
Research Article
A Blow-Up Criterion for 3D Nonhomogeneous Incompressible
Magnetohydrodynamic Equations with Vacuum

Shujuan Wang ,1 Miaoqing Tian ,1 and Rijian Su 2

1College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Correspondence should be addressed to Rijian Su; rijiansu@126.com

Received 29 March 2022; Accepted 10 May 2022; Published 3 June 2022

Academic Editor: Igor E. Verbitsky

Copyright © 2022 Shujuan Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the strong solutions of the nonhomogeneous incompressible magnetohydrodynamics (MHD) system with vacuum, we
establish a blow-up criterion for this system in terms of kukCð½0,T�;L3ðℝ3ÞÞ. Moreover, the result generalizes previous ones in Giga
(1986) and He and Xin (2005) where homogeneous incompressible Navier-Stokes equations and homogeneous incompressible
MHD system are considered, respectively, and demonstrates that the velocity field plays a more dominant role in the MHD
system.

1. Introduction

Magnetohydrodynamics (MHD) is concerned with the
interaction between fluid flow and magnetic field, and the
motion of the nonhomogeneous incompressible MHD can
be stated as follows (see, e.g., [1–4]):

ρt + div ρuð Þ = 0, ð1Þ

ρuð Þt + div ρu ⊗ uð Þ+∇P = ∇ ×Hð Þ ×H + μΔu, ð2Þ
Ht −H · ∇u + u · ∇H = νΔH, ð3Þ
Ht −H · ∇u + u · ∇H = νΔH, ð4Þ

where ρ, u = ðu1, u2, u3Þ ∈ℝ3, P, and H= ðH1,H2, H3Þ ∈ℝ3

represent, respectively, the density, velocity, pressure, and
magnetic field. The constants μ > 0 and ν > 0 denote the vis-
cosity of fluid and the relative strengths of advection and dif-
fusion of H. Since the presence of all the physical constants
does not create essential mathematical difficulties, for nota-
tional simplicity, we will normalize all constants in the sys-
tem to be one in the sequel.

In recent years, the MHD system has drawn the atten-
tion of engineers and applied mathematicians due to its
important physical background and mathematical feature.

If taking ρ ≡ const, the system (1)-(4) is reduced to the
homogeneous incompressible MHD. For this case, Duvaut
and Lions [5] constructed a class of global weak solutions,
similar to the Leray-Hopf weak solutions to the three-
dimensional Navier-Stokes equations. Sermange and
Temam [6] first gave a local existence of the strong solution
with any given initial data ðu0,H0Þ ∈Hmðℝ3Þ (m ≥ 2). It
should be pointed out that whether this unique local solu-
tion can exist globally with general initial data is an out-
standing challenging problem in three dimensions. Thus,
there are many works to study the regularity criteria for
weak or classical solutions, see [7–12]. We also notice that
if partial viscosity and resistivity are zero, the global regular-
ity issues have been established in [13].

For the nonhomogeneous case (1)–(4), there are a lot of
literature which includes the existence, uniqueness, and reg-
ularity of solutions [1, 14–17]. Zhang [18] established local
classical solutions of (1)–(4) and showed that as the viscosity
μ and resistivity ν went to zero, the solution of (1)–(4) con-
verged to the solution of ideal MHD system (i.e., μ = ν = 0).
Gerbeau [3] and Desjardins and Le Bris [19] considered the
global existence of weak solutions of finite energy in the
whole space or in the torus. Abidi and Paicu [20] proved
the global existence of strong solutions with small initial data
in some Besov spaces. Recently, Huang and Wang [21]
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demonstrated the unique global strong solution with general
initial data to (1)–(4) in two dimensions.

In this paper, we are interested in the Cauchy problem of
(1)–(4) subject to the following initial conditions:

ρ, u,Hð Þ x, 0ð Þ = ρ0, u0,H0ð Þ xð Þ and ρ0 ≤ �ρ for all x ∈ℝ3,
ð5Þ

and far field conditions:

ρ, u,Hð Þ⟶ 0, 0, 0ð Þ, as xj j⟶∞, ð6Þ

where �ρ is a given constant.
To state the main results in a precise way, we first intro-

duce some notations and conventions which will be used
throughout the paper. For k ∈ℤ+ and r > 1, the standard
homogeneous and inhomogeneous Sobolev spaces for sca-
lar/vector functions are denoted by:

Lr = Lr ℝ3� �
,Dk,r = u ∈ L1loc ℝ3� ��� ∇ku

��� ���
Lr
<∞

n o
,Wk,r = Lr ∩Dk,r ,

Hk =Wk,2,Dk =Dk,2,D1 = u ∈ L6
�� ∇uk kL2<∞

� �
, uk kDk,r = ∇ku

��� ���
Lr
:

8><
>:

ð7Þ

.
The strong solutions of the problem (1)–(4) are defined

as follows.

Definition 1. A pair of functions ðρ, u,HÞ is called a strong
solution to the problem (1)–(4) in ℝ3 × ð0, TÞ, if for some
q0 ∈ ð3, 6�,

ρ ∈ C 0, T½ � ; L1 ∩H1 ∩W1,q0
� �

, ρt ∈ C 0, T½ � ; L2 ∩ Lq0
� �

, ρ ≥ 0,

u ∈ C 0, T½ � ;D1 ∩D2� �
∩ L2 0, T ;D2,q0

� �
, ffiffiffi

ρ
p

ut ∈ L
∞ 0, T ; L2
� �

,

ut ,Htð Þ ∈ L2 0, T ;D1� �
,H ∈ C 0, T½ � ;H2� �

,Ht ∈ L
∞ 0, T ; L2
� �

,

8>><
>>:

ð8Þ

and ðρ, u,HÞ satisfies (1)–(4) a.e. in ℝ3 × ð0, TÞ.

Before stating the main result of this paper, we first state
a local existence of strong solutions to (1)–(4). The following
local well-posedness theorem of strong solutions was given
in [16].

Proposition 2. Assume that for some q ∈ ð3, 6� and the initial
data ðρ0, u0,H0Þ satisfying

ρ0 ≥ 0, ρ0 ∈ L1 ∩W1,q, div u0 = 0, u0
∈D1 ∩D2, div H0 = 0,H0 ∈H

2,
ð9Þ

−△u0+∇P0− ∇ ×H0ð Þ ×H0 = ρ1/20 g, ð10Þ

for some g ∈ L2. Then, there exist a time T∗ > 0 and a unique
strong solution ðρ, u,HÞ to (1)–(4) together with (5)–(6) in

ℝ3 × ð0, T∗Þ, such that

ρ ≥ 0, ρ ∈ C 0, T∗½ � ;W1,q� �
, ρt ∈ C 0, T∗½ � ; Lqð Þ,

u ∈ C 0, T∗½ � ;D1 ∩D2� �
∩ L2 0, T∗ ;D2,q� �

, ffiffiffi
ρ

p
ut ∈ L

∞ 0, T∗ ; L2
� �

,

ut ,Htð Þ ∈ L2 0, T∗ ;D1� �
,H ∈ C 0, T∗½ � ;H2� �

∩ L2 0, T∗ ;W2,q� �
,

P ∈ C 0, T∗½ � ;H1� �
∩ L2 0, T∗ ;W1,q� �

:

8>>>>>><
>>>>>>:

ð11Þ

Although significant progress has been made in the
study of multidimensional nonhomogeneous incompressible
MHD system, many physically important and mathemati-
cally fundamental problems are still open due to the lack
of smoothing mechanism and the strong nonlinearity. Similar
to that for the three-dimensional incompressible Navier-
Stokes equations, whether the unique local strong solution
obtained in Proposition 2 can exist globally is an outstanding
challenging open problem. If the answer is negative, then it
simultaneously raises the interesting questions of the mecha-
nism of blowup and the structure of possible singularities.

In the recent paper [7], He and Xin proved a blow-up
criterion to nonhomogeneous incompressible magnetohy-
drodynamic equations; that is, if u ∈ Cð½0, T� ; L3Þ is bounded
above, then the local strong solution, in fact, is a global one.
This criterion is analogous to the criterion on the weak solu-
tions to the 3D incompressible Navier-Stokes equations (see
[22]). Motivated by these works on the blow-up criterion of
local strong solutions to the Navier-Stokes equation and
homogeneous incompressible MHD system, we will general-
ize this result in [7, 22] to the 3D nonhomogeneous incom-
pressible MHD system (1)–(4). Our main result of this paper
is stated as follows.

Theorem 3. Suppose that the assumptions in Proposition 2
are satisfied. Let ðρ, u,HÞ be a strong solution to (1)–(4) with
regularity (10). If T∗ <∞ is the maximal time of existence,
then

lim
T⟶T∗

uk kC 0,T½ �;L3 ℝ3ð Þð Þ =∞: ð12Þ

Remark 4. The proof of this theorem together with the result
in [23], we can extend this result from incompressible mag-
netohydrodynamic equations to the compressible case,
which is our work in the future.

To prove Theorem 3, the main two steps are to estimate
the Lp-norm of the magnetic field H and L2-norm of the gra-
dient of the velocity. To do this, the key observation of the
present paper lies in the following simple fact:

Proposition 5. For U ∈ Cð½0, T� ; L3Þ, there exist U1 ∈ Cð½0,
T� ; L3Þ and U2 ∈ L∞ð0, T ; L∞Þ such that for any δ > 0,

U =U1 +U2, U1�� ��
C 0,T½ �;L3ð Þ ≤ δ, U2�� ��

L∞ 0,T ;L∞ð Þ ≤ C δ,Mð Þ,
ð13Þ
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where M ≜ kukCð½0,T�;L3Þ and Cðδ,MÞ is a positive constant
depending only on δ,M.

Thus, by choosing δ > 0 suitably small, we then succeed
in obtaining the estimates on k∇ukL2 by utilizing the prelim-
inary estimates of the vorticity ω = ∇× u (see Lemma 7) to
control the Lp-norm of ∇u in the proof of Lemma 10. With
the estimate of k∇ukL2 at hand, we can give the higher-order
estimate of ðρ, u,HÞ and thus finish the proof of Theorem 3.

2. Auxiliary Lemmas

We state the well-known Gagliardo-Nirenberg inequality
(see, for instance, [24]).

Lemma 6. Assume that f ∈H1 and g ∈H2 with q > 1 and r
> 3. Then, for any p ∈ [2,6], there exists a positive constant
C, depending only on p, q, and r, such that

fk kLp ≤ C fk k 6−pð Þ/ 2pð Þ
L2 ∇fk k 3p−6ð Þ/2p

L2 ,

gk kL∞ ≤ C gk k1/4L2 ∇2g
�� ��3/4

L2
:

ð14Þ

To complete some estimates in Section 3, we need the
following Lp-estimate for vorticity ω = ∇× u. In fact, we
deduce ω satisfy the following elliptic system by the momen-
tum equation (2)

Δω = ∇ × ρut + ρu · ∇u −H · ∇Hð Þ, ð15Þ

due to ð∇ ×HÞ ×H =H · ∇H − ∇jHj2/2. By virtue of the
standard Lp-estimate of the elliptic system, we have the
following.

Lemma 7. Let ðρ, u,HÞ be a smooth solution of (1) and (3); if
0 ≤ ρ ≤ ~ρ, then there exists a generic positive constant depend-
ing only on ρ¯ such that

∇ωk kL2 ≤ C ρutk kL2 + ρu∇uk kL2 + H∇Hk kL2ð Þ,
∇ωk kL6 ≤ C ρutk kL6 + ρu∇uk kL6 + H∇Hk kL6ð Þ,

ð16Þ

where ~ρ is a given constant.

Proof. Using Lemma 6, one deduces from (15) and the stan-
dard Lp-estimate of the elliptic system that

∇ωk kL2 ≤ C ρutk kL2 + ρu · ∇uk kL2 + H · ∇Hk kL2ð Þ,
≤C ρ1/2ut

�� ��
L2
+ u∇uk kL2 + H∇Hk kL2

	 

,

∇ωk kL6 ≤ C ρ u
:�� ��

L6
+ H · ∇Hk kL6

	 


≤ C ∇ u
:�� ��

L2
+ H∇Hk kL6

	 

,

ð17Þ

which immediately finish the proof of Lemma 7.

3. A Priori Estimates

Let ðρ, u,HÞ be strong solutions to the problem (1)–(4) as
described in Proposition 2. We will prove Theorem 3 by a
contradiction argument. To this end, we suppose that for
any T < T∗ <∞

uk kC 0,T½ �;L3ð Þ ≤M <∞: ð18Þ

Then, we will deduce a contradiction to the maximality
of T∗.

Throughout this paper, we will denote by C the various
generic positive constants, which may depend on the initial
data, M and T . Special dependence will be pointed out
explicitly in this paper if necessary.

First of all, by the method of characteristics, it is easy to
see that

0 ≤ ρ x, tð Þ ≤ sup
x∈ℝ2

ρ0 xð Þ ≤ �ρ for all x ∈ℝ3, t ∈ 0, Tð Þ: ð19Þ

Next, we give the standard energy estimate as follows.

Lemma 8. Let ðρ, u,HÞ be a smooth solution of (1)–(4) on
ℝ3 × ð0, T�. Then, there exist a constant C such that

sup
0≤t≤T

ð
1
2
ρ uj j2 + 1

2
Hj j2

� �
dx +

ðT
0

∇uk k2L2 + ∇Hk k2L2
� �

dt ≤ C:

ð20Þ

Proof.Multiplying (2) and (3) by u and H, respectively, inte-
grating by parts, and adding them together, one immediately
gets (20).

Under the assumption (18), we can improve the integra-
bility of magnetic field H which will be frequently used in
the sequel.

Lemma 9. Under the assumption (18), for any T < T∗, it
holds that

Hk kL∞ 0,T ;Lqð Þ ≤ C,∀q ∈ 2,∞½ Þ: ð21Þ

Proof. Multiplying (3) by qjHjq−2H and integrating the
resulting equations over ℝ3 lead to

d
dt

ð
Hj jqdx = q

ð
ΔH +H · ∇u − u · ∇Hð Þ · Hj jq−2Hdx = 〠

3

i=1
Ii:

ð22Þ

For the terms on the right-hand side of the equation
above, we get by integrations by parts
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I1 = q
ð
ΔH · Hj jq−2Hdx = −q

ð
Hj jq−2 ∇Hj j2dx

−
q q − 2ð Þ

2

ð
Hj jq−4 ∇ Hj j2�� ��2dx,

I2 = q
ð
H · ∇u · Hj jq−2Hdx = −

ð �
q Hj jq−2H

· ∇H · u + q q − 2ð Þ
2 Hj jq−4 H · ∇ Hj j2� �

u ·Hð Þ
�
dx,

I3 = −q
ð
u · ∇H · Hj jq−2Hdx = −

1
2

ð
u · ∇ Hj jqdx = 0:

ð23Þ

Substituting I1 – I3 into (21) and using Young inequality
lead to

d
d

ð
Hj jqdx+

ð
q Hj jq−2 ∇Hj j2 + q q − 2ð Þ

2 Hj jq−4 ∇ Hj j2�� ��2� �
dx

= −
ð

q Hj jq−2H · ∇H · u + q q − 2ð Þ
2 Hj jq−4 H · ∇ Hj j2� �

u ·Hð Þ
� �

dx

≤
1
2

ð
q Hj jq−2 ∇Hj j2 + q q − 2ð Þ

2 Hj jq−4 ∇ Hj j2�� ��2� �
dx

� �

+ C
ð
uj j2 Hj jqdx,

ð24Þ

which immediately implies that

d
dt

ð
Hj jqdx+

ð
∇ Hj jq/2�� ��2dx ≤ C

ð
uj j2 Hj jq/2�� ��2dx: ð25Þ

Due to the fact that u ∈ Cð½0, T� ; L3Þ, we can decompose
u into the following two parts:

u ≜U1 +U2, ð26Þ

with

U1�� ��
C 0,T½ �;L3ð Þ ≤ δ, U2�� ��

L∞ 0,T ;L∞ð Þ ≤ C δ,M0ð Þ, ð27Þ

for M0 ≜ kukCð½0,T�;L3Þ and any δ ∈ ð0, 1Þ.
From (25)–(27) and using Hölder inequality and imbed-

ding inequality, we have

d
dt

ð
Hj jqdx+

ð
∇ Hj jq/2�� ��2dx

≤ C U1�� ��2
L3

Hj jq/2�� ��2
L6
+ U2�� ��2

L∞ 0,Tð Þ× ℝ3ð Þð Þ
ð
Hj jqdx

≤ Cδ ∇ Hj jq/2�� ��2
L2
+ C

ð
Hj jqdx:

ð28Þ

This, together with taking δ suitably small and applying
Gronwall’s inequality, immediately leads to the desired esti-
mate (21).

Under the assumption (18) and Lemmas 8 and 9, we
prove the following crucial estimate concerning the esti-
mates of the gradients of u and H.

Lemma 10. Under the assumption (18), for any T < T∗, it
holds that

sup
0≤t≤T

∇uk k2L2 + Hk k2H1

� �
+
ðT
0

	
ρ1/2ut

�� ��2
L2
+ Htk k2L2

+ ∇uk k2H1 + Hk k2H2



dt ≤ C:

ð29Þ

Proof. Multiplying (2) by ut in L2 and integrating the result-
ing equations by parts, we obtain after summing them up
that

1
2
d
dt

ð
∇uj j2dx+

ð
ρ utj j2dx

= −
ð
ρu · ∇u · utdx−

ð
H · ∇ut ·Hdx,

ð30Þ

where we use the fact div ut = 0.
In addition, it follows from (3) that

d
dt

∇Hk k2L2 + Htk k2L2 + ΔHk kL2
� �

=
ð
Ht − ΔHj j2dx =

ð
H · ∇u − u · ∇Hj j2dx:

ð31Þ

Putting (30) and (31) together leads to

d
dt

1
2 ∇uk k2 + ∇Hk k2L2

� �
+ ρ1/2ut

�� ��2
L2
+ Htk k2L2 + ΔHk kL2

	 


= −
ð
ρu · ∇u · utdx−

ð
H · ∇ut ·Hdx

+
ð
H · ∇u − u · ∇Hj j2dx = 〠

3

i=1
Ji:

ð32Þ

We estimate the three terms on the right-hand side of
(32) term by term. Following from Young inequality, one
has that

J1 ≤
1
4 ρ1/2ut
�� ��2

L2
+ C u∇uk k2L2 ,

J2 =
ð
H · ∇ut ·Hdx = d

dt

ð
H · ∇u ·Hdx

−
ð
Ht · ∇u ·Hdx−

ð
H · ∇u ·Htdx

≤
d
dt

ð
H · ∇u ·Hdx + 1

4 Htk k2L2 + C H∇uk k2L2 ,

J3 =
ð
H · ∇u − u · ∇Hj j2dx ≤ C u∇Hk k2L2 + H∇uk k2L2

� �
:

ð33Þ
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Putting J1 − J3 into (31), we obtain

d
dt

1
2 ∇uk k2 + ∇Hk k2L2

� �
+ 1
2 ρ1/2ut

�� ��2
L2
+ Htk k2L2 + ΔHk kL2

	 


≤ −
d
dt

ð
H · ∇u ·Hdx + C1 u∇Hk k2L2 + u∇uk k2L2 + H∇uk k2L2

� �
,

ð34Þ

where C1 is a positive constant depending only on the initial
data.

By virtue of (21) and (27), we can deal with the second
term on the right-hand side of (34) as follows:

u∇Hk k2L2 ≤
ð

U1�� ��2 ∇Hj j2dx+
ð

U2�� ��2 ∇Hj j2dx

≤ U1�� ��2
L3

∇Hk k2L6 + U2�� ��2
L∞

∇Hk k2L2
≤ δ2 ∇Hk k2L6 + C δ,Mð Þ ∇Hk k2L2 ,

u∇uk k2L2 ≤
ð

U1�� ��2 ∇uj j2dx+
ð

U2�� ��2 ∇uj j2dx

≤ U1�� ��2
L3

∇uk k2L6 + U2�� ��2
L∞

∇uk k2L2
≤ δ2 ∇uk k2L6 + C δ,Mð Þ ∇uk k2L2 ,

H∇uk k2L2 ≤ C Hk k2L6 ∇uk k2L3 ≤ C ∇uk kL2 ∇uk kL6
≤ δ2 ∇uk k2L6 + C δð Þ ∇uk k2L2 :

ð35Þ

Thus,

u∇Hk k2L2 + u∇uk k2L2 + H∇uk k2L2
≤ δ2 ∇uk k2L6 + ∇Hk k2L6

� �
+ C δð Þ ∇uk k2L2 + ∇Hk k2L2

� �
:

ð36Þ

Next, we turn to estimate k∇ukL6 and k∇HkL6 . Note that,
from (3), we obtain an elliptic system as follows:

−ΔH = −Ht − u · ∇H +H · ∇u: ð37Þ

Applying standard Lp-estimate to elliptic systems (15)
and (37), we obtain that

∇uk kL6 ≤ C div uk kL6+ ∇ × uk kL6ð Þ ≤ C ωk kL6
≤ C ∇ωk kL2 ≤ C ρ1/2ut

�� ��
L2
+ u∇uk kL2 + H∇Hk kL2

	 


≤ C ρ1/2ut
�� ��

L2
+ u∇uk kL2 + Hk kL3 ∇Hk kL6

	 


≤ C ρ1/2ut
�� ��

L2
+ u∇uk kL2 + ∇Hk kL6

	 

,

∇Hk kL6 ≤ ∇2H
�� ��

L2
≤ C Htk kL2 + u∇Hk kL2 + H∇uk kL2ð Þ,

ð38Þ

which imply that

∇uk kL6 + ∇Hk kL6 ≤ C2
	

ρ1/2ut
�� ��

L2
+ Htk kL2 + u∇uk kL2

+ u∇Hk kL2 + H∇uk kL2



ð39Þ

Putting (39) into (36), we have by choosing δ > 0 suffi-
ciently small that

u∇Hk k2L2 + u∇uk k2L2 + H∇uk k2L2
≤

1
4C1

ρ1/2ut
�� ��

L2
+ Htk kL2

	 


+ C δð Þ ∇uk k2L2 + ∇Hk k2L2
� �

:

ð40Þ

where the C1 is given in (34).
Substituting (40) into (34) leads to

d
dt

1
2 ∇uk k2 + ∇Hk k2L2

� �
+ 1
4 ρ1/2ut

�� ��2
L2
+ Htk k2L2 + ΔHk kL2

	 


≤ −
d
dt

ð
u ·H · ∇Hdx + C ∇uk k2L2 + ∇Hk k2L2

� �
:

ð41Þ

By (21) and the Young inequality, we easily see that

ð
H · ∇u ·Hdx

����
���� ≤ 1

4 ∇uk k2L2 + C: ð42Þ

Taking this into account, we then conclude from
(18)–(20), (41), and Gronwall’s inequality for any 0 ≤ T <
T∗ that holds

sup
0≤t≤T

∇uk k2L2 + Hk k2H1
� �

+
ðT
0

ρ1/2ut
�� ��2

L2
+ Htk k2L2

	 

dt ≤ C:

ð43Þ

Applying the standard elliptic L2-estimates to (37) leads
to

Hk kH2 ≤ Htk kL2 + u · ∇Hk kL2 + H · ∇uk kL2
≤ Htk kL2 + C uk kL6 ∇Hk kL3 + C Hk kL6 ∇uk kL3
≤ Htk kL2 + C ∇uk kL2 ∇Hk k1/2L2 ∇2H

�� ��1/2
L2

+ C ∇uk k1/2L2 ∇2u
�� ��1/2

L2

≤ Htk kL2 +
1
4 ∇2u

�� ��
L2
+ ∇2H
�� ��

L2

	 

+ C,

ð44Þ

where we use (21), (43), and Gagliardo-Nirenberg
inequality.

On the other hand, since ðu, PÞ is a solution of the sta-
tionary Stokes equations

−Δu+∇P = F and div u = 0 inℝ3, ð45Þ
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where F = −ρut − ρu · ∇u − ð1/2Þ∇jHj2 +H · ∇H. It follows
from the classical regularity theory that

∇uk kH1 ≤ C ρutk kL2 + ρu · ∇uk kL2 + H · ∇Hk kL2ð Þ
≤ C ρ1/2ut

�� ��
L2
+ C uk kL6 ∇uk kL3 + C Hk kL6 ∇Hk kL3

≤ C ρ1/2ut
�� ��

L2
+ 1
4 ∇uk kH1 + 1

4 Hk kH2 + C:

ð46Þ

Adding (44) to (46), we obtain

ðT
0

∇uk k2H1 + Hk k2H2ds

≤ C
ðT
0

ρ1/2ut
�� ��2

L2
+ Htk k2L2 + 1

	 

ds ≤ C:

ð47Þ

This, together with (43), immediately implies (27). This
lemma is completed.

The following lemma is concerned with the L2-estimate
of ρ1/2ut and Ht .

Lemma 11. Under the assumption (22), it holds for any t ∈
ð0, T� such that

sup
0≤t≤T

ρ1/2ut
�� ��2

L2
+ Htk k2L2

	 

+
ðT
0

∇utk k2L2 + ∇Htk k2L2dt ≤ C:

ð48Þ

Proof. Differentiating the momentum equations (2) with
respect to t yields

ρutt + ρu · ∇ut + ρut · ∇u + ρt ut + u · ∇uð Þ+∇Pt

= Δut + H · ∇H −
1
2∇ Hj j2

� �
t

:
ð49Þ

Multiplying the equation above with ut and integrating
by parts, one gets

1
2
d
dt

ρ1/2ut
�� ��2

L2
+ ∇utk k2L2

= −
ð
ρt utj j2dx−

ð
ρ ut · ∇uð Þ · utdx−

ð
ρt u · ∇uð Þ

· utdx+
ð
Ht · ∇H +H · ∇Htð Þ · utdx,

ð50Þ

due to div ut = 0.
Differentiating (3) with respect to t and multiplying the

resulting equation by Ht , we obtain after integrating by parts

that

1
2
d
dt

Htk k2L2 + ∇Htk k2L2 = −
ð
ut · ∇H ·Htdx+

ð
Ht

· ∇u ·Ht +H · ∇ut ·Htdx,
ð51Þ

where we have used div Ht = 0 and div u = 0.
Putting (50) and (51) together leads to

1
2
d
dt

Htk k2L2 + ρ1/2ut
�� ��2

L2

	 

+ ∇utk k2L2 + ∇Htk k2L2

= −
ð
ρt utj j2dx−

ð
ρ ut · ∇uð Þ · utdx−

ð
ρt u · ∇uð Þ · utdx

+
ð
Ht · ∇H · ut − ut · ∇H ·Htdx+

ð
Ht · ∇u ·Htdx

+
ð
H · ∇ut ·Ht +H · ∇Ht · utdx = 〠

6

i=1
Ri:

ð52Þ

We now estimate each term on the right-hand side of
(52) by using the previous estimates.

First, by virtue of (1), we obtain

R1j j =
ð
ρ u · ∇ utj j2dx

����
����

≤ C ∇utk kL2 uk kL6 ρutk kL3
≤ C ∇utk kL2 ρutk k1/2L2 ρutk k1/2L6

≤ C ∇utk k3/2L2 ρutk k1/2L2

≤ ε ∇utk k2L2 + C εð Þ ρ1/2ut
�� ��2

L2
:

ð53Þ

Similarly, the estimate of R2 is given as follows

Rj j2 ≤ C
ð
ρ utj j2 ∇uj jdx ≤ C ρutk kL2 utk kL6 ∇uk kL3

≤ C ρ1/2ut
�� ��

L2
∇utk kL2 ∇uk k1/2L2 ∇2u

�� ��1/2
L2

≤ ε ∇utk k2L2 + C εð Þ ρ1/2ut
�� ��4

L2
+ C εð Þ ∇2u

�� ��2
L2
:

ð54Þ

For R3, we have that

R3j j =
ð
ρ u · ∇ u · ∇u · utð Þdx

����
����

≤ C
ð
uj j ∇uj j2 utj j + uj j2 ∇2u

�� �� utj j

+ uj j2 ∇uj j ∇utj jdx ≜ 〠
3

i=1
Ji:

ð55Þ
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From Lemma 8 to 9, we can reduce that

J1j j ≤ C
ð
uj j ∇uj j2 utj jdx

≤ C ∇uk k2L3 uk kL6 utk kL6
≤ C ∇uk k2L2 ∇2u

�� ��
L2

∇utk kL2
≤ ε ∇utk k2L2 + C εð Þ ∇2u

�� ��2
L2
,

J2j j ≤ C ∇2u
�� ��

L2
uk k2L6 utk kL6

≤ C ∇2u
�� ��

L2
∇uk k2L2 ∇utk kL2

≤ ε ∇utk k2L2 + C εð Þ ∇2u
�� ��2

L2
,

J3j j ≤ C ∇uk kL6 uk k2L6 ∇utk kL2
≤ C ∇2u

�� ��
L2

∇uk k2L2 ∇utk kL2
≤ ε ∇utk k2L2 + C εð Þ ∇2u

�� ��2
L2
:

ð56Þ

From the J1 – J3, we get estimate of R3

R3j j ≤ C ∇2u
�� ��2

L2
+ 3ε ∇utk k2L2 : ð57Þ

Similarly, we have

R4j j ≤ C
ð
Htj j ∇uj j utj jdx ≤ C ∇uk kL3 Htk kL2 utk kL6

≤ C ∇uk k1/2L2 ∇2u
�� ��1/2

L2
Htk kL2 ∇utk kL2

≤ ε ∇utk k2L2 + C εð Þ ∇2u
�� ��

L2
Htk k2L2

≤ ε ∇utk k2L2 + C εð Þ Htk k4L2 + C εð Þ ∇2u
�� ��2

L2
,

R5j j ≤ C
ð
Htj j2 ∇uj jdx ≤ C Htk k2L4 ∇uk kL2

≤ C Htk k1/2L2 ∇Htk k3/2L2 ≤ ε ∇Htk k2L2 + C εð Þ Htk k2L2 :
ð58Þ

It is easy to prove that R6 = 0. Thus, taking ε suitable
small and substituting the estimates of R1 – R6 into (52)
lead to

d
dt

Htk k2L2 + ρ1/2ut
�� ��2

L2

	 

+ ∇utk k2L2 + ∇Htk k2L2
� �

≤ C ∇2u
�� ��2

L2
+ C 1 + Htk k2L2

� �
Htk k2L2

+ C 1 + ρ1/2ut
�� ��2

L2

	 

ρ1/2ut

�� ��2
L2
,

ð59Þ

which, together with Gronwall’s inequality, immediately leads
to the desired estimate (50) since (27) implies ∇2u ∈ L2ð0, TÞ,
1 + kHtk2L2 ∈ L1ð0, TÞ, and 1 + kρ1/2utk2L2 ∈ L1ð0, TÞ.

Lemmas 12 and 13 deal with the higher-order estimates
of the solutions which are needed to guarantee the extension
of a local strong solution to a global one.

Lemma 12. Under the assumption (22), it holds for any t ∈
ð0, T� such that

sup
0≤t≤T

∇uk kH1 + Hk kH2ð Þ +
ðT
0

uk k2W2,6 + Hk k2W2,6 dx ≤ C Tð Þ:

ð60Þ

Proof. Applying classical regularity theory to (45) again, we
have

sup
0≤t≤T

∇uk kW1,6 ≤ C ρutk kL6 + uk kL∞ ∇uk kL6ð

+ Hk kL∞ ∇Hk kL6 + ∇uk kL6 + 1Þ
≤ C ∇utk kL2 + ∇uk k2H1 + Hk k2H2

� �
:

ð61Þ

Integrating the inequality above over ð0, tÞ and by (27)
lead to

ðt
0
uk k2W2,6ds ≤ C

ðt
0
∇utk kL2 + ∇uk k2H1 + Hk k2H2ds ≤ C: ð62Þ

Similar proof leads to the same conclusion for H

ðt
0
Hk k2W2,6ds ≤ C: ð63Þ

By virtue of (44), (46), and (48), it is easily to prove that

sup
0≤t≤T

∇uk kH1 + Hk kH2ð Þ ≤ C: ð64Þ

Thus, Lemma 11 is proved.

Finally, the following lemma gives bounds of the first
spatial derivatives of the density ρ.

Lemma 13. Under the assumption (18), it holds for any t ∈
ð0, T� such that

sup
0≤t≤T

ρk kW1,q ≤ C Tð Þ, for q ∈ 2, 6½ �: ð65Þ

Proof. Differentiating (1) with respect to xi ði = 1, 2, 3Þ, mul-
tiplying it by j∂iρjp−2∂iρ with p ≥ 2, and integrating the
resulting equation by parts, we obtain after summing over i
from 1 to 3 that

d
dt

∇ρk kpLp ≤ C
ð
∇uj j ∇ρj jpdx ≤ C ∇uk kW1,6 ∇ρk kpLp , ð66Þ

which, together with Gronwall’s inequality, leads to

∇ρk kpLp ≤ C ∇ρ0k kpLp exp C
ðT
0

uk kW2,6dt
� �

≤ C: ð67Þ

This finishes the proof of Lemma 13.
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With all the a priori estimates in Section 3 at hand, we
are ready to prove the main result of this paper.

Basing on Lemmas 8–13 and using the local existence
theorem (cf. Proposition 2), one can easily extend the strong
solutions of ðρ, u,HÞ beyond t > T∗ by the standard method.
This leads to a contradiction of the assumption on T∗. The
proof of Theorem 3 is therefore complete.
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