t0esds = et

− 1 ≤ et ; we conclude Lδ = 1 > 0.

7Journal of Function Spaces



Because yðtÞ satisfies the following inequality:

y′ tð Þ + CFD
1
3y tð Þ − e−t

∣y∣+8

����
���� ≤ δ tð Þ, t ∈ 0, 1½ �, ð65Þ

it follows that

y tð Þ − x 0ð Þ − 1 − b1/3
a1/3

� �ðt
0
exp −a1

3
t − sð Þ

 �
k s, y sð Þð Þds

����
−
b1/3
a1/3

ðt
0
k s, y sð Þð Þds

���� ≤ et:

ð66Þ

Because (S1), (S2), and (S3) are satisfied, by Theorem 13,
it follows that

y tð Þ − x tð Þj j ≤ Lδ + Lδ
2ck exp ckð Þ� �

· et ≤ 1 + 1
64 e

1
64

� �
· et:

ð67Þ

Consequently, the equation has the Hyers-Ulam-Rassias
stability.

Example 2. Consider the following problem of the Caputo-
Fabrizio fractional differential equation of form

x′ tð Þ + CFD
1
2x tð Þ = t

xj j + 8 , t ∈ 0, 1½ �,

x 1ð Þ = I
1
3
0+x

1
2

� �
,

8>>><
>>>:

ð68Þ

and the following inequality

y′ tð Þ + CFD
1
2y tð Þ − t

yj j + 8

����
���� ≤ ε, t ∈ 0, 1½ �: ð69Þ

Let

β = 1
2 , γ =

1
3 , ξ =

1
2 : ð70Þ

Then

M
1
2

� �
= 4
3 , a1

2
= 3, b1

2
= 1, ð71Þ

since

k t, xð Þ = t
∣x∣+8 , t, xð Þ ∈ 0, 1½ � ×ℝ: ð72Þ

Then, it follows that

k t, x1ð Þ − k t, x2ð Þj j = t
1

∣x1∣+8
−

1
∣x2∣+8

����
����

≤ t
1

x1j j + 8ð Þ x2j j + 8ð Þ
����

���� x1 − x2j j

≤
t x1 − x2j j

64 ≤
1
64 x1 − x2j j:

ð73Þ

Hence, ck = 1/64.

Therefore, (S1) and (S2) are satisfied, ξγ/ðΓðγ + 1ÞÞ +
Eck = ð1/2Þ1/3/Γð1/3 + 1Þ + 3 × 1/64 < 1. By Theorems 10
and 11, Equation (4) has a unique solution

x tð Þ = x 0ð Þ + 2
3

ðt
0
exp −3 t − sð Þð Þ s

xj j + 8 ds +
1
3

ðt
0

s
xj j + 8 ds:

ð74Þ

Set yðtÞ = et ∈ Cð½0, 1�, ð0,+∞ÞÞ, and fix ε = 9/32; it
follows that

y′ tð Þ + CFD
1
2y tð Þ − t

∣y∣+8

����
���� ≤ 9

32 = ε, t ∈ 0, 1½ �: ð75Þ

Because (S1) and (S2) are satisfied, by Theorem 12, we
conclude

y tð Þ − x tð Þj j ≤ exp 1
64

� �
· 9
32 = exp 1

64

� �
· ε: ð76Þ

Consequently, the equation has the Hyers-Ulam
stability.

6. Conclusions

In this article, we established the Ulam stability of the
Caputo-Fabrizio fractional differential equation with an
integral boundary condition by the Laplace transform
method. Krasnoselskii’s fixed point theorem and Banach
fixed point theorem are employed to prove the existence
and uniqueness results of the solution for the Caputo-
Fabrizio fractional differential equation. Besides, we con-
structed a solution for the equation via new Green’s function
Gðt, sÞ. The Ulam stability of the Caputo-Fabrizio fractional
differential equation is used to study unusual irregularities
and nonlinearities in wave dynamics and liquids motions.
Because the Ulam stability is widely used, we will study the
Ulam stability of the ABC fractional differential equation
in the future study.
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