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The purpose of this work is to derive sufficient conditions for the oscillation of all solutions of the third-order functional dynamic
equation fp2ðξÞϕγ2ð½p1ðξÞϕγ1ðyΔðξÞÞ�

ΔÞgΔ + pðξÞϕβðyðgðξÞÞÞ = 0, on a time scale T . In addition, we present some Hille-type
conditions for generalized third-order dynamic equations that improve and extend significant contributions reported in the
literature without imposing time-scale restrictions. An example is given to demonstrate the essential results.

1. Introduction

Oscillatory criteria of solutions to dynamic equations on
time scales are gaining interest due to their applications in
engineering and natural sciences. Eventually, this kind of
study aids in comprehending the geometric behavior of solu-
tions. We are interested in the oscillatory and asymptotic
behavior of the third-order functional dynamic equation in
the form of

p2 ξð Þϕγ2 p1 ξð Þϕγ1 yΔ ξð Þ� �h iΔ� �� �Δ

+ p ξð Þϕβ y g ξð Þð Þð Þ = 0,

ð1Þ

on an arbitrary time scale T with sup T =∞, where
ξ ∈ ξ0,∞ÞT ≔ ½ξ0,∞Þ ∩ T , ξ0 ≥ 0, ξ0 ∈ T , ϕθðuÞ≔ jujθ sgn u,
θ > 0, γ1, γ2, β > 0, p ∈ CrdðT ,ℝ+Þ, and g ∈ CrdðT , TÞ such

that limξ⟶∞gðξÞ =∞ and gΔðξÞ ≥ 0 on T and pi ∈ Crd
ðT ,ℝ+Þ, i = 1, 2, such that

ð∞
ξ0

Δτ

p1/γii τð Þ
=∞,i = 1, 2: ð2Þ

By a solution of equation (1), we mean a nontrivial
real–valued function y ∈ C1

rd½Ty,∞Þ
T

for some Ty ≥ ξ0

for a positive constant ξ0 ∈ T such that p1ðξÞϕγ1ðyΔðξÞÞ
, p2ðξÞϕγ2ð½p1ðξÞϕγ1ðyΔðξÞÞ�

ΔÞ ∈ C1
rd½Ty ,∞Þ

T
, and yðξÞ sat-

isfies equation (1) on ½Ty,∞Þ
T
, where Crd is the space of

right-dense continuous functions. Solutions that disappear
near infinity will not be considered. A solution y of (1) is oscil-
latory if it is neither eventually positive nor eventually nega-
tive; otherwise, it is nonnoscillatory. We presume that the
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reader has a basic understanding of time scales and notation;
see [1–4] for providing a great introduction to time scale
calculus.

Hille [5] investigated the oscillatory behavior of second-
order linear differential equation

y′′ ξð Þ + p ξð Þy ξð Þ = 0, ð3Þ

and shown that if

liminf
ξ⟶∞

ξ
ð∞
ξ

p τð Þdτ > 1
4 , ð4Þ

then every solution of (3) is oscillatory. The results in [6–13]
generalized the Hille-type criterion for different forms of
second-order dynamic equations. Regarding third-order
dynamic equations, [14–18, 32] established several Hille-
type oscillation criteria for different forms of third-order
dynamic equations under some restrictive times, which
ensure that the solutions are either oscillatory or nonoscilla-
tory and converge to a finite limit under various restrictive
conditions. Recently, Hassan et al. [19] improved the Hille-
type criteria in [14–18, 32] for equation (1) with β = γ≔ γ1
γ2, see ([19], in Discussions and Conclusions) for a good
comparison between these results. Some of these results in
[19] are as follows.

Theorem 1 (see [19]). Assume that β = γ≔ γ1γ2, every
solution of equation (1) is either oscillatory or convergent if

(1)

liminf
ξ⟶∞

Hγ2
1 ξ, ξ0ð Þ

ð∞
ξ

H2 ψ τð Þ, ξ0ð Þ
H1 σ τð Þ, ξ0ð Þ
� �γ2

p τð ÞΔτ > γ
γ2
2

lγ2 1−γ2ð Þ γ2 + 1ð Þγ2+1
, 0 < γ2 ≤ 1:

ð5Þ

(2)

liminf
ξ⟶∞

Hγ2
1 ξ, ξ0ð Þ

ð∞
ξ

H2 ψ τð Þ, ξ0ð Þ
H1 τ, ξ0ð Þ

� �γ2

p τð ÞΔτ > γ
γ2
2

lγ2 γ2−1ð Þ γ2 + 1ð Þγ2+1
, γ2 ≥ 1,

ð6Þ

where

ψ ξð Þ≔min ξ, g ξð Þf g and l≔ liminf
ξ⟶∞

H1 ξ, ξ0ð Þ
H1 σ ξð Þ, ξ0ð Þ ,

Hi v, uð Þ≔ ϕγi−1

ðv
u
ϕ−1γi−1

Hi−1 τ, uð Þ
pi−1 τð Þ

� �
Δτ

� �
, i = 1, 2, 3,

ð7Þ

with

H0 v, uð Þ≔ 1

p1/γ22 vð Þ
, p0 = γ0 = 1: ð8Þ

The reader is directed to papers [20–33] as well as the
sources listed therein.

Contrary to [14–16, 19], we are concerned in this paper
in deducing sufficient oscillation criteria that guarantee that
all solutions of nonlinear third-order dynamic equation (1)
are oscillatory when β = γ and gðξÞ ≤ ξ without imposing
restrictive on the time scales. This solves an open problem
posed in [1] (Remark 3.3). Furthermore, we will propose
certain Hille-type conditions for generalized third-order
dynamic equation (1) for the cases β ≥ γ,β ≤ γ,gðξÞ ≤ ξ,
and gðξÞ ≤ ξ that improve and extend relevant significant
contributions reported in [14–16, 18, 19] without extra
imposing time-scale constraints. All functional inequalities
reported in this paper are considered to hold eventually, that
is, for all sufficiently large ξ.

2. Main Results

Throughout this paper, we let

α≔ lllβ, β ≥ γ, γ, β ≤ γ,f ð9Þ

y i½ � ξð Þ≔ pi ξð Þϕγi y i−1½ � ξð Þ
h iΔ� �

, i = 1, 2, withy 0½ � ξð Þ = y:

ð10Þ

Before stating the main results, we will present some
preliminary lemmas to aid in the proving of the main results.

Lemma 2. Assume that equation (1) has a solution y such
that

−1ð Þiy i½ � ξð Þ > 0, i = 0, 1, 2, on ξ0,∞½ ÞT : ð11Þ

Then, for v ∈ u,∞ÞT⊆ ξ0,∞ÞT ,

ϕγ y uð Þð Þ
y 2½ � vð Þ ≥Hγ2

2 u, vð Þ: ð12Þ

Proof. Suppose, without losing generality, that yðgðξÞÞ > 0
on ½ξ0,∞ÞT . From (1) and (10), we have for ½ξ0,∞ÞT ,

y 2½ � ξð Þ
� 	Δ

= −p ξð Þϕβ y g ξð Þð Þð Þ < 0: ð13Þ

From (13), we get for u ≤ τ ≤ v and u, τ, v ∈ ½ξ0,∞ÞT ,

y 1½ � vð Þ − y 1½ � τð Þ =
ðv
τ

y 2½ � ωð Þ
� 	1/γ2

H0 ω, τð ÞΔω ≥ y 2½ � vð Þ
� 	1/γ2ðv

τ

H0 ω, τð ÞΔω

= y 2½ � vð Þ
� 	1/γ2

H1 v, τð Þ:

ð14Þ

Therefore,

−y 1½ � τð Þ ≥ y 2½ � vð Þ
� 	1/γ2

H1 v, τð Þ: ð15Þ
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So,

−yΔ τð Þ ≥ y 2½ � vð Þ
� 	1/γ H1 v, τð Þ

p1 τð Þ
� �1/γ1

: ð16Þ

Integrating the previous inequality with respect to τ
from u to v yields that

y uð Þ − y vð Þ ≥ y 2½ � vð Þ
� 	1/γðv

u

H1 v, τð Þ
p1 τð Þ

� �1/γ1
Δτ = y 2½ � vð Þ

� 	1/γ
H1/γ1

2 u, vð Þ:

ð17Þ

Thus,

yγ uð Þ ≥ y 2½ � vð ÞHγ2
2 u, vð Þ: ð18Þ

Thus, (12) holds for u, v ∈ ξ0,∞ÞT . The proof is now
complete.

Lemma 3. Assume that equation (1) has a solution y such
that

y i½ � ξð Þ > 0, i = 0, 1, 2, on ξ0,∞½ ÞT , ð19Þ

then for v ∈ ðu,∞ÞT⊆ ξ0,∞ÞT ,

y 1½ � vð Þ
H1 v, uð Þ
� �Δv

< 0, ð20Þ

ϕγ2 y 1½ � vð Þ� �
y 2½ � vð Þ >Hγ2

1 v, uð Þ, ð21Þ

ϕγ y vð Þð Þ
y 2½ � vð Þ >Hγ2

2 v, uð Þ, ð22Þ

and

ϕγ1 y vð Þð Þ
y 1½ � vð Þ > H2 v, uð Þ

H1 v, uð Þ : ð23Þ

Proof. Suppose, without losing generality, that yðgðξÞÞ > 0
on ½ξ0,∞ÞT . By dint of (13), ðy½2�ðξÞÞΔ < 0 on ½ξ0,∞ÞT .
Therefore,

y 1½ � vð Þ > y 1½ � vð Þ − y 1½ � uð Þ =
ðv
u
ϕ−1γ2 y 2½ � τð Þ
� 	

H0 τ, uð ÞΔτ

≥ ϕ−1γ2 y 2½ � vð Þ
� 	ðv

u
H0 τ, uð ÞΔτ

= ϕ−1γ2 y 2½ � vð Þ
� 	

H1 v, uð Þ:
ð24Þ

Thus, (21) holds for u, v ∈ ξ0,∞ÞT . From (24), we have

yΔ vð Þ > ϕ−1γ y 2½ � vð Þ
� 	 H1 v, uð Þ

p1 vð Þ
� �1/γ1

: ð25Þ

Replacing v by s in (25) and integrating with respect to s
from u to v gives

y vð Þ ≥
ðv
u
ϕ−1γ y 2½ � τð Þ
� 	 H1 τ, uð Þ

p1 τð Þ
� �1/γ1

Δτ

≥ ϕ−1γ y 2½ � vð Þ
� 	ðv

u

H1 τ, uð Þ
p1 τð Þ

� �1/γ1
Δτ

= ϕ−1γ y 2½ � vð Þ
� 	

H1/γ1
2 v, uð Þ:

ð26Þ

Thus, (22) holds for u, v ∈ ξ0,∞ÞT . By virtue of (24),
there is a v ∈ ðu,∞ÞT such that

y 1½ � vð Þ
H1 v, uð Þ
� �Δv

< 0forv ∈ u,∞ð ÞT ⊆ ξ0,∞½ ÞT : ð27Þ

Hence, for v ∈ ðu,∞ÞT ,

y vð Þ >
ðv
u
ϕ−1γ1

y 1½ � τð Þ
H1 τ, uð Þ
� �

H1 τ, uð Þ
p1 τð Þ

� �1/γ1
Δτ

≥ ϕ−1γ1
y 1½ � vð Þ
H1 v, uð Þ
� �ðv

u

H1 τ, uð Þ
p1 τð Þ

� �1/γ1
Δτ

= ϕ−1γ1
y 1½ � vð Þ
H1 v, uð Þ
� �

H1/γ1
2 v, uð Þ:

ð28Þ

Thus, (23) holds for v ∈ ðu,∞ÞT . The proof is now com-
plete.

2.1. Asymptotic Behavior. In this subsection, we debate the
asymptotic behavior of the solutions of equation (1) for both
cases β ≥ γ and β ≤ γ:

Theorem 4. Assume that l > 0 and for sufficiently large T ∈
½ξ0,∞ÞT ,

liminf
ξ⟶∞

Hγ2
1 ξ, Tð Þ

ð∞
ξ

Hβ
2 ψ τð Þ, Tð Þ
Hα

1 τ, Tð Þ

 !1/γ1
p τð ÞΔτ > γ

γ2
2

lγ2 γ2−1j j γ2 + 1ð Þγ2+1
:

ð29Þ

If equation (1) has a nonoscillatory solution yðξÞ, then
y½i�ðξÞ and i = 0, 1, 2 converge.

Proof. Suppose, without losing generality, that yðξÞ and y
ðgðξÞÞ are eventually positive, by virtue of (1), we deduce
that y½i�ðξÞ and i = 1, 2 are eventually of one sign and by
(2), and we can easily see that y½2�ðξÞ is eventually positive,
see [34], part ðI Þ of the proof of Theorem 4]. Therefore,
we consider the following two cases:
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ðI Þy½1�ðξÞ is eventually positive. In this case, there is a
ξ1 ∈ ½ξ0,∞ÞT such that

y i½ � ξð Þ > 0, i = 0, 1, 2, and y 2½ � ξð Þ
� 	Δ

< 0 on ξ1,∞½ ÞT : ð30Þ

Consider

z ξð Þ≔ y 2½ � ξð Þ
y 1½ � ξð Þ� �γ2 : ð31Þ

Hence,

zΔ ξð Þ = y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 + 1

y 1½ � ξð Þ� �γ2
 !Δ

y 2½ � σ ξð Þð Þ

= y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 −

y 1½ � ξð Þ� �γ2� 	Δ
y 1½ � ξð Þ� �γ2 y 2½ � σ ξð Þð Þ

y 1½ � σ ξð Þð Þ� �γ2 :
ð32Þ

(1) If 0 < γ2 ≤ 1, by means of the Pötzsche chain rule and
the definitions of H0ðξ, ξ1Þ and zðξÞ, we obtain for
ξ ∈ ½ξ2,∞ÞT

zΔ ξð Þ ≤ y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2

y 1½ � σ ξð Þð Þ� �γ2−1 y 1½ � ξð Þ
 �Δ
y 1½ � ξð Þ� �γ2 z σ ξð Þð Þ

= y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2H0 ξ, ξ1ð Þ y 1½ � ξð Þ

y 1½ � σ ξð Þð Þ

� �1−γ2 y 2½ � ξð Þ
 �1/γ2
y 1½ � ξð Þ z σ ξð Þð Þ

= y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2H0 ξ, ξ1ð Þ y 1½ � ξð Þ

y 1½ � σ ξð Þð Þ
� �1−γ2

z1/γ2 ξð Þz σ ξð Þð Þ:

ð33Þ

Using the fact that ðy½1�ðξÞ/H1ðξ, ξ1ÞÞΔ < 0 for ξ ∈
½ξ2,∞ÞT ⊆ ðξ1,∞ÞT , we get

y 1½ � ξð Þ
y 1½ � σ ξð Þð Þ
� �1−γ2

≥
H1 ξ, ξ1ð Þ

H1 σ ξð Þ, ξ1ð Þ
� �1−γ2

: ð34Þ

Therefore, (33) becomes

zΔ ξð Þ ≤ y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2H0 ξ, ξ1ð Þ H1 ξ, ξ1ð Þ

H1 σ ξð Þ, ξ1ð Þ
� �1−γ2

z1/γ2 ξð Þz σ ξð Þð Þ:

ð35Þ

Now, for any ε > 0, there exists a ξ3 ∈ ξ2,∞ÞT such that

H1 ξ, ξ1ð Þ
H1 σ ξð Þ, ξ1ð Þ ≥ l − ε and Hγ2

1 ξ, ξ1ð Þz ξð Þ ≥H − ε for ξ ∈ ξ3,∞ÞT ,

ð36Þ

where

H ≔ liminf
ξ⟶∞

Hγ2
1 ξ, ξ1ð Þz ξð Þ, 0 ≤H ≤ 1: ð37Þ

Substituting (36) into (35), we get for ξ ∈ ξ3,∞ÞT ,

zΔ ξð Þ ≤ y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 γ2H0 ξ, ξ1ð Þ

Hγ2
1 ξ, ξ1ð ÞH1 σ ξð Þ, ξ1ð Þ

≤
y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 l − εð Þ1−γ2 γ2H0 ξ, ξ1ð Þ

H1 ξ, ξ1ð ÞHγ2
1 σ ξð Þ, ξ1ð Þ

≤
y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 l − εð Þ1−γ2 −1

Hγ2
1 ξ, ξ1ð Þ

 !Δ

:

ð38Þ

(2) If γ2 ≥ 1, by means of the Potzsche chain rule and the
definitions of H0ðξ, ξ1Þ and zðξÞ, we obtain for ξ ∈
½ξ2,∞ÞT

zΔ ξð Þ ≤ y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2

y 1½ � ξð Þ� �γ2−1 y 1½ � ξð Þ
 �Δ
y 1½ � ξð Þ� �γ2 z σ ξð Þð Þ

= y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2H0 ξ, ξ1ð Þ y 2½ � ξð Þ
 �1/γ2

y 1½ � ξð Þ z σ ξð Þð Þ

= y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − γ2H0 ξ, ξ1ð Þz1/γ2 ξð Þz σ ξð Þð Þ:

ð39Þ

Substituting (36) into (39), we get for ξ ∈ ξ3,∞ÞT ,

zΔ ξð Þ ≤ y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 γ2H0 ξ, ξ1ð Þ

H1 ξ, ξ1ð ÞHγ2
1 σ ξð Þ, ξ1ð Þ

≤
y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 l − εð Þγ2−1 γ2H0 ξ, ξ1ð Þ

Hγ2
1 ξ, ξ1ð ÞH1 σ ξð Þ, ξ1ð Þ

≤
y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 l − εð Þγ2−1 −1

Hγ2
1 ξ, ξ1ð Þ

 !Δ

:

ð40Þ

Combining (38) with (40), we conclude that for γ2 > 0
and ξ ∈ ξ3,∞ÞT ,

zΔ ξð Þ ≤ y 2½ � ξð Þ� �Δ
y 1½ � ξð Þ� �γ2 − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j −1

Hγ2
1 ξ, ξ1ð Þ

 !Δ

:

ð41Þ
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From (1), we see that

zΔ ξð Þ ≤ −
yγ1 g ξð Þð Þ
y 1½ � ξð Þ

� �β/γ1
y 1½ � ξð Þ
� 	β/γ1−γ2

p ξð Þ − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j −1
Hγ2

1 ξ, ξ1ð Þ

 !Δ

:

ð42Þ

If β ≥ γ, by the fact that y½2�ðξÞ > 0 for ξ ∈ ½ξ3,∞ÞT , then

y 1½ � ξð Þ
� 	β/γ1−γ2 ≥ y 1½ � ξ0ð Þ

� 	β/γ1−γ2 ≕ k1 > 0 forξ ≥ ξ3,

ð43Þ

whereas if β ≤ γ, by the fact that ðy½1�ðξÞ/H1ðξ, ξ1ÞÞ
Δ < 0 for

ξ ∈ ½ξ3,∞ÞT , then

y 1½ � ξð Þ
H1 ξ, ξ1ð Þ
� �β/γ1−γ2

≥
y 1½ � ξ1ð Þ

H1 ξ2, ξ1ð Þ
� �β/γ1−γ2

≕ k2 > 0 forξ ≥ ξ3:

ð44Þ

Now, consider the case when gðξÞ ≤ ξ. From (23) and

using the fact that ðy½1�ðξÞ/H1ðξ, ξ1ÞÞ
Δ < 0, we deduce that

yγ1 g ξð Þð Þ ≥ y 1½ � g ξð Þð Þ
H1 g ξð Þ, ξ1ð ÞH2 g ξð Þ, ξ1ð Þ ≥ y 1½ � ξð Þ

H1 ξ, ξ1ð ÞH2 g ξð Þ, ξ1ð Þ:

ð45Þ

Next consider the case when gðξÞ ≥ ξ. From (23) and
using the fact that y½1�ðξÞ > 0, we conclude that

yγ1 g ξð Þð Þ ≥ yγ1 ξð Þ ≥ y 1½ � ξð Þ
H1 ξ, ξ1ð ÞH2 ξ, ξ1ð Þ: ð46Þ

By combining (45) with (46), we have

yγ1 g ξð Þð Þ
y 1½ � ξð Þ ≥

H2 ψ ξð Þ, ξ1ð Þ
H1 ξ, ξ1ð Þ for ξ ∈ ξ3,∞ÞT : ð47Þ

From (43), (44), and (47), we get for ξ ∈ ξ3,∞ÞT ,

yγ1 g ξð Þð Þ
y 1½ � ξð Þ

� �β/γ1
y 1½ � ξð Þ
� 	β/γ1−γ2 ≥ k

Hβ
2 ψ ξð Þ, ξ1ð Þ
Hα

1 ξ, ξ1ð Þ

 !1/γ1
,

ð48Þ

where k≔min fk1, k2g: Substituting (47) into (42), we
obtain for ξ ∈ ξ3,∞ÞT ,

zΔ ξð Þ ≤ −k
Hβ

2 ψ ξð Þ, ξ1ð Þ
Hα

1 ξ, ξ1ð Þ

 !1/γ1
p ξð Þ − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j −1

Hγ2
1 ξ, ξ1ð Þ

 !Δ

:

ð49Þ

Integrating (49) from ξ to v, we have

z vð Þ − z ξð Þ ≤ k
ðv
ξ

Hβ
2 ψ τð Þ, ξ1ð Þ
Hα

1 τ, ξ1ð Þ

 !1/γ1
p τð ÞΔτ − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j 1

Hγ2
1 ξ, ξ1ð Þ −

1
Hγ2

1 v, ξ1ð Þ

 !
:

ð50Þ

Taking into consideration that z > 0 and passing to the
limit as v⟶∞, we conclude that

k
ð∞
ξ

Hβ
2 ψ τð Þ, ξ1ð Þ
Hα

1 τ, ξ1ð Þ

 !1/γ1
p τð ÞΔτ ≤ z ξð Þ − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j 1

Hγ2
1 ξ, ξ1ð Þ

 !
:

ð51Þ

Multiplying both sides of (51) by Hγ2
1 ðξ, ξ1Þ, we get for

ξ ∈ ξ3,∞ÞT ,

kHγ2
1 ξ, ξ1ð Þ

ð∞
ξ

Hβ
2 ψ τð Þ, ξ1ð Þ
Hα

1 τ, ξ1ð Þ

 !1/γ1
p τð ÞΔτ ≤Hγ2

1 ξ, ξ1ð Þz ξð Þ − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j:

ð52Þ

Taking the liminf of both sides of the last inequality (52)
as ξ⟶∞, we obtain

kliminf
ξ⟶∞

Hγ2
1 ξ, ξ1ð Þ

ð∞
ξ

Hβ
2 ψ τð Þ, ξ1ð Þ
Hα

1 τ, ξ1ð Þ

 !1/γ1
p τð ÞΔτ ≤H − H − εð Þ1+1/γ2 l − εð Þ γ2−1j j:

ð53Þ

By dint of the fact that k, ε > 0 is arbitrary, we deduce
that

liminf
ξ⟶∞

Hγ2
1 ξ, ξ1ð Þ

ð∞
ξ

Hβ
2 ψ τð Þ, ξ1ð Þ
Hα

1 τ, ξ1ð Þ

 !1/γ1
p τð ÞΔτ ≤H −H1+1/γ2 l γ2−1j j:

ð54Þ

Setting

X ≔Hlγ2 γ2−1j j/1+γ2 and Y ≔
γ2

1 + γ2

� �γ2
l−γ

2
2 γ2−1j j/γ2+1,

ð55Þ

and λ≔ γ2 + 1/γ2 > 1. Then, using inequality (see [35])

λXYλ−1 − Xλ ≤ λ − 1ð ÞYλ, ð56Þ

we achieve

H −H1+1/γ2 l γ2−1j j ≤
γ
γ2
2

lγ2 γ2−1j j γ2 + 1ð Þγ2+1
: ð57Þ
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Thus, (54) becomes

liminf
ξ⟶∞

Hγ2
1 ξ, ξ1ð Þ

ð∞
ξ

Hβ
2 ψ τð Þ, ξ1ð Þ
Hα

1 τ, ξ1ð Þ

 !1/γ1
p τð ÞΔτ ≤ γ

γ2
2

lγ2 γ2−1j j γ2 + 1ð Þγ2+1
,

ð58Þ

as a result of which there is a contradiction with (29).
ðII Þy½1�ðξÞ is eventually positive. In this case, there is a

ξ1 ∈ ½ξ0,∞ÞT such that

−1ð Þiy i½ � ξð Þ > 0, i = 0, 1, 2, and y 2½ � ξð Þ
� 	Δ

< 0 on ξ1,∞½ ÞT :
ð59Þ

By virtue of (59), it is easy to see that y½i�ðξÞ and i = 0, 1, 2
converge. This completes the proof.

Remark 5. [1] The deduction of Theorem 4 keeps intact if
assumption (29) is replaced by

ð∞
ξ0

Hβ
2 ψ τð Þ, Tð Þ
Hα

1 τ, Tð Þ

 !1/γ1
p τð ÞΔτ =∞: ð60Þ

2) If either

ð∞
ξ0

p τð ÞΔτ =∞;
ð∞
ξ0

1
p2 τð Þ

ð∞
τ

p ωð ÞΔω
� �1/γ2

Δτ =∞ ð61Þ

or

ð∞
ξ0

1
p1 τð Þ

ð∞
τ

1
p2 ωð Þ

ð∞
ω

p sð ÞΔs
� �1/γ2

Δω

" #1/γ1
Δτ =∞, ð62Þ

then nonoscillatory solutions of the investigated equation (1)
are convergent to zero, see [35], [Theorem 4].

2.2. Oscillation Criteria. In this subsection, we establish
oscillation criteria of the solutions of equation (1) when β
= γ and gðξÞ ≤ ξ on ½ξ0,∞ÞT . This solves an open problem
posed in [1].

Theorem 6. Assume that (29) and either

lim sup
ξ⟶∞

ðξ
g ξð Þ

Hγ2
2 g τð Þ, g ξð Þð Þp τð ÞΔτ > 1, ð63Þ

or

lim sup
ξ⟶∞

ðξ
g ξð Þ

1
p1 τð Þ

ðξ
τ

1
p2 ωð Þ

ðξ
ω

p sð ÞΔs
 !1/γ2

Δω

 !1/γ1

Δτ > 1,

ð64Þ

hold. Then, all solutions to equation (1) are oscillatory.

Proof. Suppose, without losing generality, that yðξÞ and y
ðgðξÞÞ are eventually positive, by virtue of (1), we deduce
that y½i�ðξÞ and i = 1, 2 are eventually of one sign and by
(2), we can easily see that y½2�ðξÞ is eventually positive.
Therefore, we consider the following two cases:

ðI Þy½1�ðξÞ is eventually positive. The same proof as in
part ðI Þ of the proof of Theorem 4 hence is omitted.

ðII Þy½1�ðξÞ is eventually positive. In this case, there is a
ξ1 ∈ ½ξ0,∞ÞT such that (59) for ξ ∈ ½ξ1,∞ÞT :

Let (63) hold. Integrating (1) form gðξÞ to ξ gives

y 2½ � g ξð Þð Þ ≥ y 2½ � g ξð Þð Þ − y 2½ � ξð Þ =
ðξ
g ξð Þ

p τð Þϕγ y g τð Þð Þð ÞΔτ:

ð65Þ

By using Lemma 2 and setting u = gðτÞ and v = gðξÞ, we
obtain

ϕγ y g τð Þð Þð Þ ≥Hγ2
2 g τð Þ, g ξð Þð Þy 2½ � g ξð Þð Þ: ð66Þ

Substituting (66) into (65) yields

y 2½ � g ξð Þð Þ ≥ y 2½ � g ξð Þð Þ
ðξ
g ξð Þ

Hγ2
2 g τð Þ, g ξð Þð Þp τð ÞΔτ: ð67Þ

We get a contradiction with (63) by taking the lim sup
on both sides of the last inequality as ξ⟶∞.

Let (64) hold. Integrating (1) form τ to ξ, we get

y 2½ � ωð Þ ≥ y 2½ � ωð Þ − y 2½ � ξð Þ =
ðξ
ω

p sð Þyγ g sð Þð ÞΔs ≥ yγ g ξð Þð Þ
ðξ
ω

p sð ÞΔs:

ð68Þ

Subsequently,

y 1½ � ωð Þ
� 	Δ

≥ yγ1 g ξð Þð Þ 1
p2 ωð Þ

ðξ
ω

p sð ÞΔs
 !1/γ2

: ð69Þ

Integrating the last inequality form τ to ξ, we conclude
that

−y 1½ � τð Þ ≥ y 1½ � ξð Þ − y 1½ � τð Þ ≥ yγ1 g ξð Þð Þ
ðξ
τ

1
p2 ωð Þ

ðξ
ω

p sð ÞΔs
 !1/γ2

Δω:

ð70Þ

As a result,

−yΔ τð Þ ≥ y g ξð Þð Þ 1
p1 τð Þ

ðξ
τ

1
p2 ωð Þ

ðξ
ω

p sð ÞΔs
 !1/γ2

Δω

 !1/γ1

:

ð71Þ

Integrating again the last inequality form gðξÞ to ξ, we
achieve

6 Journal of Function Spaces



y g ξð Þð Þ ≥ y g ξð Þð Þ
ðξ
g ξð Þ

1
p1 τð Þ

ðξ
τ

1
p2 ωð Þ

ðξ
ω

p sð ÞΔs
 !1/γ2

Δω

 !1/γ1

Δτ:

ð72Þ

We get a contradiction with (64) by taking the lim sup
on both sides of the last inequality as ξ⟶∞. The proof
is complete.

Example 7. Consider the third-order delay dynamic equation

1
4ξ2

ϕ2
1
410

3
ξ

� �3
ϕ3 yΔ ξð Þ� �" #Δ0

@
1
A

8<
:

9=
;

Δ

+ 1
ξ17

ϕ6 y
ξ

2

� �� �
= 0, ξ ∈ 1,∞½ Þ:

ð73Þ

It is obvious that condition (2) is fulfilled. Now,

Therefore, the conditions (63) and (29) are satisfied.
Then, all solutions to equation (73) are oscillatory, according
to Theorem 6.

3. Conclusions

(1) The important point to note here is that the pro-
posed results in Theorem 6 are new for third-order
dynamic equation (1) and also, these results, in a
special case, have answered an open problem stated
by [1] (Remark 3.3), which is concerned with study-
ing the sufficient conditions that guarantee that all
solutions of third-order delay dynamic equations
oscillate

(2) In comparison to the results in the cited papers
[14–16, 18], Hille-type criteria for dynamic equation
(1) in the cases β ≥ γ,β ≤ γ,gðξÞ ≤ ξ, and gðtÞ ≥ ξ
have been developed, and the results in this study
are a significant improvement; for more details, see
([19], in Discussions and Conclusions). Moreover,
our results improve and expand upon those
described in [19], see the following details

(i) If β = γ and 0 < γ2 ≤ 1, then condition (29) becomes

liminf
ξ⟶∞

Hγ2
1 ξ, Tð Þ

ð∞
ξ

H2 ψ τð Þ, Tð Þ
H1 τ, Tð Þ

� �γ2
p τð ÞΔτ > γ

γ2
2

lγ2 1−γ2ð Þ γ2 + 1ð Þγ2+1
:

ð75Þ

By dint of

Hγ2
1 ξ, Tð Þ

ð∞
ξ

H2 ψ τð Þ, Tð Þ
H1 τ, Tð Þ

� �γ2
p τð ÞΔτ ≥Hγ2

1 ξ, Tð Þ
ð∞
ξ

H2 ψ τð Þ, Tð Þ
H1 σ τð Þ, Tð Þ
� �γ2

p τð ÞΔτ,

ð76Þ

Hille-type criterion (75) improves (5);

(ii) Condition (29) reduces to (6) in the case where β = γ
and γ2 ≥ 1

(3) The asymptotic behavior of solutions is viable to
dynamic equation (1) for both gðξÞ ≤ ξ and gðξÞ ≥
ξ, whereas the oscillation conditions are viable to
dynamic equation (1) for gðξÞ ≤ ξ. As a result, oscil-
lations can be ensured by a delay in equations

(4) The results presented here are for equation (1) on an
unbounded above arbitrary time scale; therefore,
they are applicable to different of time scales

(5) It would be interesting to define Hille-type criteria
for the third-order dynamic equation (1) under non-
canonical assumptions

ð∞
ξ0

Δτ

p1/γii τð Þ
<∞, i = 1, 2: ð77Þ
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lim sup
ξ⟶∞

ðξ
g ξð Þ

Hγ2
2 g τð Þ, g ξð Þð Þp τð ÞΔτ = lim sup

ξ⟶∞

ðξ
ξ/2

411
τ17

τ2

4 −
ξ2

4

 !8

dτ = 664548
35 + 64 ln 2ð Þ,

liminf
ξ⟶∞

Hγ2
1 ξ, ξ0ð Þ

ð∞
ξ

Hβ
2 ψ τð Þ, Tð Þ
Hα

1 τ, Tð Þ

 !1/γ1
p τð ÞΔτ = liminf

ξ⟶∞
ξ2 − 1
� 	2ð∞

ξ

2 4ð Þ5 τ2/4 − 1
� �4
τ2 − 1

 !2
1
τ17

dτ = 16:

ð74Þ
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