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)is study aims at investigation of a generalized variational inequality problem.We initiate a new iterative algorithm and examine
its convergence analysis. Using this newly proposed iterative method, we estimate the common solution of generalized variational
inequality problem and fixed points of a nonexpansive mapping. A numerical example is illustrated to verify our existence result.
Further, we demonstrate that the considered iterative algorithm converges with faster rate than normal S-iterative scheme.
Furthermore, we apply our proposed iterative algorithm to estimate the solution of a convex minimization problem and a split
feasibility problem.

1. Introduction

All through this study, we presume that H is a real Hilbert
space equipped with norm ‖ · ‖ induced by inner product
〈·, ·〉. Let C be a nonempty closed convex subset of H and
f, g: C⟶H be nonlinear mappings. )e generalized
nonlinear variational inequality is to locate a point x∗ ∈H
such that

〈f x
∗

( 􏼁, g x
∗

( 􏼁 − g y
∗

( 􏼁〉 ≥ 0, ∀y∗ ∈ C, g x
∗

( 􏼁, g y
∗

( 􏼁 ∈H, (1)

which was introduced by Noor [18]. We denote the set of
solutions of (1) by Sol(C, f, g).

If g � I, then generalized nonlinear variational in-
equality (1) reduces to the classical variational inequality
studied by Stampacchia [23], which is to allocate a point
x∗ ∈H, such that

〈f x
∗

( 􏼁, y
∗

− x
∗〉 ≥ 0, ∀y∗ ∈H. (2)

If C∗ � x∗ ∈H: 〈x∗, y∗〉≥ 0,∀y∗ ∈ C􏼈 􏼉 is a dual cone
of a convex cone C, then generalized nonlinear variational
inequality (1) coincides to generalized nonlinear comple-
mentarity problem which is to locate a point x∗ ∈H such
that

〈f x
∗

( 􏼁, g x
∗

( 􏼁〉 � 0,

g x
∗

( 􏼁 ∈ C, f x
∗

( 􏼁 ∈ C∗.
(3)

It is worthy to adduce that variational inequalities which
are unconventional and remarkable augmentation of vari-
ational principles provide well organized unified framework
for figuring out a wide range of nonlinear problems arising
in optimization, economics, physics, engineering science,
operations research, and control theory, for example,
[2, 8, 15, 20, 21, 24, 26, 33] and references cited therein.

Next, we recall the following definitions of a nonlinear
mapping f: C ⊂H⟶H.
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Definition 1. )e mapping f: C⟶H is said to be

(i) a-inverse strongly monotone or cocoercive if there
exists a constant a> 0, such that

〈f(x) − f(y), x − y〉≥ a‖f(x) − f(y)‖
2
, ∀x, y ∈ C, (4)

(ii) L-Lipschitz continuous if there exists a constant
L> 0, such that

‖f(x) − f(y)‖≤ L‖x − y‖, ∀x, y ∈ C. (5)

For L � 1, f is nonexpansive, and if 0< L< 1, then f is a
contraction. Note that a-inverse strongly monotone map-
ping is 1/a-Lipschitz continuous.

It is customary to mention that variational inequalities,
variational inclusions, and related optimization problems
can be posed as fixed-point problems. )is unusual for-
mulation plays a dominant role in studying variational
inequalities and nonlinear problems by employing fixed-
point iterative methods.

Lemma 1. Let pC: H⟶ C be a projection mapping of H
onto C. For a given q ∈H, p ∈ C satisfies the inequality

〈p − q, r − p〉≥ 0, ∀r ∈ C if and only if p � pC(q). (6)

Note that the projection mapping pC is nonexpansive
[16]. For more details on projection mapping pC, we refer to
[12]. By utilizing Lemma 1, the generalized nonlinear var-
iational inequality (1) can be designed as a fixed-point
problem as follows:

Lemma 2 (see [17]). Let pC: H⟶ C be a projection
mapping. For any ρ> 0, x∗ ∈H, g(x∗) ∈ C solves the gen-
eralized nonlinear variational inequality (1) if and only if

g x
∗

( 􏼁 � pC g x
∗

( 􏼁 − ρf x
∗

( 􏼁􏼂 􏼃. (7)

Relation (7) can be rescripted as

x
∗

� x
∗

− g x
∗

( 􏼁 + pC[g − ρf] x
∗

( 􏼁. (8)

Let T be a nonexpansive mapping and F(T) denotes the
set of fixed points of T. If x∗ ∈ F(T)∩ Sol(H, f, g), then

x
∗

� T x
∗

( 􏼁 � x
∗

− g x
∗

( 􏼁 + pC[g − ρf] x
∗

( 􏼁

� T x
∗

− g x
∗

( 􏼁 + pC g x
∗

( 􏼁 − ρf x
∗

( 􏼁􏼂 􏼃􏼈 􏼉, ρ> 0.
(9)

It is significant to achieve better rate of convergence if
two or more iterative algorithms converge to the same point
for a given problem. We recall the following concepts which
are versatile tools to find finer convergence rate for different
iterative methods.

Definition 2 (see [3]). Let pn􏼈 􏼉 and qn􏼈 􏼉 be two real se-
quences converging to p and q, respectively. Suppose that
limn⟶∞‖pn − p‖/‖qn − q‖ � l exists. )en,

(i) pn􏼈 􏼉 converges faster than qn􏼈 􏼉 if l � 0
(ii) pn􏼈 􏼉 and qn􏼈 􏼉 converges with identical rates if

0< l<∞

Definition 3 (See [3]). Let pn􏼈 􏼉 and qn􏼈 􏼉 be two real sequences
converging to the same fixed point t. If un􏼈 􏼉 and vn􏼈 􏼉 are two
sequences of positive real numbers converging to 0 such that
‖pn − t‖≤ un and ‖qn − t‖≤ vn for all n ∈ N. )en, pn􏼈 􏼉

converges to t faster than qn􏼈 􏼉 if un􏼈 􏼉 converges faster than vn􏼈 􏼉.

Lemma 3 (see [4]). Let φn􏼈 􏼉 and ψn􏼈 􏼉 be nonnegative se-
quences of real numbers satisfying

φn+1 ≤ σφn + ψn, ∀n ∈ N, (10)

where σ ∈ (0, 1) and limn⟶∞ψn � 0. -en limn⟶∞φn � 0.

Lemma 4 (see [31]). Let ϕn􏼈 􏼉, φn􏼈 􏼉, and ψn􏼈 􏼉 be nonnegative
sequences of real numbers satisfying

ϕn+1 ≤ 1 − φn( 􏼁ϕn + ψn, ∀n ∈ N, (11)

where φn ∈ (0, 1), 􏽐
∞
n�1 φn �∞, and ψn � o(φn). -en,

limn⟶∞ ϕn � 0.

Mann, Ishikawa, and Halpern iterative methods are fun-
damental tools for solving fixed-point problems of non-
expansive mappings. In recent past, a number of fixed point
iterative methods have been constructed and implemented to
solve various classes of nonlinear mappings [2, 9, 10, 19,
22, 25, 28–30, 34]. Agarwal and others [1] introduced the
S-iteration method which converges faster than some well-
known iterative algorithms such as Mann, Ishikawa, and Picard
for contraction as well as nonexpansive mappings. Due to the
super convergence rate, it attracted number of researchers to
study fixed-point problems, minimization problems, variational
inclusions, variational inequalities, and alternate points prob-
lems in different settings. In [18], Noor utilized formulation (9)
to propose following iterative algorithm:

u0 ∈ C,

un+1 � 1 − an( 􏼁un + anT un − g un( 􏼁 + pC g un( 􏼁 − ρf un( 􏼁􏼂 􏼃􏼈 􏼉,
􏼨

(12)

where an􏼈 􏼉 is a sequence in [0, 1]. )e author proved strong
convergence of the proposed iterative algorithm. Furthermore,
it is customary that the normal S-iterative algorithm converges
faster than the Mann and Picard iterative algorithm. Owing to
its uncomplicated nature and faster convergence rate, Gursoy
and others [14] investigated the following normal S-iterative
algorithm to examine (1) as follows:

p0 ∈ C,

pn+1 � T qn − g qn( 􏼁 + pC g qn( 􏼁 − ρf qn( 􏼁􏼂 􏼃􏼈 􏼉,

qn � 1 − ξn( 􏼁pn + ξnT pn − g pn( 􏼁 + pC g pn( 􏼁 − ρf pn( 􏼁􏼂 􏼃􏼈 􏼉, ξn ∈ [0, 1].

⎧⎪⎪⎨

⎪⎪⎩

(13)

Recently, Ullah and Arshad [27] introduced a more
efficient iterative algorithm called the M-iterative method
for Suzuki’s generalized nonexpansive mappings as follows:
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u1 ∈ C,

wn � 1 − an( 􏼁un + anTun,

vn � Twn,

un+1 � Tvn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

where an􏼈 􏼉 is a sequence in (0, 1). )ey analyzed convergence
and showed that their iterative procedure converges faster than
the Picard S [13] and S-iteration process [1]. In recent work,
Garodia andUddin [11] developed a new iterative algorithm for
Suzuki’s generalized nonexpansive mappings as follows:

u1 ∈ C,

wn � Tun,

vn � T 1 − an( 􏼁wn + anTwn( 􏼁,

un+1 � Tvn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where an􏼈 􏼉 is a sequence in (0, 1). )e authors approximated
fixed-points and inspected the convergence. Also, they
proved that the posed iterative method converges with faster
rate than that of the M-iterative method.

Stimulated by the work discussed in above-mentioned
references, in this study, we investigate algorithm (15) to
estimate the common solution of fixed points of a non-
expansive mapping T and the generalized nonlinear varia-
tional inequality (1) as follows:

u1 ∈ C,

wn � T un − g un( 􏼁 + pC g un( 􏼁 − ρf un( 􏼁􏼂 􏼃􏼈 􏼉,

rn � 1 − an( 􏼁wn + anT wn − g wn( 􏼁 + pC g wn( 􏼁 − ρf wn( 􏼁􏼂 􏼃􏼈 􏼉,

vn � T rn − g rn( 􏼁 + pC g rn( 􏼁 − ρf rn( 􏼁􏼂 􏼃􏼈 􏼉,

un+1 � T vn − g vn( 􏼁 + pC g vn( 􏼁 − ρf vn( 􏼁􏼂 􏼃􏼈 􏼉,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where an􏼈 􏼉 is a sequence in (0, 1) satisfying certain assump-
tions. We analyze strong convergence of our proposed iterative
algorithm (16) under some mild assumptions. We also pose a
modified form of our iterative algorithm (16) to investigate
convex optimization and split feasibility problems. )eoretical
findings are validated by an illustrative numerical example. Our
existence and convergence results can be seen as generalizations
and prevalent of some known results.

2. Convergence Results

Theorem 1. Let f, g: C⟶H be a1, a2-inverse strongly
monotone mappings, respectively, and T: H⟶ C be a
nonexpansive mapping such that F(T)∩ Sol(C, f, g)≠ ϕ.
Suppose that the assumption

ρ − a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< a1(1 − Υ), (17)

holds, where Υ � 2|a2 − 1/a2|. -en, the iterative sequence
un􏼈 􏼉 defined by (16) converges strongly to

u∗ ∈ F(T)∩ Sol(C, f, g) with the following error estimates:

un+1 − u
∗����
����≤ ζ3(n+1)

u0 − u
∗����
���� 􏽙

n

k�0
1 − ak(1 − ζ)􏼂 􏼃, ∀n ∈ N, (18)

where

ζ � 2
a2 − 1

a2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

a1 − ρ
a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (19)

Proof. Note that

u
∗

� T u
∗

− g u
∗

( 􏼁 + pC g u
∗

( 􏼁 − ρf u
∗

( 􏼁􏼂 􏼃􏼈 􏼉. (20)

Since f being a1-inverse strongly monotone is
1/a1-Lipschitz continuous mapping, T and pC are the
nonexpansive mappings. )en, from (16 and 20), we obtain

wn − u
∗����
���� � T‖ un − g un( 􏼁 + pC g un( 􏼁 − ρf un( 􏼁􏼂 􏼃􏼈 􏼉

− T u
∗

− g u
∗

( 􏼁 + pC g u
∗

( 􏼁 − ρf u
∗

( 􏼁􏼂 􏼃􏼈 􏼉
����

≤ 2 un − u
∗

− g un( 􏼁 − g u
∗

( 􏼁( 􏼁
����

����

+ un − u
∗

− ρ f un( 􏼁 − f u
∗

( 􏼁( 􏼁
����

����.

(21)

Since f is a1-inverse strongly monotone mapping, then
we have

un − u
∗

− ρ f un( 􏼁 − f u
∗

( 􏼁( 􏼁
����

����
2

� un − u
∗����
����
2

+ ρ2 f un( 􏼁 − f u
∗

( 􏼁
����

����
2

− 2ρ〈un − u
∗
, f un( 􏼁 − f u

∗
( 􏼁〉

≤ un − u
∗����
����
2

+
ρ2

a
2
1

un − u
∗����
����
2

− 2ρa1 f un( 􏼁 − f u
∗

( 􏼁
����

����
2

≤
a1 − ρ

a1
􏼠 􏼡

2

un − u
∗����
����
2
.

(22)

Also, g is a2-inverse strongly monotone mapping; then
we have

un − u
∗

− g un( 􏼁 − g u
∗

( 􏼁( 􏼁
����

����
2

� un − u
∗����
����
2

+ g un( 􏼁 − g u
∗

( 􏼁
����

����
2

− 2〈un − u
∗
, g un( 􏼁 − g u

∗
( 􏼁〉

≤ un − u
∗����
����
2

+
1
a
2
2

un − u
∗����
����
2

− 2a2 g un( 􏼁 − g u
∗

( 􏼁
����

����
2

≤
a2 − 1

a2
􏼠 􏼡

2

un − u
∗����
����
2
.

(23)

)us, from (21) to (23), we have

wn − u
∗����
����≤ 2

a2 − 1
a2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

a1 − ρ
a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 un − u

∗����
���� � ζ un − u

∗����
����, (24)

where ζ is defined by (19), and from (17), we have ζ < 1.
Again, following the same steps (21)–(24) and from (16), we
obtain
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vn − u
∗����
����≤ ζ rn − u

∗����
����. (25)

Next, we estimate

rn − u
∗����
���� � 1 − an( 􏼁wn + anT wn − g wn( 􏼁􏼈

����

+ pC g wn( 􏼁 − ρf wn( 􏼁􏼂 􏼃} − u
∗
‖

≤ 1 − an( 􏼁 wn − u
∗����
���� + anζ wn − u

∗����
����

� 1 − an(1 − ζ) wn − u
∗����
����,

(26)

which amounts to say

vn − u
∗����
����≤ ζ 1 − an(1 − ζ)􏼂 􏼃 wn − u

∗����
����,

un+1 − u
∗����
���� � T vn − g vn( 􏼁 + pC g vn( 􏼁 − ρf vn( 􏼁􏼂 􏼃􏼈 􏼉

����

− T u
∗

− g u
∗

( 􏼁 + pC g u
∗

( 􏼁 − ρf u
∗

( 􏼁􏼂 􏼃􏼈 􏼉‖

≤ ζ vn − u
∗����
����≤ ζ3 1 − an(1 − ζ)􏼂 􏼃 un − u

∗����
����.

(27)

Since, 1 − an(1 − ζ)< 1. )erefore, we get
‖un+1 − u∗‖≤ ζ3‖un − u∗‖,∀n ∈ N. By repeating the process
in this fashion, we obtain

un+1 − u
∗����
����≤ ζ3(n+1)

u0 − u
∗����
����, ∀n ∈ N, (28)

which gives that limn⟶∞‖un − u∗‖ � 0. □

Now, we exemplify the existence of solution.

Example 1. Let H � R,C � [1, 2] be equipped with norm
‖u‖ � |u| and inner product 〈u, v〉 � u.v. Let
f, g, T: [1, 2]⟶ R be defined by

f(u) � u
2
, g(u) �

u
3

4
+
3
4
, T(u) �

u
2

+ u
3

16
+
7
8
. (29)

)en, for all u, v ∈ C, observe that

〈f(u) − f(v), u − v〉 � (u − v)
2
(u + v)≥ 2|u − v|

2
,

〈g(u) − g(v), u − v〉 �
1
4
(u − v)

2
u
2

+ uv + v
2

􏼐 􏼑≥
3
4
|u − v|

2
,

|T(u) − T(v)| �
1
16

u − v u
2���� + uv + v

2
+ u + v|≤ |u − v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(30)

)en, f and g are 2 and 3/4-inverse strongly monotone
mapping, respectively, and T is nonexpansive mapping. One

can easily verify that u∗ � 1 ∈ C is the unique fixed point of
T. Also,

〈f u
∗

( 􏼁, g(v) − g u
∗

( 􏼁〉 �
v
3

− 1
4
≥ 0, for all v ∈ C. (31)

)us, we have u∗ � 1 ∈ F(T)∩ Sol(C, f, g).

Theorem 2. Let H be a real Hilbert space and C be a
nonempty closed convex subset of H. Let f, g, T, and ζ be
same as defined in -eorem 1. Let pn􏼈 􏼉 and un􏼈 􏼉 be the
sequences defined by (13) and (16), respectively. Suppose that
(17) holds and F(T)∩ (C, f, g)≠ ϕ. -en, the following
statements hold:

(i) If (1 + ζ3)/ξn􏽮 􏽯 is bounded and 􏽐
∞
n�0 an �∞, then the

sequence un − pn􏼈 􏼉 converges strongly to 0 with fol-
lowing error estimates:

un+1 − pn+1
����

����≤ 1 − ξn(1 − ζ)􏼂 􏼃 un − pn

����
����

+ 1 + ζ3􏼐 􏼑 un − u
∗����
����, ∀n ∈ N.

(32)

pn􏼈 􏼉 converges strongly to u∗ ∈ F(T)∩ Sol(C, f, g).
(ii) If pn􏼈 􏼉 converges strongly to

u∗ ∈ F(T)∩ Sol(C, f, g), then pn − un􏼈 􏼉 converges
strongly to 0 with following error estimates:

pn+1 − un+1
����

����≤ ζ3 pn − un

����
����

+ 1 + ζ3􏼐 􏼑 pn − u
∗����
����, ∀n ∈ N.

(33)

Proof

(i) It follows from )eorem 1 that
limn⟶∞‖un − u∗‖ � 0. Next, we prove that
limn⟶∞‖pn − u∗‖ � 0. Following (13) and (16) and
the steps as in (21)–(24), we obtain

un+1 − pn+1
����

���� � T vn − g vn( 􏼁 + pC g vn( 􏼁 − ρf vn( 􏼁􏼂 􏼃􏼈 􏼉
����

−T qn − g qn( 􏼁 + pC g qn( 􏼁 − ρf qn( 􏼁􏼂 􏼃􏼈 􏼉
����

≤ ζ vn − qn

����
����,

(34)

where ζ is same as in (19). Again, utilizing (13), (16),
and (34), we have

4 Journal of Function Spaces



un+1 − pn+1
����

����≤ ζ vn − 1 − ξn( 􏼁pn − ξnT pn − g pn( 􏼁 + pC g pn( 􏼁 − ρf pn( 􏼁􏼂 􏼃􏼈 􏼉
����

����

≤ ζ vn − u
∗����
���� + 1 − ξn( 􏼁ζ pn − u

∗����
���� + ξnζ T pn − g pn( 􏼁􏼈

����

+pC g pn( 􏼁 − ρf pn( 􏼁􏼂 􏼃􏼉

− T u
∗

− g u
∗

( 􏼁 + pC g u
∗

( 􏼁 − ρf u
∗

( 􏼁􏼂 􏼃􏼈 􏼉
����

≤ ζ vn − u
∗����
���� + 1 − ξn( 􏼁ζ pn − u

∗����
���� + ξnζ

2
pn − u

∗����
����

� ζ vn − u
∗����
���� + 1 − ξn(1 − ζ) pn − u

∗����
����􏽨 􏽩

≤ ζ ζ2 1 − an(1 − ζ)( 􏼁 un − u
∗����
���� + 1 − ξn(1 − ζ) pn − u

∗����
����􏽨 􏽩

� ζ ζ2 1 − an(1 − ζ)( 􏼁 un − u
∗����
���� + 1 − ξn(1 − ζ) un − u

∗����
����􏽨

+1 − ξn(1 − ζ) un − pn

����
����􏽩

≤ ζ 1 − ξn(1 − ζ)􏼂 􏼃 un − pn

����
���� + 1 + ζ3􏼐 􏼑max 1 − an(1 − ζ)􏼈 ,

1 − ξn(1 − ζ)􏼉 un − u
∗����
����

≤ 1 − ξn(1 − ζ)􏼂 􏼃 un − pn

����
���� + 1 + ζ3􏼐 􏼑 un − u

∗����
����.

(35)

Let ϕn � ‖un − pn‖, φn � ξn(1 − ζ),ψn � (1 + ζ3)
‖un − u∗‖, and δn � ‖un − u∗‖,∀n ∈ N. It follows
from assumption of the theorem that (1 + ζ3)/ξn􏽮 􏽯 is
bounded; therefore, (1 + ζ3)/ξn(1 − ζ)􏽮 􏽯 is also
bounded. )en, there exists a constant M> 0,
such that |(1 + ζ3)/ξn(1 − ζ)|<M,∀n ∈ N. Since
limn⟶∞δn � 0 and (1 + ζ3)/ξn(1 − ζ)􏽮 􏽯 is bounded,
therefore, (1 + ζ3)/ξn(1 − ζ)δn􏽮 􏽯⟶ 0 as n⟶∞,
i.e., limn⟶∞(ψn/φn) � 0, which amounts to say that

ψn � o(φn). )us, all the assumptions of Lemma 4
are fulfilled. Hence, limn⟶∞‖un − pn‖ � 0 and
‖pn − u∗‖≤ ‖un − pn‖ + ‖un − u∗‖. )us, we have
limn⟶∞‖pn − u∗‖ � 0.

(ii) Next, we estimate that pn − un􏼈 􏼉⟶ 0. Since pn􏼈 􏼉

converges to u∗ ∈ F(T)∩ Sol(C, f, g), then fol-
lowing the same arguments as in (34) and (35), we
obtain

pn+1 − un+1
����

����≤ ζ 1 − ξn(1 − ζ)􏼂 􏼃 pn − u
∗����
���� + ζ ζ2 1 − an(1 − ζ)( 􏼁􏽨 􏽩 un − u

∗����
����

≤ ζ3 1 − an(1 − ζ)􏼂 􏼃 pn − un

����
���� + ζ3 1 − an(1 − ζ)􏼂 􏼃 pn − u

∗����
����

+ ζ 1 − ξn(1 − ζ)􏼂 􏼃 pn − u
∗����
����

≤ ζ3 1 − an(1 − ζ)􏼂 􏼃 pn − un

����
���� + ζ3 pn − u

∗����
���� + pn − u

∗����
����

≤ ζ3 pn − un

����
���� + 1 + ζ3􏼐 􏼑 pn − u

∗����
����.

(36)

Let ϕn
′ � ‖pn − un‖,ψn

′ � (1 + ζ3)‖pn − u∗‖,∀n ∈ N. By
the assumption pn􏼈 􏼉 converges to u∗ and utilizing the fact
that (1 + ζ3) is bounded, we obtain that ψn

′ ⟶ 0 as
n⟶∞. )us, all the assumptions of Lemma 3 are fulfilled.
Hence, limn⟶∞‖pn − un‖ � 0. Also, we know that
‖un − u∗‖≤ ‖pn − un‖ + ‖pn − u∗‖,∀n ∈ N. )us,
limn⟶∞‖un − u∗‖ � 0. Hence, pn − un􏼈 􏼉⟶ 0 as
n⟶∞. □

Theorem 3. LetH be a real Hilbert space and C be a closed
convex subset ofH. Suppose f, g, T, and ζ are identical as in
-eorem 1. Let pn􏼈 􏼉 and un􏼈 􏼉 be sequences defined by (13) and
(16), respectively. Suppose that assumption (17) holds and
F(T)∩ Sol(C, f, g)≠ ϕ. If p0 � u0, then un􏼈 􏼉 converges faster
than pn􏼈 􏼉 to u∗, such that u∗ ∈ F(T)∩ Sol(C, f, g).

Proof. It follows from (27) that

un+1 − u
∗����
����≤ ζ3 1 − an(1 − ζ)􏼂 􏼃 un − u

∗����
����. (37)

Since an􏼈 􏼉 is a sequence in (0, 1), we can choose a
constant a ∈ R, such that 0< a≤ an < 1,∀n ∈ N. )en,

un+1 − u
∗����
����≤ ζ3[1 − a(1 − ζ)] un − u

∗����
����. (38)

By repeating the process, we obtain

un+1 − u
∗����
����≤ ζ3(n+1)

[1 − a(1 − ζ)]
n+1

u0 − u
∗����
����, ∀n ∈ N.

(39)

Also, it follows from (13) that
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pn+1 − u
∗����
���� � T qn − g qn( 􏼁 + pC g qn( 􏼁 − ρf qn( 􏼁􏼂 􏼃􏼈 􏼉 − T u

∗
− g u

∗
( 􏼁 + pC g u

∗
( 􏼁 − ρf u

∗
( 􏼁􏼂 􏼃􏼈 􏼉

����
����

≤ qn − u
∗

− g qn( 􏼁 − g u
∗

( 􏼁( 􏼁
����

���� + g qn( 􏼁 − g u
∗

( 􏼁 − ρ f qn( 􏼁 − f u
∗

( 􏼁( 􏼁
����

����

≤ 2 qn − u
∗

− g qn( 􏼁 − g u
∗

( 􏼁( 􏼁
����

���� + qn − u
∗

− ρ f qn( 􏼁 − f u
∗

( 􏼁( 􏼁
����

����.

(40)

By following the arguments as discussed from (21)to(24),
we have

pn+1 − u
∗����
����≤ ζ qn − u

∗����
����. (41)

Also,

qn − u
∗����
���� � 1 − ξn( 􏼁pn + ξnT pn − g pn( 􏼁 + pC g pn( 􏼁 − ρf pn( 􏼁􏼂 􏼃􏼈 􏼉 − u

∗����
����

≤ 1 − ξn( 􏼁 pn − u
∗����
���� + 2ξn pn − u

∗
− g pn( 􏼁 − g u

∗
( 􏼁( 􏼁

����
����

+ ξn pn − u
∗

− ρ f pn( 􏼁 − f u
∗

( 􏼁( 􏼁
����

����

≤ 1 − ξn( 􏼁 pn − u
∗����
���� + ξnζ pn − u

∗����
����

� 1 − ξn(1 − ζ)􏼂 􏼃 pn − u
∗����
����.

(42)

By combining (41) and (42), we get

pn+1 − u
∗����
����≤ ζ 1 − ξn(1 − ζ)􏼂 􏼃 pn − u

∗����
����. (43)

Since ξn􏼈 􏼉 is a sequence in [0, 1], we can choose a
constant ξ ∈ R, such that 0< ξ ≤ ξn < 1,∀n ∈ N. )en,

pn+1 − u
∗����
����≤ ζ[1 − ξ(1 − ζ)] pn − u

∗����
����. (44)

)us, by repeating the process, we obtain

pn+1 − u
∗����
����≤ ζ(n+1)

[1 − ξ(1 − ζ)]
n+1

p0 − u
∗����
����, ∀n ∈ N, (45)

Set an � ζ3(n+1)
[1 − a(1 − ζ)]n+1‖u0 − u∗‖ and

bn � ζ(n+1)
[1 − ξ(1 − ζ)]n+1‖p0 − u∗‖; then,

An �
an

bn

�
ζ3(n+1)

[1 − a(1 − ζ)]
n+1

u0 − u
∗����
����

ζ(n+1)
[1 − ξ(1 − ζ)]

n+1
p0 − u

∗����
����

⟶ 0 as n⟶∞.

(46)

Hence, un􏼈 􏼉 converges faster that pn􏼈 􏼉. □

3. Applications

3.1. Convex Minimization Problem. Now, we solve convex
minimization problem as an application of )eorem 1.

LetC be a closed convex subset of a real Hilbert spaceH,
ρC: H⟶ C be a projection, and F: C⟶ R be a convex,
Frechet differentiable mapping. We consider the following
convex minimization problem:

min
u∗∈C

F u
∗

( 􏼁. (47)

Clearly, u∗ ∈ C is a solution of pC(I − ρ∇F) if and only if

〈∇F u
∗

( 􏼁, u − u
∗〉 ≥ 0, ∀u ∈ C. (48)

More precisely, u∗ ∈ C solves problem (47) if and only if
u∗ is a fixed point of the projectionmapping pC(I − ρ∇F), i e.,

u
∗

� ρC u
∗

− ρ∇F u
∗

( 􏼁􏼂 􏼃, (49)

where ∇F is the gradient of mapping F. )is formulation is
known as gradient projection, which plays a key role in
solving problem (47). So far, several iterative methods have
been employed to solve minimization problems [7, 26, 32]. By
considering f: � ∇F and assuming T � g � I, the identity
mapping, we propose the following modified gradient pro-
jection algorithm for solving pC(I − ρ∇F) as follows:

u1 ∈ C,

wn � pC un − ρ∇F un( 􏼁􏼂 􏼃,

rn � 1 − an( 􏼁wn + anpC wn − ρ∇F wn( 􏼁􏼂 􏼃,

vn � pC rn − ρ∇F rn( 􏼁􏼂 􏼃,

un+1 � pC vn − ρ∇F vn( 􏼁􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(50)

where an􏼈 􏼉 is a sequence in (0, 1). Now, we approximate the
proposed algorithm (50) to estimate the solution of (47).

Theorem 4. LetC be a nonempty closed convex subset of real
Hilbert space H. Let F: C⟶ R be a convex, Freschet dif-
ferentiable mapping, and ∇F is a-inverse strongly monotone
mapping. Suppose that the convex minimization problem (47)
has a solution and condition (17) holds.-en, the sequence un􏼈 􏼉

generated by (50) converges strongly to u∗ which solves convex
minimization problem (47) with the following error estimates:
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un+1 − u
∗����
����≤ ζ3(n+1)

􏽙

n

k�0
1 − ak(1 − ζ)􏼂 􏼃 u0 − u

∗����
����, ∀n ∈ N,

(51)

where

ζ �
a1 − ρ

a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (52)

Proof. )edesired conclusion is accomplished by takingf �

∇F and T, g � I in )eorem 1. □

Example 2. Let H � L2[0, 1] � G: [0, 1]⟶ R: 􏽒
1
0 G

2􏼚

(u)du<∞}. )en, (H, ‖ · ‖2) is a Hilbert space given by

‖G(u)‖
2
2 � 〈G(u),G(u)〉 � 􏽚

1

0
G

2
(u)du. (53)

Consider a closed convex subset
C � G ∈ L2[0, 1]: ‖G(u)‖22 ≤ 1􏽮 􏽯 of H. Define F: C⟶ R

by F(G) � ‖G(u)‖22. )en, G(u) � 0 is a unique minimum
of a convex function f, and f is the Frechet differentiable at
G. )e gradient ∇F: C⟶H is evaluated as ∇F(G) � 2G.
)en, for all G1,G2 ∈ C, we get

〈∇F G1( 􏼁 − ∇F G2( 􏼁,G1 − G2〉 � 􏽚
1

0
2G1(u) − 2G2(u)( 􏼁 G1 − G2( 􏼁du

� 2􏽚
1

0
G1(u) − G2(u)( 􏼁

2du

≥ −
1
4

􏽚
1

0
2G1(u) − 2G2(u)( 􏼁

2du

� −
1
4
∇F G1( 􏼁 − ∇F G2( 􏼁

����
����
2
2,

(54)

i.e., ∇F is 1/4 inverse strongly monotone. Also, ζ < 1 for
ρ � 1/4. )us, all the assumptions of)eorem 4 are satisfied,
and for an � 1/n + 1, the sequence un􏼈 􏼉 generated by (50) is
given as

u0 ∈ C,

wn � pC
1
2
un􏼔 􏼕,

rn � 1 −
1

n + 1
􏼒 􏼓wn +

1
n + 1

pC
1
2
wn􏼔 􏼕,

vn � pC
1
2
rn􏼔 􏼕,

un+1 � pC
1
2
vn􏼔 􏼕,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

where pC �
G, G ∈ C,

G/‖G‖, G ∉ C.
􏼨 )en, the sequence un􏼈 􏼉

generated by (50) converges to 0 function.

3.2. Split Feasibility Problem. )is subsection is devoted to
utilization of )eorem 1 to examine a split feasibility
problem (SFP). Let C1 and C2 be nonempty closed convex
subsets of real Hilbert spaces H1 and H2, respectively. Let
A: H1⟶H2 be a bounded linear operator. )e SFP is to
locate a point u∗, such that

u
∗ ∈ C1: Au

∗ ∈ C2. (56)

Let Γ denotes the solution set of SFP (56); then,

Γ≕ u
∗ ∈ C1: Au

∗ ∈ C2􏼈 􏼉 � C1 ∩A
− 1
C2. (57)

A class of inverse problems has been solved by using
SFP, for example, [6]. In [32], Xu established the rela-
tionship between SFP (56) and the fixed point of problem
pC1

[I − ρA∗(I − pC2
)A]. More precisely, for ρ> 0, u∗ ∈ C1

solves SFP (56) if and only if
pC1

[I − ρA∗(I − pC2
)A](u∗) � u∗. Byrne [5] posed the

following iterative algorithm for solving SFP (56) as
follows:

un+1 � pC1
I − ρA∗ I − pC2

􏼐 􏼑A􏽨 􏽩 un( 􏼁, ∀n≥ 0, (58)

where 0< ρ< 2/‖A‖2, A∗ is the adjoint of operator A, and
pC1

and pC2
are the projections ontoC1 andC2, respectively.

Note that the operator pC1
[I − ρA∗(I − pC2

)A] with
0< ρ< 2/‖A‖2 is nonexpansive. Now, we propose following
iterative algorithm to solve SFP (56):

u1 ∈ C1,

wn � pC1
I − ρA∗ I − pC2

􏼐 􏼑A􏽨 􏽩 un( 􏼁,

rn � 1 − an( 􏼁wn + anpC1
I − ρA∗ I − pC2

􏼐 􏼑A􏽨 􏽩 wn( 􏼁,

vn � pC1
I − ρA∗ I − pC2

􏼐 􏼑A􏽨 􏽩 rn( 􏼁,

un+1 � pC1
I − ρA∗ I − pC2

􏼐 􏼑A􏽨 􏽩 vn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

where an􏼈 􏼉 is a sequence in (0, 1) and 0< ρ< 2/‖A‖2.

Journal of Function Spaces 7



Theorem 5. Suppose that Γ ≠ ϕ and condition (17) holds.
-en, the sequence un􏼈 􏼉 initiated in (59) converges weakly to
u∗, which solves SFP (56) with following error estimates:

un+1 − u
∗����
����≤ ζ3(n+1)

􏽙

n

k�0
1 − ak(1 − ζ)􏼂 􏼃 u0 − u

∗����
����, ∀n ∈ N, (60)

where

ζ �
a1 − ρ

a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (61)

Proof. )e desired conclusion follows by taking
∇F � A∗(I − pC2

)A] and T, g � I in )eorem 1. □

4. Conclusion

In this study, a new iterative algorithm (16) has been pro-
posed and employed to explore convergence analysis. Using
this newly constructed iterative procedure, a common so-
lution of the generalized variational inequality problem and
fixed points of nonexpansive mapping is investigated, and
theoretical findings are verified by a numerical example.
Furthermore, we have shown that our iteration algorithm
converges faster than the normal S-iteration process for
contraction mapping. Finally, we applied our newly con-
structed iterative algorithm to investigate the convex opti-
mization problem and split feasibility problem.
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