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In this work, we applied the fractional reduced differential transform method (FRDTM) to find the exact solutions of the
three-dimensional fractional Helmholtz equation (FHE) and compared our outcomes with the tenth-order approximate
solutions for diverse fractional orders. Different values of fractional derivatives are signified explicitly in three dimensions.
Outcomes are denoted in the tables for nonfractional exact and approximate solutions and fractional approximate solutions
for different fractional orders. Two examples are given to prove the proficiency of the suggested method, to resolve diverse
categories of fractional partial differential equations.

1. Introduction

The Helmholtz equation is a second-order elliptic partial dif-
ferential equation of potential theory that can be consequent
from the wave equation. Typically we write it as

∇2ψ + λ2ψ = 0, ð1Þ
where ∇2 is the Laplace operator and λ is the wavenumber.
The Helmholtz equation is a generalization of Laplace’s
equation, and when λ = 0, the Helmholtz equation is identi-
cal to Laplace’s equation.

In a 2D nonhomogeneous isotropic medium whose
speed is c, the wave solution is ψðx, yÞ corresponding to a
harmonic source f ðx, yÞ vibrating at a definite fixed fre-
quency ω > 0 a suitable scalar Helmholtz equation on an
assumed region W

∂2

∂x2
ψ x, yð Þ + ∂2

∂y2
ψ x, yð Þ + λψ x, yð Þ = −f x, yð Þ, ð2Þ

where ψðx, yÞ is a necessarily differentiable function on the
boundary of W, and f ðx, yÞ is a certain function, λ > 0 is a

constant number, and
ffiffiffi
λ

p
= ω/c is the wavenumber, with

wavelenght 2π/
ffiffiffi
λ

p
[1].

If the Helmholtz equation models a physical reality, then
it must have a unique solution. Helmholtz equation is essen-
tial for countless applications in real life. Some of them are as
follows: it is used in seismology which is the scientific study
of earthquakes and elastic waves, tsunamis, medical imaging,
volcanic eruptions, and electromagnetism; in the science of
optics, the Gibbs-Helmholtz equation is used in the calcula-
tion of changes in enthalpy using the change in Gibbs energy
when the temperature is varied at constant pressure; and
CHELS, a combined Helmholtz equation-least squares
abbreviated as CHELS, this method is used for reconstructing
acoustic radiation from an arbitrary object.

Abuasad et al. [2] established exact solutions for two-
dimensional FHE using FRDTM. Ghaffar et al. [3] employed
a higher-order compact difference (HOC) scheme with
uniform mesh sizes in different coordinate directions to
discretize a two- and three-dimensional Helmholtz equation.
Gupta et al. [4] created the approximate analytical solutions
of a multidimensional partial differential equation of
Helmholtz equation with space fractional derivatives.
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The three-dimensional Helmholtz equation has fasci-
nated the attention of numerous researchers; for instance,
Li [5] offered a fast singular boundary method (SBM) for
the three-dimensional (3D) Helmholtz equation, Li et al.
[6] presented a regularized approach for solving the near-
boundary and boundary solutions for 3D Helmholtz
equation with wideband wave numbers by the boundary
collocation method, and Bespalov et al. [7] examined an
adaptive boundary element method for the weakly singular
and hypersingular integral equations for the 2D and 3D
Helmholtz problem. Wang et al. [8] introduced a new finite
difference scheme for solving the Helmholtz equation in
polar and spherical coordinates. Qu et al. [9] presented a fast
multipole accelerated singular boundary method (SBM) for
the solution of the large-scale three-dimensional Helmholtz
equation at low frequency.

Fractional derivative (FD) is a generalization of integer
derivative, the FD generalizes the order of differentiation
from integer to real or even to complex, and a series of
phenomena can be defined by FD [10]. There is no doubt
that fractional calculus has established an original mathe-
matical method of solution for innumerable applications in
diverse branches of sciences [11]. Fractional calculus has
played an accurate central part in countless applications,
e.g., mechanics, interaction, ecology, finances, and signal
and image processing. The main subjects of fractional calcu-
lus contain anomalous diffusion, vibration, and control and
continuous-time random walk [12]. Recently, several books
[13–16] on fractional calculus were available, and in all of
them, its history is addressed in one way or another.
Podliubny [15] presented a review of several applications
that have developed from fractional calculus; for instance,
he indicated that the use of fractional derivatives for the
mathematical modeling of viscoelastic materials is quite
natural. Innumerable forms of fractional derivatives were
considered: Riemann-Liouville, Caputo, Hadamard, Erdélyi-
Kober, Grünwald-Letnikov, Marchaud, and Riesz are just
samples. The greatest often used definitions for the common
fractional differ-integral are the Grünwald-Letnikov defini-
tion, the Riemann-Liouville, and the Caputo definition.
Various techniques were intended for explaining fractional
differential equations, for instance, monotone iterative
method [17], collocation method [18], auxiliary equation
method [19], trapezoidal method [20], exponential ratio-
nal function method [21], first integral method [22],
homotopy analysis method [23], local fractional homo-
topy perturbation method [24], fractional variational iter-
ation method [25], and modified Laplace decomposition
method [26].

Vargas [27] presents a new meshless technique for
solving a class of fractional differential equations based on
moving least squares. Hashim et al. [28] study a class of
second-order delay fractional differential equations with a
variable-order Caputo derivative. Alesemi et al. [29] applied
a new iterative transform technique and homotopy pertur-
bation transform method to calculate the fractional-order
Cauchy-reaction diffusion equation solution. Alesemi et al.
[30] presented an HPTM and a VITM for studying the
fractional-order nonlinear system of the unsteady flow of a

polytropic gas. Iqbal et al. [31] investigated the numerical
solution of the Fornberg-Whitham equations, involving
fractional-order derivatives. Nonlaopon et al. [32] pre-
sented the Elzaki transform decomposition method to
solve the time-fractional Swift–Hohenberg equations.
Naeem et al. [33] used the new iterative transform method
and the HPTM to solve fractional-order equal-width equa-
tions. Alshammari et al. [34] proposed residual power
series (RPS) to find the numerical solution of a class of
fractional Bagley–Torvik problems (FBTP) arising in a
Newtonian fluid. Agarwal et al. [35] solved fractional-
order parabolic equations using an innovative analytical
technique.

In actual applications, due to inhomogeneity, nonlinear-
ities, and general boundary conditions, exact solutions are
remarkable in numerous divisions of solid mechanics,
physics, motion, and fluid mechanics. Consequently, most
scholars are satisfied with the approximate solutions to the
problems facing them [36].

FRDTM was announced by Keskin and Oturanc [37]
to generalize the reduced differential transform method
(RDTM) from integer to fractional differential equations,
which is a general method of differential transform
method (DTM) to decrease the complexity and computa-
tions. FRDTM involves four core steps: first of all, we have
to find the fractional reduced transformed function, then
find the inverse of a fractional reduced transformed func-
tion, after that find the approximate solution, finally with
the help of some special functions we try to find the exact
solution. These four steps will be enlightened in detail in
Section 3. Abuasad et al. [38] presented a novel modifica-
tion called m-FRDTM to catch the solutions for MT-
TFDEs.

Saravanan and Magesh [39] linked two analytical
methods: FRDTM vs fractional variational iteration method
(FVIM) to catch numerical solutions of the linear and
nonlinear Fokker-Planck partial differential equations with
space and time-fractional derivatives. Arshad et al. [40]
presented a general form of FRDTM to solve wave-like
problems, Zakharov–Kuznetsov equation, and couple BE.
Abuasad et al. [41] obtained the exact and approximate
solutions of higher-dimensional time-fractional diffusion
equations using FRDTM.

The significance of this study is obtaining the exact
solution for the 3D factional Helmholtz equation by a
comparatively original technique and matching the exact
solutions of non-FHE with the tenth-order approximate
solutions for diverse values of the fractional derivatives.
The different thing in this study is the description of
FRDTM for three-dimensional FHE with modest and suc-
cessive steps,; thus, this research can be used as a basic
reference for researchers to understand this method and
apply it in different applications to obtain exact and
approximate solutions in very simple steps. This study is
scheduled as providing simple definitions and properties
of fractional calculus in Section 2. Section 3 presents the
suggested method, while Section 4 offers the exact solu-
tions of two examples of 3D FHE. We close the paper in
Section 5 by main results.
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2. Basic Definitions

2.1. Caputo Fractional Derivative. Assume that a ∈ℝ and
then the CFD ðcDα

a+yÞðxÞ of order α ∈ℝ+ is ([42])

cDα
a+yð Þ xð Þ = 1

Γ n − αð Þ
ðx
a

y nð Þ tð Þ
x − tð Þα−n+1 dt, ð3Þ

for ðn − 1 < α < n ; x ≥ aÞ, n ∈ℕ. We represent the CFD as
Dα
x f ðxÞ.

3. FRDTM for 3 Variables

Now, let us give some basic properties of FRDTM [40, 43–45].
Consider a function of 3 variables f ðx, y, zÞ, such that

f x, y, zð Þ =m1 xð Þm2 yð Þm3 zð Þ: ð4Þ

From the assets of DTM, and inspired by the components
of the form xαjyi1zi2 , we can describe the general solution
function f ðx, y, zÞ as an infinite linear combination of such
components

f x, y, zð Þ = 〠
∞

j=0
m1 jð Þxαj 〠

∞

i1=0
m2 i1ð Þyi1 〠

∞

i2=0
m2 i2ð Þzi2

= 〠
∞

j=0
〠
∞

i1=0
〠
∞

i2=0
F j, i1, i2ð Þxαjyi1zi2 ,

ð5Þ

where Fðj, i1, i2Þ =m1ðjÞm1ði1Þm2ði2Þ is the spectrum of
f ðx, y, zÞ.

Furthermore, the lowercase f ðx, y, zÞ represents the orig-
inal function, though its fractional reduced transformed
function is denoted by the uppercase Fkðy, zÞ, which is
termed the T function. Let f ðx, y, zÞ be analytical and con-
tinuously differentiable with respect to 3 variables x, y, and
z in the domain of attention, and then, the FRDTM in 3
dimensions of f ðx, y, zÞ is

Fk y, zð Þ = 1
Γ kα + 1ð Þ Dαk

x f x, y, zð Þð Þ
h i

x=x0
, ð6Þ

where k = 0, 1, 2,⋯.
The inverse FRDTM of Fkðy, zÞ is

f x, y, zð Þ≔ 〠
∞

k=0
Fk y, zð Þ x − x0ð Þkα: ð7Þ

From (6) and (7), we have

f x, y, zð Þ = 〠
∞

k=0

1
Γ kα + 1ð Þ Dαk

x f x, y, zð Þð Þ
h i

x=x0
x − x0ð Þkα:

ð8Þ

In particular, for x0 = 0, the above equation becomes

f x, y, zð Þ = 〠
∞

k=0

1
Γ kα + 1ð Þ Dαk

x f x, y, zð Þð Þ
h i

x=0
xkα: ð9Þ

The inverse transformation of the set of values
fFkðy, zÞgnk=0 provides an approximate solution as

~f n x, y, zð Þ = 〠
n

k=0
Fk y, zð Þxαk, ð10Þ

and n is the order of the approximate solution. Then, the
exact solution is

f x, y, zð Þ = lim
n⟶∞

~f n x, y, zð Þ: ð11Þ

Table 1 represents selected properties of FRDTM, the
proofs of these properties can be found in [40, 46–48], wher-
ever δða − bÞ is

δ a − bð Þ =
1, a = b

0, a ≠ b,

(
ð12Þ

where f = f ðx, y, zÞ, u = uðx, y, zÞ, Fk = Fkðy, zÞ, andUk =Uk
ðy, zÞ:

4. Computational Illustrations

To show the efficiency of this method, we consider two
homogeneous fractional 3D-Helmholtz equations subject
to appropriate initial conditions (I.C.). We can find the exact
solutions with the help of some special functions. The exact
and approximate solutions for fractional and nonfractional
3D-Helmholtz equations are represented numerically and
graphically for different values of the fractional order (α)
to show the importance and effectiveness of the proposed
method.

4.1. First Application. Let us study this 3D FHE

Dα
xu x, y, zð Þ + ∂2

∂y2
u x, y, zð Þ + ∂2

∂z2
u x, y, zð Þ − u x, y, zð Þ = 0,

ð13Þ

Table 1: Properties of FRDTM for 3 variables.

Original function T-function

1. f = c1u ± c2v Fαk = c1Uαk ± c2Vαk

2. f = uv Fαk =〠k

i=0UαiVα k−ið Þ

3. f =Dmα
t u Fαk = Γ α k +mð Þ + 1ð Þ/Γ kα + 1ð Þð ÞUα k+mð Þ

4. f = ∂hu/∂xhi Fαk = ∂hUαk/∂xhi , i = 1, 2,⋯, n
5. f = xmi t

r Fkα = xmi δ αk − rð Þ, i = 1, 2,⋯, n
6. f = xmi t

ru Fαk = xmi ∑
k
i=0δ αi − rð ÞUα k−rð Þ, i = 1, 2,⋯, n
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and 1 < α ≤ 2, subject to the I.C.

u 0, y, zð Þ = y + z: ð14Þ

By the rules from Table 1 to Eq. (13), we can find the
recurrence relation:

Uk+1 y, zð Þ = Γ kα + 1ð Þ
Γ α k + 1ð Þ + 1ð Þ

� Uk y, zð Þ − ∂2Uk y, zð Þ
∂y2

−
∂2

∂z2
Uk y, zð Þ

 !
,

ð15Þ

where k = 0, 1, 2,⋯.
By (15), we find the inverse transform coefficients of

xkα as

U0 = y + z,

U1 =
y + z

Γ α + 1ð Þ ,

U2 =
y + z

Γ 2α + 1ð Þ ,

U3 =
y + z

Γ 3α + 1ð Þ ,⋯,

Uk =
y + z

Γ 1 + kαð Þ , where k ≥ 0:

ð16Þ

Similarly, the differential inverse transform of
fUkðyÞg∞k=0 gives the series solution

u x, y, zð Þ = 〠
∞

k=0
Uk y + zð Þxkα

= y + z + y + z
Γ 1 + αð Þ x

α + y + z
Γ 1 + 2αð Þ x

2α

+ y + z
Γ 1 + 3αð Þ x

3α+⋯,

ð17Þ

and in compact form, we write the series as

u x, y, zð Þ = y + zð Þ〠
∞

k=0

xkα

Γ 1 + kαð Þ : ð18Þ

By the Mittag-Leffler function (M-L), we can catch the
exact solution of Eq. (13) with respect to I.C. (14)

u x, y, zð Þ = y + zð ÞEα xαð Þ, ð19Þ

such that 1 < α ≤ 2, EαðxÞ is the M-L function. If α = 2, then

E2 x2
� �

= 〠
∞

k=0

x2k

Γ 2k + 1ð Þ = 〠
∞

k=0

x2k

2kð Þ! = cosh x: ð20Þ

Then, the exact solution of nonfractional differential
equation for Eq. (13); ðα = 2Þ with respect to the I.C. (14) is

u x, y, zð Þ = y + zð Þ cosh x: ð21Þ

The tenth-order approximate solution is given by:

u10 x, y, zð Þ = y + z + xα y + zð Þ
Γ α + 1ð Þ + x2α y + zð Þ

Γ 2α + 1ð Þ
+ x3α y + zð Þ
Γ 3α + 1ð Þ + x4α y + zð Þ

Γ 4α + 1ð Þ + x5α y + zð Þ
Γ 5α + 1ð Þ

+ x6α y + zð Þ
Γ 6α + 1ð Þ + x7α y + zð Þ

Γ 7α + 1ð Þ + x8α y + zð Þ
Γ 8α + 1ð Þ

+ x9α y + zð Þ
Γ 9α + 1ð Þ + x10α y + zð Þ

Γ 10α + 1ð Þ :

ð22Þ

Table 2 presents the numerical solutions for u10ðx, y, zÞ
by FRDTM at different values of α and a comparison of
absolute errors at α = 2 for FRDTM between exact solution
and tenth-order approximate solution. Figure 1 depicts the
three-dimensional exact and the tenth-order approximate
solution of FRDTM for nonfractional order (α = 2), while
Figure 2 depicts the approximate solutions of FRDTM
for α = 1:8 and α = 1:4. Figures 3 and 4 depict the absolute

Table 2: Exact solution of nonfractional order and tenth-order approximate solutions of FRDTM.

x
Nonfractional order (α = 2) Fractional order

z uExact u10 uExact − u10j j α = 1:6 α = 1:4 α = 1:2

0.2

0.2 0.714047 0.714047 0 0.737811 0.760876 0.797191

0.5 0.789338 0.789338 1:11022e − 16 0.87164 0.936162 1.02565

0.8 0.936204 0.936204 1:11022e − 16 1.08973 1.20119 1.35002

0.5

0.2 1.02007 1.02007 0 1.05402 1.08697 1.13884

0.5 1.12763 1.12763 0 1.2452 1.33737 1.46522

0.8 1.33743 1.33743 0 1.55675 1.71599 1.9286

0.8

0.2 1.32609 1.32609 2:22045e − 16 1.37022 1.41306 1.4805

0.5 1.46591 1.46591 0 1.61876 1.73859 1.90478

0.8 1.73867 1.73867 2:22045e − 16 2.02378 2.23079 2.50718
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error between the exact solution and tenth-order approxi-
mate solutions for different values of α; we note that the abso-
lute error between the tenth-order approximate solutions
and the exact solution becomes small as alpha becomes large:
approximately less than 4 × 10−8 when α = 1 and less than
8 × 10−16 when α = 2.

4.2. Second Application. Let us study this 3D FHE, with x-
space fractional derivative:

Dα
xu x, y, zð Þ + ∂2

∂y2
u x, y, zð Þ + ∂2

∂z2
u x, y, zð Þ + 5u x, y, zð Þ = 0,

ð23Þ

1 < α ≤ 2, subject to the I.C.

u 0, y, zð Þ = y + z: ð24Þ

By using the rules from Table 1 to Eq. (23), we find the
recurrence relation

Uk+1 y, zð Þ = Γ kα + 1ð Þ
Γ α k + 1ð Þ + 1ð Þ

� −5Uk y, zð Þ − ∂2Uk y, zð Þ
∂y2

−
∂2

∂z2
Uk y, zð Þ

 !
,
ð25Þ

where k = 0, 1, 2,⋯.

0.0

0.5

1.0
0.0

0.5

1.0

0.5

1.0
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(a)

0.0

0.5

1.0
0.0

0.5

1.0

1

2

3

(b)

Figure 2: The FRDTM solutions uðx, y, zÞ: (a) α = 1:8 and (b) α = 1:4.
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Figure 1: The FRDTM solutions uðx, y, zÞ: (a) nonfractional exact α = 2 and (b) nonfractional tenth-order approximate α = 2.
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From (25), we can find the inverse transform coefficients
of xkα as

U0 = y + z,

U1 = −
5 y + zð Þ
Γ α + 1ð Þ ,

U2 =
25 y + zð Þ
Γ 2α + 1ð Þ ,

U3 = −
125 y + zð Þ
Γ 3α + 1ð Þ ,⋯,

Uk =
−5ð Þk y + zð Þ
Γ 1 + kαð Þ , where k ≥ 0: ð26Þ

0.0

0.5

1.0

x

0.0

0.5

1.0

z

0

3.×10–13

2.×10–13

1.×10–13

(a)

0.0

0.5

1.0 0.0

0.5

1.0

0

1.5×10–10

1.×10–10

5.×10–10

(b)

Figure 4: The absolute error between exact solution and tenth-order approximate solution: ðaÞ α = 1:4 and ðbÞ α = 1:2.
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0.5

1.0

0
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Figure 3: The absolute error between exact solution and tenth-order approximate solution: ðaÞ α = 2 and ðbÞ α = 1:6.
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In the similar way, the differential inverse transform of
fUkðyÞg∞k=0 gives the series solution

u x, y, zð Þ = 〠
∞

k=0
Uk y + zð Þxkα

= y + z −
5 y + zð Þ
Γ α + 1ð Þ x

α + 25 y + zð Þ
Γ 2α + 1ð Þ x

2α

−
125 y + zð Þ
Γ 3α + 1ð Þ x

3α+⋯:

ð27Þ

In compact form, we write the series as

u x, y, zð Þ = y + zð Þ〠
∞

k=0

−5xαð Þk
Γ 1 + kαð Þ : ð28Þ

The exact solution of Eq. (23) with respect to the I.C. (24):

u x, y, zð Þ = y + zð ÞEα −5xαð Þ, ð29Þ

1 < α ≤ 2. If α = 2,

E2 −5x2
� �

= cos
ffiffiffi
5

p
x

� �
: ð30Þ

Now, the exact solution of nonfractional differential equa-
tion ðα = 2Þ for Eq. (23) subject to (24) is

u x, y, zð Þ = y + zð Þ cos
ffiffiffi
5

p
x

� �
: ð31Þ

0.0

0.5

1.0
0.0

0.5

1.0

0

1

(a)

0.0

0.5

1.0
0.0

0.5

1.0

0

1

(b)

Figure 5: The FRDTM solutions uðx, y, zÞ: (a) nonfractional exact α = 2 and (b) nonfractional tenth-order approximate α = 2.

Table 3: Exact solution of nonfractional order and tenth-order approximate solutions by FRDTM.

x
Nonfractional order (α = 2) Fractional order

z uExact u10 uExact − u10j j α = 1:8 α = 1:4 α = 1:2

0.2

0.2 0.631159 0.631159 0 0.588705 0.442158 0.345033

0.5 0.306216 0.306216 5:55112e − 17 0.200098 0.0445607 0.0345265

0.8 -0.151434 -0.151434 2:77556e − 16 -0.209474 -0.130004 -0.0476061

0.5

0.2 0.901656 0.901656 0 0.841007 0.631655 0.492904

0.5 0.437451 0.437451 5:55112e − 17 0.285854 0.0636582 0.0493236

0.8 -0.216334 -0.216334 0 -0.299248 -0.18572 -0.0680088

0.8

0.2 1.17215 1.17215 0 1.09331 0.821151 0.640775

0.5 0.568687 0.568687 0 0.37161 0.0827556 0.0641206

0.8 -0.281234 -0.281234 5:55112e − 16 -0.389023 -0.241436 -0.0884114
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The 10 − th order approximate solution is given by:

u10 x, y, zð Þ = y + z −
5xα y + zð Þ
Γ α + 1ð Þ + 25x2α y + zð Þ

Γ 2α + 1ð Þ
−
125x3α y + zð Þ
Γ 3α + 1ð Þ + 625x4α y + zð Þ

Γ 4α + 1ð Þ
−
3125x5α y + zð Þ
Γ 5α + 1ð Þ + 15625x6α y + zð Þ

Γ 6α + 1ð Þ

−
78125x7α y + zð Þ

Γ 7α + 1ð Þ + 390625x8α y + zð Þ
Γ 8α + 1ð Þ

−
1953125x9α y + zð Þ

Γ 9α + 1ð Þ + 9765625x10α y + zð Þ
Γ 10α + 1ð Þ : ð32Þ

Table 3 shows the numerical solutions for u10ðx, y, zÞ by
FRDTM at different values of α and a comparison of absolute
errors at α = 2 for FRDTM between the exact solution and
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Figure 7: The absolute error between exact solution and tenth-order approximate solution: (a) α = 2 and (b) α = 1:8.
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Figure 6: The FRDTM solutions uðx, y, zÞ: (a) α = 1:8 and (b) α = 1:4.
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tenth-order approximate solution. Figure 5 depicts the three-
dimensional exact and the tenth-order approximate solution
of FRDTM for nonfractional order (α = 2). Figure 6 represents
the approximate solutions of FRDTM for α = 1:8 and α = 1:4.
Figures 7 and 8 depict the absolute error between the exact
solution and tenth-order approximate solutions for different
values of α; we note that the absolute error between the
tenth-order approximate solutions and the exact solution
becomes small as alpha becomes large: approximately less
than 4 × 10−8 when α = 1 and less than 8 × 10−16 when α = 2.

5. Conclusion

In brief, the exact solution of the 3D FHE has been established
via FRDTM. In the introduction, the definition of the Helm-
holtz equation and its most vital applications in science were
offered. After that, the fractional derivatives were discussed,
and the most essential research and methods used to solve
the fractional differential equations are presented. Then, the
significance of the research and its features was debated. The
method for three variables was submitted in a simplified man-
ner, and then, this method was applied to two homogeneous
3D-FHE subjects to proposed initial conditions.

This method is a very effective approach for resolving
diverse categories of fractional partial differential equations
in different dimensions and finding exact solutions not only
approximate solutions gives this method a significant advan-
tage over other methods of solving fractional differential
equations.
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