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For fuzzy fractional functional evolution equations, the concept of global and local existence and uniqueness will be presented in
this work. We employ the contraction principle and successive approximations for global and local existence and uniqueness,

respectively, as given
c
0D

H
q xðIÞ = f ðI, xIÞ +

ÐI
0 gðI, s, xsÞds,I ≥I0,I ∈ ½0, T�,

xðIÞ = ψðI −I0Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ,
x′ðIÞ = ψ′ðIÞ = ψ1,

8<
: where Cσ denotes the set of fuzzy continuous

mapping defined on ½I0 − σ, T� and σ > 1. We also use this method to solve fuzzy fractional functional evolution equations
with fuzzy population models and distributed delays using fuzzy fractional functional evolution equations. To explain these
results, some theorems are given. Finally, certain fuzzy fractional functional evolution equations are illustrated.

1. Introduction

In reality, to show fractional-order demeanor which can
change with time and space in case of a large number of
physical processes, fractional calculus authorizes the opera-
tions of differentiation and integration of fractional-order.
The fractional-order can be applied to both imaginary and
real numbers. Because of its wide range of applications in
disciplines like mechanics, electrical engineering, signal
processing, thermal systems, robotics and control, signal
processing, and many others, the theory of fuzzy sets con-
tinues to attract academics’ attention [1–3]. Therefore, it
has been noticed that it is the center of increasing interest
of researchers during the past few years.

In real-world systems, delays can be recognized every-
where, and there has been widespread interest in the study
of delay differential equations for many years. Fractional dif-
ferential equations are becoming more important in system

models in biology, chemistry, physics, and other sciences.
There is a large form of evidence about functional differen-
tial equations and their methods. On the other hand, we
can seldom be certain that dynamic in a system is perfectly
modeled using deterministic ordinary differential equations
because the knowledge of dynamical systems is either
unclear or incomplete. If the model’s underlying structure
is based on subjective decisions, one way to incorporate
these is to use the fuzziness aspect, which contributes to
the consideration of fuzzy fractional functional evolution
equations. In the context of fuzzy-valued analysis and set-
valued differential equations, fuzzy differential equations
were first studied as a separate subject. The analysis of fuzzy
differential equations can be expressed in a variety of ways.
In biology, chemistry, physics, and other sciences, fractional
differential equations are becoming more significant in sys-
tem models. The reader is referred to the monographs [4,
5], and the references therein, as there is a large quantity
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of literature dealing with delay differential equations and
their applications. As a new branch of fuzzy mathematics,
the study of fuzzy delay differential equations is growing in
popularity. Over the last few years, both theory and applica-
tions have been widely discussed. The study of fuzzy delay
fractional functional evolution equations has numerous
interpretations in the literature.

Puri and Ralescu defined H-differentiability for fuzzy
functions using the Hukuhara derivative of multivalued
functions. In the context of fuzzy differential equations in a
time-dependent manner, Seikkala and Kaleva proposed
and investigated this definition. The fuzzy initial value issue
has a unique local solution if f is continuous and satisfies the
Lipschitz condition with respect to u, as Kaleva established
in [6].

U ′ Ið Þ = f I, uð Þ, u 0ð Þ = u0 on Em,Dð Þ: ð1Þ

He proved that the Peano theorem is invalid in [6], since
metric space ðEm,DÞ can be locally compact. Peano’s exis-
tence theorem for FDEs on ðEm,DÞ was proven by Nieto
[7] if f is bounded and continuous. Buckley and Feuring
[8] gave reasonable general formulation to the fuzzy first-
order initial value problem. Citations [9, 10] present the
existence of theorems for solutions to the fuzzy initial value
problem under a wide range of assumptions. This H-differ-
entiability-based approach has the disadvantage of having
an increasing length of support for each solution of FDE.
As a result, this method is inappropriate for modeling and
fails to describe any of the complex properties of ordinary
differential equations, that is, stability, periodicity, bifurca-
tion, and other phenomena [11]. This problem is solved
using FDE, which can be read as a family of differential
inclusions [12]. We do not have a derivative for fuzzy-
number-valued equations, which is a key drawback of differ-
ential inclusions.

The above-mentioned method for fuzzy-number-valued
functions with highly generalized differentiability was
recently solved by Bede and Gal [13]. The derivative is main-
tained in this case, and the support length of the FDE solu-
tion may decrease, but the uniqueness is lost. On fuzzy
differential equations, there is a lot of literature. In compar-
ison, FFDEs and their implementations were only briefly
mentioned in a few articles. Park and his colleagues’ [14]
approximate solutions of fuzzy functional integral equations
were studied. Park et al. [15] examined the presence of
almost periodic and asymptotically almost periodic solutions
for FFDEs. For nonlinear fuzzy neutral functional differen-
tial equations, Balasubramaniam and Muralisankar [16]
investigate local uniqueness and existence theorem. Guo
et al. [17] developed existence results for fuzzy impulsive
functional differential equations using Hüllermeier’s level-
wise method [13], which they then applied to fuzzy popula-
tion models. Abbas et al. [18, 19] worked on a partial differ-
ential equation. Niazi et al. [20], Iqbal et al. [21], Shafqat
et al. [22], Abuasbeh et al. [23], and Alnahdi et al.’s [24] exis-
tence and uniqueness of the FFEE were investigated.

Khastan et al. proved the existence of two fuzzy solutions
for fuzzy delay differential equations using the concept of
generalized differentiability. Hoa et al. established the global
existence and uniqueness results for fuzzy delay differential
equations using the concept of generalized differentiability.
Moreover, the authors have extended and generalized some
comparison theorems and stability theorems for fuzzy delay
differential equations with the definition of a new Lyapunov-
like function. Besides that, some very important extensions
of the fuzzy delay dierential equations were introduced.
The author considered the FDE with the initial value

X ′ Ið Þ = f I, x Ið Þð Þ, x I0ð Þ = x0 ∈ Ed, ð2Þ

where f : ½0,∞Þ × Ed ⟶ Ed and the symbol ′ denotes the
first type of Hukuhara derivative, that is, the classical Huku-
hara derivative. O. Kaleva also discussed the properties of
differentiable fuzzy mappings and showed that if f is contin-
uous and f ðI, xÞ satisfies the Lipschitz condition concerning
to x, then, there exists a unique local solution for the fuzzy
initial value problem. V. Lupulescu proved several theorems
stating the existence, uniqueness, and boundedness of solu-
tions to fuzzy differential equations with the concept of the
inner product on the fuzzy space. Guo et al. [25] and Shu
et al. [26] studied the fractional differential equation.

In [27], V. Lupulescu considered the fuzzy functional
differential equation

x′ Ið Þ = f I, xIð Þ,I ≥I0,

x Ið Þ = ϕ I − t0ð Þ ∈ Ed,I0 ≥I ≥I0 − σ,
ð3Þ

where f : ½0,∞Þ × Cσ ⟶ Ed and the symbol ′ denotes the
first type Hukuhara derivative called classical Hukuhara
derivative. The author studied the local and global existence
and uniqueness results by using the method of successive
approximations and contraction principle.

We used Caputo derivative to prove the uniqueness and
existence of several uniqueness and existence theorems for
fuzzy fractional functional differential equations (FFFDEs)
under certain conditions, inspired by the above research:

c
0D

H
q x Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I ∈ 0, T½ �,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ

x′ Ið Þ = ψ′ Ið Þ = ψ1,
ð4Þ

where Cσ denotes the set of fuzzy continuous mapping
defined on ½I0 − σ, T� and σ > 1. xI denotes the fuzzy map-
ping xðIsÞ,I0 − σ ≤ s ≤ T ; that is, xI ∈ Cσ. The goal of this
study is to use the method of contraction principle and con-
secutive approximations to show local and global uniqueness
and existence theorems for the fuzzy fractional functional
differential Equation (4) under certain conditions.

The following is a description of the paper’s structure. As
a warm-up, we will make some basic observations on fuzzy
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sets and the differentiability and integrability features of
fuzzy functions. In Section 3, we show the local uniqueness
and existence theorem for the solution to the initial value
problem for FFFDEs using the successive approximation
method. Section 4 proves the global uniqueness and exis-
tence theorem for the initial value solution. A problem
involving fuzzy fractional functional differential equations
is solved using contraction theory. Finally, we apply what
we have learned about FDEs to two different forms of fuzzy
differential equations: FFFDEs with fuzzy population and
distributed delays models.

2. Preliminaries

The set of all nonempty, compact convex subsets of Rm is
denoted by K cðRmÞ. The Hausdorff distance between sets
A, B ∈K cðRmÞ is defined as

dH A, Bð Þ =max sup
a∈A

inf
b∈B

a − bj jj j, sup
b∈B

inf
a∈A

a − bj jj j
� �

: ð5Þ

Denote fEm = x : Rm ⟶ 0, 1j ; x satisfies ðaÞ − ðdÞ
belowg.

In the above equation,

(a) x is normal due to the exists of Rm, xðu0Þ = 1

(b) x is fuzzy convex, for Rm, 0 ≤ λ ≤ 1, xðλu + ð1 − λÞv
Þ ≥min fxðuÞ, xðvÞg

(c) x is upper semicontinuous function on Rm

(d) ½x�0 = clfs ∈ Rm/xðIÞ > 0g is compact

1 < β ≤ 2, represent ½x�β = fu ∈ Rm/xðIÞ ≥ βg. Then,
from (a) to (b), it shows, β-level set ½x�βI ∈K cðRmÞ∀1 ≤ β
≤ 2. We define ~0 ∈ Em as ~0ðuÞ = 1 if u = 0 and ~0ðuÞ = 0 if u
≠ 0 for later purposes.

Using Zadeh’s extension theorem, we can have scalar
multiplication and addition in fuzzy number space Em as
shown in

x ⊕ y½ �β = x½ �β ⊕ y½ �β, kx½ �β = k x½ �β, ð6Þ

where x, y ∈ Em, k ∈ Rm and 1 ≤ β ≤ 2.
Define D : Em × Em ⟶ R+ by notation

D x, yð Þ = sup
1≤β≤2

dH x½ �β, y½ �β
n o

: ð7Þ

whereD is Hausdorff a metric for nonempty compact sets in
Rm and ðEm,DÞ is a complete metric space [28].

It is very simple to notice that D is a metric in Em. By
using the properties of Dðx, yÞ:

(a) ðEm,DÞ is a complete metric space

(b) Dðx ⊕ z, y ⊕ zÞ =Dðx, yÞ and Dðx, yÞ =Dðx, yÞ∀x, y
, z ∈ Em

(c) Dðλx, λyÞ = jλjDðx, yÞ∀x, y ∈ Em and λ ∈ Rm

(d) Dðx, yÞ ≤Dðx, zÞ +Dðz, yÞ
If we denote kxkG =Dðx, ~0Þ, x ∈ Em, then, kxkG has

properties of an usual norm onEm [29]:

(i) kxkG = 0 if x = ~0

(ii) kλxkG = jλjkxkG∀x, y ∈ Em

(iii) kx + ykG ≤ kxkG + kykG∀x, y ∈ Em

(iv) Dðβx, γxÞ ≤ jβ − γjDðx, ~0Þ, ∀β, γ ≥ 1 orβ, γ ≤ 1, x ∈
Em

On Em, we can describe subtraction !, also known as H
-difference [30], as follows: s ⊖ v has significance if ω ∈ Em,
x = y + z exists.

Suppose a, b ∈ Rm, f ∈CðI, EmÞ, if we represent k f k =
Hð f , ~0Þ, then, k f k has properties of an usual norm on Em

[29],

(i) k f k = 0 if f = ~0

(ii) kλf k = jλjk f k∀f ∈ℂðI, EmÞ, λ ∈ Rm

(iii) k f ⊕ hk ≤ k f k ⊕ khk∀f , h ∈ ðI, EmÞ
(iv) Hðβf , γf Þ ≤ jβ − γjHð f , ~0Þ, ∀β, γ ≥ 0 or β, γ ≤ 0, f

∈ℂðI, EmÞ

Definition 1. The mapping F : I⟶ Em is Hukuhara differ-
entiable at I ∈ I if exists G ′ðIÞ ∈ Em similar to the limits:

lim
h⟶0+

G I0 + hð Þ ⊖G I0ð Þ
h

and lim
h⟶0+

G I0ð Þ ⊖G I0 − hð Þ
h

,

ð8Þ

and is equal and exists to G ′ðIÞ.

We can remember some properties of integrability and
measurability for fuzzy set-valued mappings [28].

Definition 2. If G : I⟶ Em is fuzzy function, that is

G Ið Þ½ �β = G
β
1 Ið Þ, Gβ

2 Ið Þ
h i

, β ∈ 1, 2½ �, ð9Þ

and there exists G ′ðI0Þ for some I0 ∈ I, and now

G ′ I0ð Þ
h iβ

= G
β
1

� �
′ I0ð Þ, G

β
2

� �
′ I0ð Þ

h i
, β ∈ 1, 2½ �: ð10Þ

Definition 3. The mapping G : I ∈ Em is strongly measurable
if for all β ∈ ½1, 2�, then, the set-valued function Gβ : I⟶
MjRmdefine by GβðIÞ = ½GðIÞ�β is Lebesgue measurable.
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The mapping G : I ∈ Em is known as integrably bounded
if there exists an integrable function j like

xj jj j ≤ J Ið Þ∀x ∈ G0 Ið Þ: ð11Þ

Definition 4. Suppose G : I ∈ Em. Then, the equation defines
integral of G over I, which is expressed by

Ð
IGðIÞdt,

½Ð IGðIÞdt�β = Ð IGβðIÞdI = fÐ IGðIÞdI/f : I ⟶ Rm is
measurable selection forGβg∀β ∈ ½1, 2�.

Also, strongly measurable and integrably bounded map-
ping G : I ⟶ Em is said to be integrable over I if and only if

ð
I
G Ið ÞdI ∈ Em: ð12Þ

Proposition 5 (Aumann [31]). G is integrable if G : I ∈ Em is
integrably bounded and strongly measurable.

Proposition 6 (Kaleve [28]). It is integrable over I if G : I
⟶ Em is continuous. Furthermore, function FðIÞ = ÐI

I0
G

ðsÞds,I0,I ∈ I is differentiable in this case, and F ′ðIÞ = G

ðIÞ.

Proposition 7 (Kaleve [28]). Suppose G ,H : I ∈ Em be inte-
grable and λ ∈ Rm. Now

(i)
Ð
IðGðIÞ ⊕HðIÞÞdI =

Ð
IGðIÞdI ⊕

Ð
1HðIÞdI

(ii)
Ð
IλGðIÞdI = λ

Ð
IFðIÞdI

(iii) DðG ,HÞ is integrable
(iv) DðÐ IGðIÞdI,

Ð
IHðIÞdIÞÐ IDðG ,HÞðIÞdI

(v)
ÐI2
I0
GðIÞdI =

ÐI1
I0
GðIÞdI +

ÐI2
I1
GðIÞdI, for I0,

I1,I2 ∈ I

If I is compact interval of Rm, then represent ℂðI, EmÞ =
f f : I ⟶ Em ; f is continuous functions on Ig, equipped with
metric

D x, yð Þ = sup
I∈I

D x Ið Þ, y Ið Þð Þ: ð13Þ

Now, ðℂ,HÞ is a complete metric space.
We call Cσ space Cð½−σ, 0�, EmÞ for positive numbers σ.

Represent it as well:

Dσ x, yð Þ = sup
I∈ −σ,0½ �

D x Ið Þ, y Ið Þð Þ, ð14Þ

metric on space Cσ. For a given constant ρ > 0, put Bρ ≔ fφ
∈ Cσ ;Dσðφ, 0Þ ≤ ρg.

Suppose xð:Þ ∈ Cð½−σ,∞Þ, EmÞ. Now, for all I ∈ ½0,∞Þ,
denoted by x1 element of Cσ defined by x1ðsÞ = xðI + sÞ, s ∈
½−σ, 0�.

Definition 8 (Fuzzy Strongly Continuous Semigroups) [30,
31]. A family fTðIÞ,I ≥ 0g is fuzzy strongly continuous
semigroup of operators from Em into itself if

(i) Tð0Þ = k identity mapping on Em

(ii) TðI ⊕mÞ = TðIÞTðmÞ∀I,m ≥ 0

(iii) function h : ½0,∞½⟶Em, defined by hðIÞ = TðIÞx
at I = 0∀x ∈ Em is continuous

lim
I⟶0+

T Ið Þx = x: ð15Þ

(iv) There are two constants R > 0 and ω like

D T Ið Þx, T Ið Þyð Þ ≤ ReωD x, yð Þ, forI ≥ 0, x, y ∈ Em: ð16Þ

Specially, if ω = 0 and Rm = 1, fTðIÞ,I ≥ 0g is a con-
traction fuzzy semigroup.

Lemma 9. If G : ½0,∞Þ × Cσ ⟶ Em is jointly continuous
function and x : ½−σ,∞Þ⟶ Em is continuous function,
now, function I↦GðI, xIÞ: ½0,∞Þ⟶ Em is also
continuous.

Proof. Assume that fixed ðτ, φÞ × Cσ and ε > 0. G : ½0,∞Þ ×
Cσ ⟶ Em are jointly continuous, there exists δ1 > 0 that is
for all ðI, ψÞ ∈ ½0,∞Þ × Cσ with jI − τj +Dσðφ, ψÞ < δ1, D½
GðI, ψÞ, Gðτ, φÞ� < ε. On the other way, x : ½−σ,∞Þ⟶
Em is continuous; now, it is uniformly continuous on com-
pact interval I1 = ½max f−σ, τ − σ − δ1g, τ + δ1�. There exists
δ2 > 0; for all I1,I2 ∈ I1 with jI1 −I2j < δ2, we have
D½xðI1Þ, xðI2Þ� < δ1/2. After, for all s ∈ ½−σ, 0�, τ + s ∈ I1,
and I + s ∈ I1 if jI − τj < δ1/2, now, jðI + sÞ − ðτ + sÞj < δ2,
and it shows that

Dσ xI, xτð Þ = sup
−σ≤s≤0

D xI sð Þ, xτ sð Þ½ �

= sup
−σ≤s≤0

D x I + sð Þ, x τ + sð Þ½ � ≤ δ1/2:
ð17Þ

Therefore, jI − τj +DσðxI, xτÞ < δ1, since G is jointly
continuous, D½GðI, xIÞ, Gðτ, xτÞ� < ε. This implies that
function I↦ GðI, xIÞ: ½0,∞Þ⟶ Em is continuous.

Remark 10. If G : ½0,∞Þ × Cσ ⟶ Em is jointly continuous
function and x : ½−σ,∞Þ⟶ Em is continuous function,
then, functionI↦ GðI, x1Þ: ½0,∞Þ⟶ Em on each compact
interval ½τ, T� is integrable. Furthermore, function FðIÞ = ÐI

τ

Gðs, xsÞds,I ∈ ½τ, T� is differentiable in this case, and F ′ðIÞ
=GðI, xIÞ.

Remark 11. If G : ½0,∞Þ × Cσ ⟶ Em is jointly continuous
function and x : ½−σ,∞Þ⟶ Em is continuous function,
then, function I↦GðI, x1Þ: ½0,∞Þ⟶ Em on each
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compact interval ½τ, T� is bounded. On each compact inter-
val ½0, T�, function I↦ GðI, 0Þ: ½0,∞Þ⟶ Em is also
bounded.

Definition 12. We say that G : ½0,∞Þ × Cσ ⟶ Em is locally
Lipschitz if a, b ∈ ½0,∞Þ and ρ > 0, and there exists L > 0,

D G½ I, φð Þ, G I, ψð Þ ≤ LDσ φ, ψð Þ, a ≤I ≤ b, φ, ψ ∈ Bρ:

ð18Þ

Lemma 13. Assume that G : ½0,∞Þ × Cσ ⟶ Em is locally
Lipschitz and continuous. Now, for all compact interval J ⊂
½0,∞Þ and ρ > 0, there exists K > 0,

D G I, φð Þ, ~0� �
≤K ,I ∈ J , φ ∈ Bρ: ð19Þ

Proof. I ∈ J , then

D G I, φð Þ, ~0� �
≤D G I, φð Þ,G I, 0ð Þ½ � +D G I, 0ð Þ, ~0� �
≤ LDσ φ, 0ð Þ +D G I, 0ð Þ, ~0� �

≤ ρL + η,
ð20Þ

where η≔ sup
I∈J

D½GðI, 0Þ, ~0�.

Definition 14 (see [32]). The RL fractional derivative is
defined as

aD
p
I f Ið Þ = d

dI

� 	n+1ðI
a
I − τð Þn−p f τð Þdτ, n ≤ p ≤ n + 1:

ð21Þ

Definition 15 (see [32]). The Caputo fractional derivatives
c
aD

α
IfðIÞ of order α ∈ E+ are defined by

c
aD

α
I f Ið Þ= aD

α
I f Ið Þ − 〠

n−1

k=0

f kð Þ að Þ
k!

I − að Þk
 !

, ð22Þ

respectively, where n = ½α� + 1 for α ∉N0 ; n = α for α ∈N0.
We investigate the Caputo fractional derivative of order

1 < α ≤ 2 in this study; e.g.,

c
aD

3/2
I f Ið Þ= aD

3/2
I f Ið Þ − 〠

n−1

k=0

f kð Þ að Þ
k!

I − að Þk
 !

: ð23Þ

Definition 16 (see [33]). The Wright function ψα is defined
by

ψα θð Þ = 〠
∞

n=0

−θð Þn
n!Γ −αn + 1 − αð Þ

=
1
π
〠
∞

n=1

−θð Þn
n − 1ð Þ!Γ nαð Þ sin nπαð Þ,

ð24Þ

where θ ∈ℂ with 0 < α < 1.

Lemma 17 (see [33]). Let fCðIÞgI ∈ Rm be a strongly con-
tinuous cosine family in X satisfying kCðIÞkLbðXÞ ≤MeωjIj,
I ∈ Rm, and let A be the infinitesimal generator of fCðIÞg
I ∈ Rm. Then, for Re λ > ω, λ2 ∈ ρðAÞ

λR λ2 ; A

 �

x =
ð∞
0
e−λIC Ið ÞxdI, R λ2 ; A


 �
x

=
ð∞
0
e−λIS Ið ÞxdI, for x ∈ X:

ð25Þ

Lemma 18. For xðIÞ = ψ0, if uI is the solution of Equation
(4), then, the solution uI is given by

xI = Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds,I ∈ 0, T½ �,

ð26Þ

such that

Cq Ið Þ =
ð∞
0
MqC Iqζð Þdζ,Kq Ið Þ =

ðI
0
Cq sð Þds, Pq Ið Þ

=
ð∞
0
qζMqC Iqζð Þdζ,

ð27Þ

where CqðIÞ and KqðIÞ are continuous with Cð0Þ = I and
Kð0Þ = I, jCqðIÞj ≤ c, c > 1 and jKqðIÞj ≤ c, c > 1, ∀I ∈ ½0,
T�.

3. Local Uniqueness and Existence

For G : ½0,∞Þ × Cσ ⟶ Em, we assume the fuzzy Caputo
functional equation:

C
0D

q
Hx Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I ∈ 0, T½ �,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ,

u′ Ið Þ = ψ′ Ið Þ = ψ1:

ð28Þ

According to the solution of FFFDE (4) on interval
½I0, b�, we mean continuous function x : ½I0 − σ, bÞ⟶
Em; that is, xðIÞ = φðI −I0Þ for I ∈ ½I0 − σ, b� for I ∈
½0, T� and x is differentiable on ðI0, b� and c

0D
q
HxðIÞ =

f ðI, xIÞ +
ÐI
0 gðI, s, xsÞds,I ∈ ½0, T�.

Theorem 19. Suppose set G : ½0,∞Þ × Cσ ⟶ Em is locally
Lipschitz and continuous. Now, for all ðI0, φÞ ∈ ½0,∞Þ × Cσ,
there exists I >I0 ; that is, FFFDE (4) has unique solution
x : ½I0 − σ,I�⟶ Em.
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Proof. Any positive number will satisfy as ρ > 0. Then, there
exists L > 0; that is, G is Lipschitz locally.

D G I, φð Þ, G I, ψð Þ½ � ≤ LDσ φ, ψð Þ,I0 ≤I ≤ h, φ, ψ ∈ B2ρ,
ð29Þ

for some h >I0. According to Lemma 13, there exists
K > 0, D½FðI, φÞ, ~0� ≤K for ðI, φÞ ∈ ½I0, h� × B2ρ. Sup-
pose T ≔min fh, ρ/Kg. We assume set Em of all functions
x ∈ Cð½I0 − σ, T�, EmÞ; then, xðIÞ = φðI −I0Þ on ½I0 − σ,
I0� andD½xðIÞ, ~0� ≤ 2ρ on ½I0, T�. If y ∈ Em, we define con-
tinuous function ω : ½I0 − σ, T�⟶ Em by

Now, for I ∈ ½0, T�

D w Ið Þ, ~0� �
≥D

ðI
0
f s, ysð Þ, ~0�ds� 

+
ðI
0
D

ðI
0

g I, s, ysð Þ, ~0
 �
ds

� 
ds ≥ 2ρT ,

ð31Þ

and so ω ∈ Em. We will use method of successive approxima-
tions to solve (4) by constructing series of continuous func-
tions. xm : ½I0 − σ, T�⟶ Em beginning with initial
continuous function

x0 Ið Þ≔
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1I ∈ 0, T½ �:
ð32Þ

Clearly, D½c0Dq
Hx

0ðIÞ, ~0� ≤ ρ on ½0, T�. Further, define

xm+1 Ið Þ≔
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xmsð Þ +

ðI
0
g I, s, xmsð Þds

� 
ds,I ∈ 0, T½ �,

ð33Þ

if = 0, 1,⋯ . Then, for I ∈ ½0, T�, now

D x1 Ið Þ, u0 Ið Þ� �
≤D

ðI
0
I − sð Þq−1Pq I − sð Þ

�

� f s, x0s

 �

+
ðI
0
g I, s, x0s

 �

ds
� 

ds, ~0
	

≤K T − 0ð Þ:
ð34Þ

By Equations (29) and (33), we find

D xm+1 Ið Þ, xm Ið Þ� �
≤D

ðI
0
I − sð Þq−1Pq I − sð Þ

�

� f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds,

ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds
!

≤
ðI
0
L2Dσ xms +

ðI
0
g I, s, xmsð Þ

� 
,

�

xm−1
s +

ðI
0
g I, s, xm−1

s

 �

ds
� 	

ds

≤
ðI
0
L2 sup

θ∈ s−T ,s½ �
D xm θð Þ +

ðI
0
g I, s, xm θð Þð Þds

� 
,

�

xm−1 θð Þ +
ðI
0
g I, s, xm−1 θð Þ
 �

ds
� 	

ds,I ∈ 0, T½ �:

ð35Þ

In particular,

D x2 Ið Þ, x1 Ið Þ� �
=
K

L2
L2 I − Tð Þ� �2

2!
,I ∈ 0, T½ �: ð36Þ

If we suppose

D xm Ið Þ, xm−1 Ið Þ� �
≤
K

L2
L2 I − Tð Þ� �m

m!
,I ∈ 0, T½ �, ð37Þ

now

D xm+1 Ið Þ, xm Ið Þ� �
=
K

L2
L2 I − Tð Þ� �m+1

m + 1ð Þ! ,I ∈ 0, T½ �: ð38Þ

(37) holds for any m ≥ 2, according to mathematical
induction. As a result, the sequence ∑∞

m=2D½xmðIÞ, xm−1ðIÞ�
is a sequence fxmgm≥0 that is uniformly convergent on ½0, T�.
As a result, there is a continuous function x : ½0, T�⟶ Em,

w Ið Þ≔
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0, t0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, ysð Þ +

ðI
0
g I, s, ysð Þds

� 
ds ∈ 0, T½ �:

ð30Þ
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which is sup
0≤I≤T

D½xmðIÞ, xðIÞ�⟶ 0 as m⟶∞. Since then

D f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
, f s, xm−1

s

 �

+
ðI
0
g I, s, xm−1

s

 �

ds
� � 	

≤ L2Dσ xms +
ðI
0
g I, s, xmsð Þds

� 
, xs +

ðI
0
g I, s, xsð Þds

� � 	
ds

≤ sup
0≤I≤T

D xm Ið Þ, x Ið Þ½ �:

ð39Þ

We have deduced

D f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds,

�

f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds
	
⟶ 0,

ð40Þ

uniformly on ½0, T� as m⟶∞. Therefore,

D

ðI
0

f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds,

�
ðI
0

f s, xm−1
s


 �
+
ðI
0
g t, s, xm−1

s


 �
ds

� 
ds
	

≤
ðI
0
D f s, xmsð Þ +

ðI
0
g I, s, xmsð Þds

� 
ds,

�

f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds
	
ds:

ð41Þ

It follows that

lim
m⟶∞

ðI
0

f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds

=
ðI
0

f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds,I ∈ 0, T½ �:

ð42Þ

Extending x to ½I0 − σ,I0� in usual way by xðIÞ = f ðI,
xIÞ +

ÐI
0 gðI, s, xsÞds forI ∈ ½0, T�, then, by (33), we obtain

that

x Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þ

� 
ds,∈ 0, T½ �,

ð43Þ

and x is the solution for Equation (4). To prove uniqueness,
suppose y : ½I0 − σ, T�⟶ Em be second solution for (4).

For all I ∈ ½0, T�,

D x Ið Þ, y Ið Þ½ � =D

ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ½

�

+
ðI
0
g I, s, xsð Þds


ds,
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds
	
≤Dσ xs, ysð Þ

≤ L2
ðI
0

sup
θ∈ s−σ,s½ �

D x θð Þ, y θð Þ½ �ds:

ð44Þ

If we assume ξðsÞ≔ sup
r∈½s−σ,s�

D½xðrÞ, yðrÞ�, s ∈ ½0, T�, now

ξ Ið Þ ≤ L2
ðI
0
ξ sð Þds, ð45Þ

and by Gronwall’s lemma, we obtained ξðIÞ = 0 on ½0, T�. This
establishes uniqueness solutions for (4).

Remark 20. The contraction principle can be used to prove
local uniqueness and existence theorem for initial value
problems (28). Suppose P : Em ⟶ Em be defined as

Pxð Þ Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þds

� 
ds,I ∈ 0, T½ �,

ð46Þ

For I ∈ ½0, T�,

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ � =D

ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ½

�

+
ðI
0
g I, s, xsð Þds


ds,
ðI
0
I − sð Þq−1

� Pq I − sð Þ f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds
	

≤ L2Dσ xs, ysð Þ ≤ L2
ðI
0

sup
θ∈ s−σ,s½ �

D x θð Þ, y θð Þ½ �ds

≤ L2ID x, yð Þ:
ð47Þ

Hence

D Px, Pyð Þ ≤ L2ID x, yð Þ∀x, y ∈ Em, ð48Þ

where P : Em ⟶ Em is contraction only if LI < 2. However,
if we deal with successive approximations indirectly (33), we
can show that iterations converge, and initial value problem
(28) has unique solution on interval ½0, T� under merely the
assumption KT < ρ, without constraint LI < 2. The dis-
crepancy is resolved by noting that all functions x ∈ Cð½I0
− σ, T�, EmÞ, xðIÞ = φðI −I0Þ on ½0, T� have several
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equivalent metrics on space Em. In fact, metric

Dσ x, yð Þ = sup
I0−σ≤I≤T

D x Ið Þ, y Ið Þ½ �e−aI, a > 0, ð49Þ

is equivalent to metric Dðx, yÞ. Then

D x, yð Þe−aT ≤Dσ x, yð Þ ≤D x, yð Þ∀x, y ∈ Em: ð50Þ

Using metric (49) and function G : ½0,∞Þ × Cσ ⟶ Em

is continuous and satisfies the global Lipschitz condition:

D G I, φð Þ, G I, ψð Þ½ � ≤ L2Dσ φ, ψð Þ, 0 ≤I ≤ T , φ, ψ ∈ Cσ:

ð51Þ

In [34], uniqueness and existence of solution for (28) on
interval ½0, T� were illustrated.

Theorem 21. Let function G : ½0,∞Þ × Cσ ⟶ Em be locally
Lipschitz and continuous. If ðI0, φÞ, ðI0, ψÞ ∈ ½0,∞Þ × Cσ
and xðφÞ: ½I0 − σ, ω1Þ⟶ Em and xðψÞ: ½I0 − σ, ω2Þ⟶
Em are unique solutions of (28) with xðIÞ = f ðI, xIÞ +

ÐI
0 g

ðI, s, xsÞds on ½I0 − σ,I0�, now

D x φð Þ Ið Þ, x ψð Þ Ið Þ½ � ≤Dσ φ, ψð ÞeL2 I−0ð Þ∀I ∈ I0, ω½ Þ,
ð52Þ

where ω =min fω1, ω2g.

Proof. On ½I0, ωÞ solution, xðφÞ satisfies relation

x Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þds

� 
ds,I ∈ 0, ω½ �,

ð53Þ

and xðψÞ satisfies the same relation as φ, but with ψ instead
of φ. Then, for I ∈ ½I0, ωÞ,

D x φð Þ Ið Þ, x ψð Þ Ið Þ½ � ≤D φ 0ð Þ, ψ 0ð Þ½ � +D Cq Ið Þφ0, Cq Ið Þψ0
� �

+D Kq Ið Þφ1,Kq Ið Þψ1
� �

+
ðI
0
D I − sð Þq−1Pq I − sð Þ�

� f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds, I − sð Þq−1Pq I − sð Þ

� f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds

≤Dσ φ, ψð Þ

+Dσ φ0, ψ0ð Þ +Dσ φ1, ψ1ð Þ

+ L2
ðI
0

sup
r∈ I0−σ,s½ �

Dσ x φð Þ rð Þ, x ψð Þ rð Þ½ �ds:

ð54Þ

If suppose ωðsÞ = sup
r∈½I0−σ,s�

Dσ½xðφÞðrÞ, xðψÞðrÞ�,I0 ≤ s ≤

I, then

ω Ið Þ ≤Dσ φ, ψð ÞeLI,I0 ≤I < ω, ð55Þ

implying that (52) holds.

4. Global Existence and Uniqueness

For a given constant a > 0, consider set Em
a of all functions

x ∈ Cð½I0 − σ,∞Þ, EmÞ; that is, xðIÞ = f ðI, xIÞ +
ÐI
0 gðI, s,

xsÞds on ½I0 − σ,I0� and sup
I≥I0−σ

D½xðIÞ, ~0�e−aI <∞. On

Em
a , define the following metric:

Dσ x, yð Þ = sup
II0−σ

D x Ið Þ, y Ið Þ½ �e−aI: ð56Þ

Lemma 22. ðEm
a ,DaÞ is complete metric space.

Proof. Suppose fxmgm≥2 be Cauchy sequence in Em
a . Now,

for each ε > 0, there exists mε ∈ℕ∀m, p ≥mε, and we obtain
Dσðxm, ypÞ < ε. Hence

D xm Ið Þ, yp Ið Þ
h i

≤Dσ xm, yp
� �

eaI ≤ εeI, ð57Þ

and so

D xm Ið Þ, xp Ið Þ� �
≤ εeaI∀m, p ≥mε andI ≥I0 − σ: ð58Þ

For each I ≥I0 − σ, fxmðIÞgm≥2 is Cauchy sequence in
Em. ðEm,DÞ is a complete metric space, and there exists
xðIÞ = lim

m⟶∞
xmðIÞ for I ≥I0 − σ. Now, x ∈ Eσ. Evidently,

xðIÞ = f ðI, xIÞ +
ÐI
0 gðI, s, xsÞds on ½I0 − σ,I0�. From

(58), we get lim
p⟶∞

D½xmðIÞ, xðIÞ� ≤ εeaI, ∀m ≥mε and I ≥

I0. Now, x is continuous function on ½I0,∞Þ. Suppose
ε > 0 and s ≥I0. Then, there exists m =mε

′ ∈ℕ, D½xmðIÞ,
xðIÞ�ðε/6ÞeaðI−sÞ, ∀I ≥I0. Since xm is continuous function,
now, there exists δ1ε > 1, D½xmðIÞ, xmðsÞ� ≤ ðε/3Þ for I ≥I0.
Sincexm is continuous function, then, there exists δ1ε > 1 that
is D½xmðIÞ, xmðsÞ� ≤ ðε/3Þ for I ≥I0 with jI − sj ≤ δ1ε .
There exists δ2ε > 1; that is, eaðI−sÞ ≤ 2 for I ≥I0 with jI −
sj ≤ δ2ε . Assume δε =min fδ1ε , δ2εg. Now, for every I ≥I0
with jI − sj ≤ δε,

D x Ið Þ, x sð Þ½ � ≤D x Ið Þ, xm Ið Þ½ � +D xm Ið Þ, xm sð Þ½ �
+D xm sð Þ, x sð Þ½ � ≤ ε

6

� �
ea I−sð Þ +

ε

3
+
ε

6
≤ ε,

ð59Þ

where x is continuous function on ½I0,∞Þ. Now

sup
I≥I0−σ

D x Ið Þ, ~0� �
e−aI <∞: ð60Þ
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Since

D x Ið Þ, ~0� �
≤D x Ið Þ, xm Ið Þ½ � +D xm Ið Þ, ~0� �

∀I

≥I0 − σ andm ≥ 1:
ð61Þ

Now

sup
I≥I0−σ

D x Ið Þ, 0̂� �
e−aI ≤ sup

I≥I0−σ
D x Ið Þ, xm Ið Þ½ �e−aI

+ sup
I≥I0−σ

D xm Ið Þ, ~0� �
e−aI

=Dσ x, xmð Þ + sup
I≥I0−σ

D xm Ið Þ, ~0� �
e−aI,

ð62Þ

lim
m⟶∞

Dσðx, xmÞ = 1 and xm ∈ Em
a ∀m ≥ 2, we get

sup
I≥I0−σ

D x Ið Þ, ~0� �
e−aI <∞: ð63Þ

Moreover, x ∈ Em
a . So, ðEm

a ,DaÞ is complete metric space.
The fuzzy differential Equation (28) is then considered

under the following conditions:
ðJ1Þ There exist L > 0; that is

D G I, φð Þ, G I, ψð Þ½ � < L2Dσ φ, ψð Þ∀φ, ψ ∈ Cσ andI ≥ 1:
ð64Þ

ðJ2ÞG : ½0,∞Þ × Cσ ⟶ Em is jointly continuous.
ðJ3Þ There exists M > 0 and b > 0,

D G I, 0ð Þ, ~0� �
≤MebI∀I ≥ 1: ð65Þ

Suppose P : Cð½−σ,∞Þ, EmÞ⟶ Cð½−σ,∞Þ, EmÞ, defined
as

Lemma 23. If G : ½0,∞Þ × Cσ ⟶ Em satisfies assumptions
ðJ1Þ − ðJ2Þ and a > b, then, PðEm

a Þ ⊂ Em
a .

Proof. Suppose x ∈ Em
a . For each I ≥I0,

D Pxð Þ Ið Þ, 0̂� �
=D φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +

ðI
0
I − sð Þq−1

�

� Pq I − sð Þ f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds, ~0


≤D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+D

ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ½

�

+
ðI
0
g I, s, xsð Þds


ds, ~0


≤D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+
ðI
0

L2Dσ xs, ~0

 �

+Mebs
� �

ds ≤D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
+ L2

ðI
0

Dσ xs, ~0

 �
 �

ds +
M
b
ebI:

ð67Þ

Since x ∈ Em
a , there exists ρ > 1, D½xðIÞ, ~0� ≤ ρeaI∀I ≥

I0 − σ,

sup
θ∈ −σ,0½ �

D x I + 0ð Þ, ~0� �
≤D φ 0ð Þ, ~0� �

≤ ρeaI∀I ≥I0,

D Pxð Þ Ið Þ, ~0� �
≤D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+ L2
ðI
0

sup
θ∈ −σ,0½ �

D x I + 0ð Þ, ~0� �
ds +

M
b
ebI

≤D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
+
ρL2

a
eaI0 +

M
b
ebI:

ð68Þ

Thus

sup
t≥I0

D Pxð Þ Ið Þ, ~0� �
e−aI ≤ sup

I≥I0

�
D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+
ρL2

a
eaI0 +

M
b
ebI
	
e−aI

≤D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
+
1
b

ρL2 +M

 �

:

ð69Þ

Pxð Þ Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

Dσ φ, ψð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þ

� 
ds,I ∈ 0, T½ �:

8>>><
>>>:

ð66Þ
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Let

3K = sup
θ∈ I0−σ,I0½ �

D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
:

ð70Þ

Now

sup
I≥I0

D Pxð Þ Ið Þ, ~0� �
e−aI ≤ 3K +

1
b

ρL2 +M

 �

<∞, ð71Þ

and Px ∈ Em
a .

Lemma 24. If F : ½0,∞Þ × Cσ ⟶ Em satisfies ðJ1Þ − ðJ3Þ
and L < a, then, P is contraction on Em

a .

Proof. Suppose x, y ∈ Em
a . Now, for each I ≥I0

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ � =D

ðI
0
I − sð Þq−1Pq I − sð Þ

�

� f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds,
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds

≤
ðI
0
L2Dσ xs, ysð Þds

= L2
ðI
0

sup
r∈ −σ,0½ �

D x r + sð Þ, y r + sð Þ½ �ds

= L2
ðI
0

sup
θ∈ s−σ,s½ �

D x θð Þ, y θð Þ½ �ds:

ð72Þ

From (29), D½xðIÞ, yðIÞ� ≤Dσðx, yÞeaI∀I ≥I0 − σ. So

sup
r∈ −σ,0½ �

D x rð Þ, y rð Þ½ � ≤Dσ x, yð ÞeI∀I ≥I0: ð73Þ

For every I ≥I0,

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ � ≤ L2 sup
r∈ −σ,0½ �

D x rð Þ, y rð Þ½ �ds

=
L2

a
Da x, yð ÞeaI0 ea I−I0ð Þ − 1

h i
,

ð74Þ

and so

Dσ Px, Pyð Þ = sup
I≥I0−σ

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ �e−aI

≤
L2

a
Da x, yð Þ ≤Da x, yð Þ:

ð75Þ

Hence

L2

a
< 1: ð76Þ

Therefore, P is contraction on Em
a .

Theorem 25. Let function G : ½0,∞Þ × Cσ ⟶ Em satisfies
assumptions ðJ1Þ − ðJ3Þ. Then, for each ðI0, φÞ ∈ Cσ, FFDE
(28) has unique solution on ½I0,∞Þ.

Proof. Assume

a >max b, L2
� �

: ð77Þ

We can deduce that the operator P : Ea ⟶ Ea is con-
traction using Lemmas 23 and 24. As a result, there is only
one x ∈ Em

a , which is Px = x. x is continuous function,

x Ið Þ = f I, xIð Þ +
ðI
0
g I, s, xsð Þds, ð78Þ

on ½I0 − σ, T�. Moreover,

x Ið Þ = Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, xsð Þ +
ðI
0
g I, s, xsð Þ

� 
ds,

ð79Þ

for every T ≥I0. Since x is continuous and G satisfies ðJ2Þ,
by Lemma 9 and Remark 10,

s↦ f s, xsð Þ +
ðI
0
g I, s, xsð Þds, ð80Þ

is an integrable function on ½I0, T�. By Remark 10, x is dif-
ferentiable function and

c
0D

H
q x Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds, ð81Þ

for every I0 ≥ T . Theorem 25 is proved.

5. Applications

5.1. Fuzzy Fractional Functional Evolution Equations with
Distributed Delay. In below sections, we will look at class
of delay fuzzy fractional functional evolution equations with
distributed delay. Consider following delay fuzzy fractional
functional differential equations with m ∈ℕ and 0 < σ1 <
σ2 < σm < σ delay times:
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c
0D

H
q x Ið Þ =

ðI
−σ

G0 s, xI I + sð Þð Þ +
ðI
0
g I, s, xsð Þds

� 	
ds + 〠

m

i=1
G i I, xI I − σið Þð Þ,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,

x′ Ið Þ = ψ′ Ið Þ = ψ1,

ð82Þ

where G i : ½0,∞Þ × Em ⟶ Em, i = 0, 1,⋯,m, are some
functions. Let, function G i : ½0,∞Þ × Cσ ⟶ Em satisfies the
following assumptions:

ðJ1 ′Þ There exist Li > 0,

D G i I, xð Þ, G i I, yð Þ½ � ≤ Li x, y½ �∀x, y ∈ Em andI ≥ 0: ð83Þ

ðJ2 ′ÞG i : ½0,∞Þ × Em ⟶ Em is jointly continuous.
ðJ3 ′Þ There exist Mi > 0 and bi > 0 that is

D G i I, 0ð Þ, ~0� �
≤Mie

biI∀I ≥ 0: ð84Þ

Then, function G : ½0,∞Þ × Cσ ⟶ Em is defined as

G I, φð Þ =
ðI
−σ

G0 I0, φ I0ð Þð Þ +
ðI
0
g I0, s, xsð Þds

� 	
ds

+ 〠
m

i=1
G i I, φ I − σið Þð Þ,

ð85Þ

and satisfies also assumptions ðJ1Þ − ðJ2Þ. F is jointly con-
tinuous. For all i = 0, 1,⋯,m. For function G i, suppose Li
be Lipschitz constant. Now

D G I, φð Þ, G I, φð Þ½ �

≤
ðI
−σ
D F0 I0, φ I0ð Þð Þ,F0 I0, ψ I0ð Þð Þ½ �dI0

+ 〠
m

i=1
D F i I, φ −σið Þ, ψ −σið Þð Þ½ �

≤ σL0 + 〠
m

i=1
Li

 !
Dσ φ, ψð Þ,

ð86Þ

and G satisfies ðJ1Þ. We obtain

D G I, 0ð Þ, ~0� �
≤D a, ~0

� �
+
ðI
−σ
D F0 I0, 0ð Þ, ~0� �

dI0

+ 〠
m

i=1
D G i I0, 0ð Þ, ~0� �

=D a, ~0
� �

+
M0
b0

1 − eb0σ
� �

+ 〠
m

i=1
Mie

biI:

ð87Þ

Now, we find Mm+1 > 1 and bm+1 > 1,

D a, ~0
� �

+
M0
b0

� 	
1 − eb0σ
� �

≤Mm+1e
bm+1I∀I ≥ 0, ð88Þ

and we get

D G I, φð Þ, ~0� �
≤MebI0∀I ≥ 0, ð89Þ

where M ≔max fMi ; i = 1, 2,⋯,m + 1g and b =max fbi ; i
= 1, 2,⋯,m + 1g. As a result, G satisfies ðJ3Þ.

As a result, we get below result.

5.2. Fuzzy Population Models. First, we demonstrate how to
use the following method to explain the initial problem for
fuzzy fractional functional delay differential equation:

c
0D

H
q x Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I ∈ 0, T½ �,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ,

x′ Ið Þ = ψ′ Ið Þ = ψ1,
ð90Þ

where G : ½0,∞Þ × Em ⟶ Em is derived from the continu-
ous function F : ½0,∞Þ × Rm ⟶ Rm using Zadeh’s exten-
sion concept. Since ½GðI, xIÞ�β = f ðI, ½xI�βÞ∀β ∈ ½1, 2� and
x ∈ Em, then, Kaleva [10] denotes

x Ið Þ½ �β = xβ1 Ið Þ, xβ2 Ið Þ
h i

, x′ Ið Þ
h iβ

= xβ1
� �

′ Ið Þ, xβ2
� �

′ Ið Þ
h i

, φ Ið Þ½ �β = φ
β
1 Ið Þ, φβ

2 Ið Þ
h i

,

G I, x I − σð Þð Þ½ �β = G
β
1 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

, Gβ
2 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �h i

,

G
β
1 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

=min F I, uð Þ ; u ∈ xβ1 I − σð Þ, xβ2 I − σð Þ
h in o

,

G
β
2 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

=max F I, uð Þ ; u ∈ xβ1 I − σð Þ, xβ2 I − σð Þ
h in o

:

ð91Þ

Problem (90) is now transformed into the following
parameterized delay differential model using these notations:

xβ1
� �

′ Ið Þ = G
β
1 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

,I ≥ 0,

xβ2
� �

′ Ið Þ = G
β
2 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

,I ≥ 0,

ð92Þ

with initial conditions

xβ1
� �

Ið Þ = φ
β
1 ,−σ ≤I ≤I0,

xβ2
� �

′ Ið Þ = φ
β
2 ,−σ ≤I ≤I0:

ð93Þ

We can solve the methods (92) and (93). If ðxβ1 , xβ2 Þ is the
solution (92) and (93), we can establish a fuzzy solution
xðIÞ for Equation (90) using representation theorem of
Negoita-Ralescu [35]:

x Ið Þ½ �β = xβ1 , x
β
2

h i
∀β ∈ 1, 2½ �: ð94Þ

5.2.1. Fuzzy Fractional Functional Time-Delay Malthusian
Model. Suppose the initial value problem for a Malthusian
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model with a fuzzy fractional functional time delay in the
example:

N ′ Ið Þ = rN I − 1ð Þ,I ≥ 0,

N Ið Þ =N 0,−1 ≤I ≤ 0,
ð95Þ

N 0½ �β = 1 − βð Þ −1, 1½ �, β ∈ 1, 2½ � and r > 1: ð96Þ
Zadeh’s extension concept is used to obtain function

G : Em ⟶ Em described by GðN ðI − 1ÞÞ = rN ðI − 1Þ
from function f ðuÞ = ru, u ∈ Rm.

If ½N ðIÞ�β = ½N 1ðIÞ,N 2ðIÞ�, then

N ′ Ið Þ
h iβ

= N 1′ Ið Þ,N 2′ Ið Þ
h i

, rN I − 1ð Þ½ �β

= rN 1 I − 1ð Þ, rN 2 I − 1ð Þ½ �:
ð97Þ

As a result, we solve fractional functional differential
equations:

N 1′ Ið Þ = rN 1 I − 1ð Þ,I ≥ 0,

N 2 Ið Þ = −α,−1 ≤I ≤ 0,
ð98Þ

N 2′ Ið Þ = rN 2 I − 1ð Þ,I ≥ 0,

N 1 Ið Þ = α,−1 ≤I ≤ 0,
ð99Þ

where α = 1 − α. The system of steps is used to solve Equa-
tion (98). For 0 ≤I ≤ 1, we get

−rα,

N 1 0ð Þ = −α,

(
ð100Þ

with solution N 1ðIÞ = −α − rαI for 0 ≤I ≤ 1. For 1 ≤I

≤ 2, we get

−rα − r2α I − 1ð Þ,
N 1 1ð Þ = −α − rα,

(
ð101Þ

with the solution N 1ðIÞ = −α − rα − rαI − ð1/2Þr2α
ðI − 1Þ2 for 1 ≤I ≤ 2. For each n ∈ℕ, the solution of (98)
has polynomial form N 1ðIÞ =∑n+1

p=1apI
p on ½n, n + 1�. Also,

the solution of (99) has polynomial form when N − 2ðIÞ
=∑n+1

p=1bpI
p on ½n, n + 1�. According to Negoita-Ralescu

representation theorem [35], the solution of (95) has form
on ½n, n + 1�:

N Ið Þ½ �β = 〠
n+1

p=1
apI

p, 〠
n+1

p=1
bpI

p

" #
, ð102Þ

for every β ∈ ½1, 2� and n ∈ℕ.

Example 1. One of the deficiency of population models in
time-delay Malthusian model is that in every case, when
population change instantly, birth rate is supposed to

change. Moreover, when members of the population hit a
certain age before giving birth, we should assume time delay
in the model [34].

N ′ Ið Þ = rN I − σð Þ, ð103Þ

where population growth rate at time I is determined by
population at time I − σ.

Also, assume, for time-delay Malthusian model, a more
realistic approach should take into account both effect of a
time delay and changing of environment. Therefore, it is
interesting and necessary to study the general delay-
distributed equation:

N ′ Ið Þ = 〠
n

p=1
rpN I − σp


 �
+
ðI
−σ
rN I + sð Þds: ð104Þ

5.2.2. Fuzzy Fractional Functional Ehrlich Ascites Tumor
Model. To explain tumor model of fuzzy fractional function
Ehrlich Ascites, consider fuzzy delay equation:

N ′ Ið Þ = rN I − 1ð Þ 1 −N I − 1ð Þð Þ,I ≥ 0,

N Ið Þ =N 0,−1 ≤I ≤ 0,
ð105Þ

where ½N 0�β = α½−1, 1�, α = ðð1 − βÞ/2Þ, β ∈ ½0, 1�. Assume
that r ∈ ð0, 2�. The function G : Em ⟶ Em, defined by Gð
N ðI − 1ÞÞ = rN ðI − 1Þð1 −N ðI − 1ÞÞ, is obtained from
function f ðuÞ = ruð1 − uÞ, u ∈ Rm, using Zadeh’s extension
principle. We get

N ′ Ið Þ
h iβ

= rN I − 1ð Þ 1 −N I − 1ð Þð Þ½ �β, β ∈ 0, 1½ �:
ð106Þ

We remark, function f ðuÞ = ruð1 − uÞ is increasing on
ð−∞,1/2Þ and decreasing on ð1/2,∞Þ, and max

u∈R
f ðuÞ = r/4.

Using the procedure of steps [36] and Negoita-Ralescu
representation theorem [35], we can obtain the solution
to (105). If 0 ≤I ≤ 1, now, we have

N ′ Ið Þ = rN 0 2 −N 0ð Þ,I ≥ 0,

N 0ð Þ = α,−1 ≤I ≤ 1:
ð107Þ

Since α ≤ 1/2, then, for 0 ≤I ≤ 1,

N ′ Ið Þ
h iβ

= rN 0 1 −N 0ð Þ½ �β = min
−α≤u≤α

f uð Þ, max
−α≤u≤α

f uð Þ
h i

= −rα 1 + αð Þ, rα 1 − αð Þ½ �:
ð108Þ

As a result, we solve differential equations on ½0, 1�

N ′ Ið Þ
h iβ

= −rα 1 + αð Þ, rα 1 − αð Þ½ �, ð109Þ
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with initial condition

N 0ð Þ½ �β = −α, α½ �: ð110Þ

Further, for (52) on [0,1], the solution

N Ið Þ½ �β = N 11 Ið Þ,N 21 Ið Þ½ �,I ∈ 0, 1½ �, ð111Þ

where

N 11 Ið Þ = −α − rα 1 + αð ÞI,N 21 Ið Þ
= α + rα 1 − αð ÞI, β ∈ 0, 1½ �: ð112Þ

Moreover, N 11ðIÞ ≤ 0 and 1/2 ≤N 21ðIÞ ≤ 1 on ½0, 1�,
for 1 ≤I ≤ 2,

N ′ Ið Þ
h iβ

= rN I − 1ð Þ 1 −N I − 1ð Þð Þ½ �β

= min
N 11 I−1ð Þ≤u≤N 21 I−1ð Þ

f uð Þ, max
N 11 I−1ð Þ≤u≤N 21 I−1ð Þ

f uð Þ
� 

= −rα + rα 1 + αð Þ I − 1ð Þ 1 + α + rα 1 + αð Þ I − 1ð Þð Þ, r
2

4
1 −

r
4

� �� 
:

ð113Þ

As it follows, we solve the differential equation on ½1
, 2�:

N ′ Ið Þ
h iβ

= −rα + rα 1 + αð Þ I − 1ð Þ 1 + α + rα 1 + αð Þ I − 1ð Þð Þ, r
2

4
1 −

r
4

� �� 
:

ð114Þ

As a result, we get (105) on ½1, 2�, as follows:

N Ið Þ½ �β = N 12 Ið Þ,N 22 Ið Þ½ �, β ∈ 1, 2½ �, ð115Þ

where

N 12 Ið Þ = −α − 2rα 1 + αð Þ − rα 1 + αð Þ I − 1ð Þ

− r2α 1 + αð Þ 2 + αð Þ I − 1ð Þ2
2

− r3α2
I − 1ð Þ3

3
,

N 22 Ið Þ = α + rα 1 − αð Þ + r2

4
1 −

r
4

� �
I,I ∈ 0, 1½ �: ð116Þ

This procedure can be continued on [21, 37].

Example 2. To explain the Ehrlich ascities tumor, the follow-
ing logistic equation was suggested in [9]:

N ′ Ið Þ = rN I − σð Þ 1 −
N I − σð Þ

K

� 	
: ð117Þ

The delay associated cell cycle [37] is represented by σ,
where r is net tumor replication and K is caring capacity.
This equation differs from the traditional Verhulst-
Hutchinson equation [38], which has only one delay
expression.

Many independent characteristics of state variables can
affect population dynamics: natural and social resources,
medical care, job environment, and crime, habitations. Clas-
sically, the exact value of these attributes cannot always be
calculated and evaluated since they are unknown and can
only be conjectured. As a result, the Ehrlich ascities tumor
model should be a more realistic solution.

6. Conclusion

The solution to fuzzy fractional functional differential equa-
tions possesses global uniqueness and existence, as shown in
this paper. We have used the successive approximation
method to prove a local uniqueness and existence result.
Future research on fuzzy neutral fractional functional differ-
ential equations could benefit from the findings of this study.
Other alternative research approaches include a fuzzy frac-
tional functional differential equation approach based on
other fuzzy differentiability concepts (see [8, 11]).
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