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In this paper, we provide a short, comprehensive, and brief proof for Caristi-Kirk fixed point result for single and set-valued
mappings in cone metric spaces. In addition, we partially addressed an open problem in which Caristi-Kirk fixed point result
in cone metric spaces reduces to a classical result in metric spaces and provided a brief justification for a partial positive
answer to this open problem using Caristi-Kirk fixed point theorem on uniform space. The proofs given to Caristi-Kirk’s result
vary and use different techniques.

1. Introduction and Preliminaries

Caristi-Kirk’s fixed point theorem in [1] states that if X is
a complete metric space and φ is a lower semicontinuous
mapping from X into the nonnegative real numbers, then
any mapping T : X ⟶ X satisfying

d x, Txð Þ ≤ φ xð Þ − φ Txð Þ, x ∈ Xð Þ ð1Þ

has a fixed point.
Several researchers generalized the Caristi-Kirk’s fixed

point theorem in various directions, for details see [2–9].
Angelov [10] provided an extension of the Caristi-Kirk

theorem to T2-separated uniform spaces, the uniform space
X is known as T2-separated if each convergent sequence in
X has a unique limit. As we know that every uniform space
is generated by a family of pseudometrics fdaðx, yÞ: a ∈ Ag,
where A is an indexing set. Also, a sequence ðxnÞ ∈ X is
known as a Cauchy sequence, if for each a ∈ A, we have
lim

n,m⟶+∞
daðxn, xmÞ = 0, and a sequence ðxnÞ ∈ X is conver-

gent and converges to x ∈ X, if for each a ∈ A, we have

lim
n⟶+∞

daðxn, xÞ = 0. Thus, a uniform space X is called com-

plete if every Cauchy sequence is convergent in X.
In this regard, Angelov [10] generalizes the Caristi-Kirk

fixed point theorem on uniform space, which stated as:

Theorem 1 [10]. Let X be a T2 -separated complete uniform
space which is generated by a family of pseudometrics fda
: a ∈ Ag, where A is an indexing set. Let T : X ⟶ X be a
mapping and fψag be a family of lower semicontinuous func-
tionals. Suppose that the following inequality holds for each
a ∈ A,

dj að Þ x, T xð Þð Þ ≤ ψa xð Þ − ψa T xð Þð Þ, ð2Þ

where x ∈ X and j : A⟶ A is a surjective mapping. Then, T
has a fixed point in X.

The following theorem is a Banach fixed point theorem
on uniform space, which stated as:

Theorem 2 [11]. Let X be a T2 -separated complete uniform
space which is generated by a family of pseudometrics fda
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: a ∈ Ag, where A is an indexing set. Suppose that T : X
⟶ X is a mapping which is satisfying

da T xð Þ, T yð Þð Þ ≤ kada x, yð Þ, ð3Þ

for each x, y ∈ X and a ∈ A. Then, T has a unique fixed point
in X.

In 2007, Huang et al. [12] introduced the concept of
cone metric space and proved some well-known fixed point
results. The authors extended fixed point results proved for
cone metric spaces which was just a simple reformulation
of classical results presented in metric spaces. The obtained
results are generalizations from classical results to cone met-
ric spaces, for details see [13–16].

In this paper, we aim to reformulate Caristi-Kirk’s fixed
point theorem for single and set-valued mappings in cone
metric space and obtained a detailed answer to a question
posed by Khamsi and Wojciechowski in ([17], Theorem 3-
1) “whether the vectorial version and the classical version
of Caristi-Kirk’s fixed point theorem are equivalent.” To
address this particular answer, we defined a uniform space
by considering cone metric space, and then, we addressed
Theorem 1 in cone metric spaces and uniform spaces. Our
proof is shorter, comprehensive, and easier than proof pro-
vided until now and our results generalize the existing
results due to Khamsi and Wojciechowski in [17].

2. Cone Metric Version of Caristi-
Kirk’s Theorem

Suppose that P is a nonempty closed convex cone of a real
Banach space E such that P ≠ fθg, where θ is the null vector,
P ∩ −P = fθg and intP ≠∅.

In addition, P induces a partial order ⪯ on E which is
defined as x ⪯ y if and only if y − x ∈ P and we write x≪ y
if and only if y − x ∈ intP.

A convex subset B ⊂ P is a base of P if θ∈�B and P =
∪t≥0tB and E∗ is the topological dual space of E and P∗ = f
ψ ∈ E∗ : ψðxÞ ≥ 0,∀x ∈ Pg is known as dual cone of P. The
dual cone P∗ of a cone P in a Banach space E has a weak ∗

-compact base B∗. A set A ⊂ E is called bounded from above
(below) if there exists z ∈ E such that for all a ∈ A, a⪯z (z⪯a).
A cone is called regular if every nondecreasing (decreasing)
sequence which is bounded from above (below) is conver-
gent in norm. The cone P is called normal if there is a num-
ber K > 0, such that we have for all x, y ∈ E,

θ⪯ x ⪯ y⟹ xk k ≤ K yk k: ð4Þ

The least positive number satisfying this inequality is
called a normal constant of P.

The following lemma will be used in proving our main
results.

Lemma 3 [18, 19]. The weak ∗-compact base B∗ satisfies:

(1) any element x ∈ P if and only if ψðxÞ ≥ 0, for all ψ ∈
B∗

(2) any element x ∈ intP if and only if ψðxÞ > 0, for all
ψ ∈ B∗

Definition 4 [12]. Let X be a nonempty set. Consider a map-
ping d : X × X⟶ E is satisfied as follows:

(1) θ⪯ dðx, yÞ for all x, y ∈ X and dðx, yÞ = θ if and only
if x = y

(2) dðx, yÞ = dðy, xÞ for all x, y ∈ X
(3) dðx, yÞ⪯ dðx, zÞ + dðy, zÞ for all x, y, z ∈ X
Then, d is called a cone metric on X and ðX, dÞ is named

a cone metric space.

Definition 5 [12]. Let ðxnÞ be a sequence in a cone metric
space ðX, dÞ and some x ∈ X. A sequence ðxnÞ is as follows:

(1) a d-Cauchy sequence if for every θ≪ ε ∈ E, there
exists N ∈ℕ, such that dðxm, xnÞ≪ ε, for all m, n ≥
N

(2) a d-convergent and d-converges to x ∈ X if for every
θ≪ ε ∈ E, there exists N ∈ℕ, such that dðxn, xÞ≪ ε,
for all n ≥N , which is denoted as xn ⟶ x

Definition 6 [12]. A cone metric space ðX, dÞ is d − complete
if every d − Cauchy sequence is d-convergent in ðX, dÞ.

Definition 7 [20]. Let ðX, dÞ be a cone metric space. A map-
ping φ : X ⟶ E is considered as a cone lower semicontinu-
ous mapping at x ∈ X if for any θ≪ ε ∈ E, there exists a
natural number Nε ∈ℕ such that

φ xð Þ⪯φ xnð Þ + ε, ð5Þ

for all n >Nε, where ðxnÞ is a sequence in X and xn ⟶ x. If
E =ℝ, then P =ℝ≥0, ðX, dÞ is a metric space and φ : X
⟶ℝ, so φ is a lower semicontinuous mapping at x ∈ X,
if for any ε > 0, there exists Nε ∈ℕ such that for any n >
Nε, we have

φ xð Þ ≤ φ xnð Þ + ε, ð6Þ

where ðxnÞ is a convergent sequence and converges to x in a
metric space ðX, dÞ.

The following theorem is a cone metric version of the
Caristi-Kirk’s theorem with the some extra normal cone
condition.

Theorem 8 [21]. Let ðX, dÞ be a cone metric space with nor-
mal and regular cone of a Banach space ðE, k·kÞ such that
lim

m,n⟶∞
kdðxm, xnÞk = 0 implies lim

n⟶∞
kdðxn, xÞk = 0 for some

x ∈ X. Also, φ : X ⟶ P satisfies φðxÞ⪯lim inf
n

φðxnÞ, for every
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lim
n⟶∞

kdðxn, xÞk = 0. Suppose that the mapping T : X⟶ X

satisfying the following condition:

d x, T xð Þð Þ⪯φ xð Þ − φ T xð Þð Þ, ð7Þ

for all x ∈ X. Then, T has a fixed point.

Since then, some studies have focused on extending and
improving the cone metric version of the Caristi-Kirk’s fixed
point theorem in many ways. In [16, 17], authors proved the
Caristi-Kirk’s fixed point theorem but the authors supposed
that the cone is normal which is a strict condition and
researchers did not accept it as a good condition. Further,
the results are proved for regular and normal cone in [21].

In this paper, none of these conditions was considered
for the cone. Now, we will omit the stronger conditions,
the normality, and regularity of the cone in our main results
and we will prove this result under the weaker condition as
compared to the result proved in the literature under strict
conditions.

3. Main Results

The following lemmas are handy tools that are used in the
sequel.

Lemma 9. Let ðX, dÞ be a cone metric space and ψ ∈ B∗. Also
suppose that X is a uniform space which is generated by a
family of pseudometrics fψ ∘ d : ψ ∈ B∗g. Then, X is T2
-separated.

Proof. On contrary suppose that the sequence ðxnÞ has two
different limits, i.e., limxn = x and limxn = y in the uniform
space X. Then, according to definition, for each pseudo-
metric ψ ∘ d, we have lim

n⟶∞
ψðdðxn, xÞÞ = 0 and lim

n⟶∞
ψðdð

xn, yÞÞ = 0. In addition, by the third property of the cone
metric, we have dðx, yÞ⪯ dðxn, xÞ + dðxn, yÞ, (by lemma 3)
we have ψðdðx, yÞÞ ≤ ψðdðxn, xÞÞ + ψðdðxn, yÞÞ, for each ψ
∈ B∗. When n⟶∞, we have that for each ψ ∈ B∗, ψðd
ðx, yÞÞ = 0. Thus, ∥dðx, yÞ∥ = sup

∥ψ∥=1
∣ ψðdðx, yÞÞ∣ = 0. Thus, d

ðx, yÞ = θ, i.e., x = y.

Lemma 10. Let ðX, dÞ be a cone metric space and ψ ∈ B∗.
Also suppose that X is a uniform space which is generated
by a family of pseudometrics fψ ∘ d : ψ ∈ B∗g. Then, X is a
complete uniform space if and only if ðX, dÞ is a d -complete
cone metric space.

Proof. First, we suppose that X is a complete uniform space.
Let ðxnÞ be a d-Cauchy sequence in the cone metric space
ðX, dÞ. Then, for each θ≪ ε/k, where k ∈ℕ, there exists N
∈ℕ such that for each m, n >N , we have dðxm, xnÞ≪ ε/k.
Using Lemma 3 part ð2Þ, for each ψ ∈ B∗, we have ψðεÞ/k
> 0 and

ψ d xm, xnðð Þ < ψ εð Þ
k

: ð8Þ

For any ε > 0 and ψ ∈ B∗, there is a k ∈ℕ such that
ψðεÞ/k < ε. For m, n >N , inequality (8) implies that ψðdðxm
, xnÞÞ < ε. Using the definition, ðxnÞ is a Cauchy sequence in
a complete uniform space. Therefore, ðxnÞ is convergent
and converges to x which belongs to the uniform space X.
Then, for each ε > 0 and ψ ∈ B∗, there exists N ∈ℕ, such that
for each n >N ,

ψ d xn, xð Þð Þ < ε: ð9Þ

Now, we demonstrate that the sequence ðxnÞ is d
-convergent. On the contrary, suppose that there is some
θ≪ ε, such that for each N ∈ℕ there is n >N such that
dðxn, xÞ ⪰ ε. From lemma 3 part (8), for each ψ ∈ B∗, ψ
ðεÞ > 0, and ψðdðxn, xÞÞ > ψðεÞ, which is a contradiction,
if ε = ψðεÞ.

On contrary suppose that ðX, dÞ is a d-complete space.
Let ðxnÞ be a Cauchy sequence in a uniform space X, for
each ε > 0 and ψ ∈ B∗, there is N ∈ℕ, such that for each m,
n >N,

ψ d xm, xnð Þð Þ < ε: ð10Þ

Now, we show that ðxnÞ is a d −Cauchy sequence. On the
contrary, suppose that ðxnÞ is not a d −Cauchy sequence.
Then, there is θ≪ ε such that for each N ∈ℕ, there are m, n
>N such that dðxm, xnÞ ⪰ ε. Thus, by using lemma 3 for each
ψ ∈ B∗, we have ψðεÞ > 0 and ψðdðxm, xnÞÞ ≥ ψðεÞ > 0, which
is a contradiction, as ε = ψðεÞ. Therefore, ðxnÞ is a d −Cau-
chy sequence, and accordingly, it is a d-convergent and con-
verges to some x (from definition 5) for each θ≪ ε/k where
k ∈ℕ, there is N ∈ℕ such that for each n >N, we have dðxn
, xÞ≪ ε/k, (using lemma 3) for each ψ ∈ B∗, we have ψðεÞ/k
> 0 and

ψ d xn, xð Þð Þ < ψ εð Þ
k

: ð11Þ

For each ε > 0 and ψ ∈ B∗, there is k ∈ℕ such that ψðεÞ/
k < ε thus (11) implies that for n >N , we have

ψ d xn, xð Þð Þ < ψ εð Þ
k

< ε: ð12Þ

Thus, ðxnÞ is convergent to x in the uniform space X.

Lemma 11. Let ðX, dÞ be a cone metric space and x ∈ X.
Then, dðx, ·Þ: X ⟶ E is a cone lower semicontinuous
mapping.

Proof. Let θ≪ ε ∈ E and ðynÞ be a sequence in X such that
yn ⟶ y ∈ X. There exists N ∈ℕ such that dðyn, yÞ≪ ε for
all n ≥N . Then, dðx, yÞ≪ dðx, ynÞ + dðyn, yÞ≪ dðx, ynÞ + ε,
for all n ≥N . Thus, dðx, ·Þ is a cone lower semicontinuous
mapping.

Lemma 12. Let ðX, dÞ be a cone metric space, φ : X ⟶ E be
a cone lower semicontinuous mapping and ψ ∈ B∗. Then, ψ
∘ φ : X ⟶ℝ is a lower semicontinuous function.
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Proof. Let θ≪ ε ∈ E be fixed. For any ε > 0, there exists m
∈ℕ such that ψðε/mÞ < ε, (ψ is linear) and φ is cone lower
semicontinuous and xn ⟶ x. Thus, there exists N ∈ℕ such
that

φ xð Þ⪯φ xnð Þ + 1
m
ε, ð13Þ

for all n ≥N , and so

ψ φ xð Þð Þ ≤ ψ φ xnð Þð Þ + ψ
1
m
ε

� �
≤ ψ φ xnð Þð Þ + ε, ð14Þ

for all n ≥N . This relation indicates the lower semicontinu-
ity of ψ ∘ φ.

As is shown in [14], all fixed point results in cone metric
spaces obtained recently, in which the assumption that the
underlying cone is normal and with the nonempty interior
is present, can be reduced to the corresponding results in
metric spaces. On the other hand, when we deal with non-
normal cones, this is not possible.

Theorem 13 is a cone metric version of Caristi-Kirk’s
theorem without extra conditions normality and regularity
which are always put in cone metric theorems, so our results
are original. To prove this theorem, we show that the cone
metric space is uniform too; then, it will be proved by apply-
ing Theorem 1. We know that a T2-separated uniform space
is metrizable if its uniformity can be defined by a countable
family of pseudometrics. Indeed, such uniformity can be
defined by a single pseudometric, which is necessarily a met-
ric. This implies that a cone metric version of Caristi-Kirk’s
theorem may be derived from the classical one if B∗ which is
defined in Section 2 is countable. This is a partial answer to
the open question mentioned before.

Theorem 13. Let ðX, dÞ be a d -complete cone metric space
and φ : X ⟶ P be a cone lower semicontinuous mapping.
Suppose that the self-mapping T : X ⟶ X satisfying the fol-
lowing condition:

d x, T xð Þð Þ⪯φ xð Þ − φ T xð Þð Þ, ð15Þ

for all x ∈ X. Then, T has a fixed point.

Proof. We provide the conditions of Theorem 1 to conclude
that T has a fixed point. It is easily shown that fψ ∘ d : ψ ∈
B∗g is a family of pseudometrics onX, andX will be a uniform
space with the topology generated by these pseudometrics. By
Lemma 9, the uniform space X is T2-separated. Using lemma
10, X is a d − complete cone metric space, since X is a com-
plete uniform space. By lemma 12,ψ ∘ φ is a lower semicontin-
uous mapping. Further, lemma 3 and assumption

d x, T xð Þð Þ⪯φ xð Þ − φ T xð Þð Þ ð16Þ

imply that for each ψ ∈ B∗, ψðdðx, TðxÞÞÞ ≤ ψðφðxÞÞ − ψðφ
ðTðxÞÞÞ. By considering j as an identity mapping, all
assumptions are satisfied.

In Theorem 13, the regularity of the cone, which is an
essential condition in [21] is omitted. So, our theorem is a
real generalization of Theorem 8.

For example, we cannot even conclude from Theorem 8
that the identity mapping has a fixed point but it is possible
by Theorem 8. The following example is presented in the
support of the theorem 13.

Example 14. Consider the Banach space ℓ∞ðRÞ with its cone
P = fðxnÞ ∈ ℓ∞ðRÞ: xn ≥ 0 for all n ∈Ng. It is not difficult to
see that ℓ∞ðRÞ is complete and P is normal with nonempty
interior. Let B be a subset of ℓ∞ðRÞ consisting of all ðxnÞ
which are nondecreasing and converging to 1 with 1/2 ≤ xn
≤ 1, for all n ∈N . Define d : B × B⟶ P as, dððxnÞ, ðynÞÞ =
ðjx1 − y1j,⋯, jxn − ynj,⋯Þ, for every ðxnÞ, ðynÞ ∈ B. It is not
hard to check that ðB, dÞ is a d-complete space. Now, define
the mapping T : B⟶ B by TððxnÞÞ = ðxnÞ and φ : B⟶ P
is the inclusion mapping. It is clear that φ is cone lower
semicontinuous and T satisfies dðx, TðxÞÞ⪯φðxÞ − φðTðxÞÞ,
since dðx, TxÞ = dðx, xÞ = θ. But P is not regular because the
sequence ðanÞ that an = ð1,⋯, 1|fflfflffl{zfflfflffl}

n

, 0, 0,⋯Þ, for each n ∈N , is

nondecreasing and bounded from above but it is not
convergent.

Thus, one of the conditions of Theorem 8 is not satisfied,
although TðxÞ = x, for all x ∈ B. But Theorem 13 implies that
T has a fixed point.

Remark 15. In example 14, one of conditions of Theorem 8 is
not satisfied, as P is not regular although TðxÞ = x, for all x
∈ B. In the example 14, all the conditions of the Theorem
13 are satisfied, and hence, the underlying mapping T has
a fixed point. This shows that Theorem 13 is a real and
proper generalization of Theorem 8.

The following example shows that the cone lower semi-
continuity of φ is essential in Theorem 13 and may not be
dropped.

Example 16. Let X ⊆ ℓ∞ðRÞ be a family of the sequences
�0 = f0, 0,⋯, 0,⋯g, ~1 = f1, 1,⋯, 1,⋯g, �1 = f1/2, 1/3,⋯, ð1/
mÞ,⋯g, �2 = fð1/2Þ2, ð1/3Þ2,⋯, ð1/mÞ2,⋯g, �n = fð1/2Þn,
ð1/3Þn,⋯, ð1/mÞn,⋯g and P is defined as same as the
cone defined in Example 14 and the cone metric is

d �x, �yð Þ = 1
2x+1 −

1
2y+1

����
����, 1

3x+1 −
1

3y+1
����

����,⋯, 1
mx+1 −

1
my+1

����
����,⋯

� �
,

ð17Þ

for every �x, �y ∈ X. Define the mapping T : X⟶ X and φ
: X ⟶ P in the following way:

T �nð Þ = �n + 1, T �0ð Þ = ~1, T ~1
� 	

= �0, ð18Þ

and φ = T . Obviously dð�x, Tð�xÞÞ = φð�xÞ − φðTð�xÞÞ but φ is
not cone lower semicontinuous map because lim�n = �0 does
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imply ~1 = φð�0Þ ⋠ liminfφð�nÞ = �0, and therefore, one of con-
ditions of Theorem 13 is not satisfied. It is clear that T
has no fixed point because Tð�nÞ = �n + 1 ≠ �n.

In the next theorem, we give a short proof for a set-
valued version of Caristi-Kirk’s fixed point theorem in cone
metric space. An element x ∈ X is considered as a fixed point
of set-valued mapping f : X↠X if x ∈ f ðxÞ.

Theorem 17. Let ðX, dÞ be a d -complete cone metric space,
φ : X⟶ P be a cone lower semicontinuous mapping and
there exists y ∈ f ðxÞ for a set-valued mapping f : X↠X such
that

d x, yð Þ⪯φ xð Þ − φ yð Þ, ð19Þ

for each x ∈ X. Then, f has a fixed point.

Proof. By assumption, for each x ∈ X, the set fy ∈ f ðxÞ: d
ðx, yÞ⪯φðxÞ − φðyÞg is nonempty. Using the axiom of
choice, there is a single-valued mapping T : X⟶ X such
that dðx, TðxÞÞ⪯φðxÞ − φðTðxÞÞ, for each x ∈ X. Theorem
13 is applied for T to find a fixed point x (say) of T . Since
TðxÞ ∈ f ðxÞ, we have x ∈ f ðxÞ.

Additionally, Khamsi (2010) proved the Theorem 18,
which is the cone metric version of the Banach fixed point
theorem. In Theorem 19, we improve it by removing the
stronger condition of “normal cone.”

Theorem 18 [16]. Let ðX, dÞ be a d -complete cone metric
space over the Banach space ðE, k·kÞ with the cone P which
is normal. Suppose that for some 0 < α < 1, the mapping T
: X⟶ X satisfies

d T xð Þ, T yð Þð Þk k ≤ α d x, yð Þk k, ð20Þ

for all x, y ∈ X. Then, T has a unique fixed point.

Theorem 19. Let ðX, dÞ be a d -complete cone metric space
and for some 0 < α < 1, the mapping T : X⟶ X satisfying

d T xð Þ, T yð Þð Þ⪯ αd x, yð Þ, ð21Þ

for all x, y ∈ X. Then, T has a unique fixed point.

Proof. We provide the conditions of Theorem 2 to conclude
that T has a fixed point. We know that fψ ∘ d : ψ ∈ B∗g is a
family of pseudometrics on X, and X will be a uniform space
with the topology generated by these pseudometrics. By
lemma 9, this uniform space is T2-separated. Using lemma
10, X is a complete uniform space since ðX, dÞ is a d −
complete cone metric space. In addition, lemma 3 and
assumption

d T xð Þ, T yð Þð Þ⪯ αd x, yð Þ, ð22Þ

imply that for each ψ ∈ B∗, ψðdðTðxÞ, TðyÞÞÞ ≤ αψðdðx, yÞÞ.
Thus, Theorem 2 implies that T has a fixed point.

Remark 20. It is worth noting that Theorem 19 is a general-
ization of the Theorem 18. We used cone metric space with a
nonnormal cone in our main results. Therefore, our theo-
rems are the strict generalizations of the results which are
proved in [16, 17, 21].

Theorem 21. Let ðX, dÞ be a d -complete cone metric space,
and f : B↠B be a set-valued mapping that for each x, y ∈ X
and z ∈ f ðxÞ, there exists w ∈ f ðyÞ such that

d z,wð Þ⪯ αd x, yð Þ: ð23Þ

Then, f has a fixed point.

Proof. It is direct consequence of the Theorem 19.

In this article, we provided a brief proof for the Caristi-
Kirk’s fixed point result for single and set-valued mappings
in cone metric spaces. Also, we partially addressed an open
problem in which Caristi-Kirk’s fixed point resulted in cone
metric spaces. We improved the already existing results on
Caristi-Kirk’s fixed point in cone metric spaces by improv-
ing and removing the extra and strict conditions on the
underlying spaces and mappings as well. Further, we pro-
vided a brief justification as a partial positive answer to this
open problem using Caristi-Kirk’s fixed point theorem on
uniform space. We further provided a short proof in the
cone metric version of the Banach fixed point theorem by
using a short and comprehensive approach.
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