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In this paper, we discuss the existence and uniqueness of solutions for nonlinear fractional differential equations of variable order
with fractional antiperiodic boundary conditions. The main results are obtained by using fixed point theorem.

1. Introduction

Fractional calculus has become one of the important tools
for the development of modern society; the fractional dif-
ferential equation with variable order has gained lots of
interest [1–4]. Some researchers have investigated the
physical background and numerical analysis of fractional
differential equations of variable order [5–8]. In [9], Bush-
naq et al. used Bernstein polynomials with nonorthogonal
basis to establish operational matrices for variable-order
integration and differentiation which convert the consid-
ered problem to some algebraic type matrix equations
and obtained numerical solution to variable-order frac-
tional differential equations by numerical simulation. In
[10], Shah et al. proposed a new algorithm for numerical
solutions to variable-order partial differential equations,
used properties of shifted Legendre polynomials to estab-
lish some operational matrices of variable-order differenti-
ation and integration, and got the numerical solution by
numerical experiments.

In recent years, the antiperiodic boundary value problem
of fractional differential equation has gradually become the
focus of research, which have broad application in engineer-
ing and sciences such as physics, mechanics, chemistry,

economics, and biology [11–17]. In [18], Ahmad and Nieto
considered the following antiperiodic fractional boundary
value problems:

C
0D

q
t x tð Þ = f t, x tð Þð Þ, t ∈ 0, T½ �,

x 0ð Þ = −x Tð Þ, C
0D

p
t x 0ð Þ = −C

0D
p
t x Tð Þ,

(
ð1Þ

where CDp denotes the Caputo fractional derivative of order
q and f is a given continuous function.

The problems related to the antiperiodic boundary value
condition have been considered in [19–26], but the antiper-
iodic boundary value problem of fractional differential equa-
tion with variable order is almost not considered. In this
paper, we investigate the existence of solutions for an anti-
periodic fractional boundary value problem given by

C
0D

q tð Þ
t x tð Þ = f t, x tð Þð Þ, t ∈ 0, T½ �,

x 0ð Þ = −x Tð Þ, C
0D

p
t x 0ð Þ = −C

0D
p
t x Tð Þ,

(
ð2Þ

where CDp denotes the Caputo fractional derivative of order
p, 0 < p < 1, CDqðtÞ denotes the Caputo fractional derivative
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of variable order qðtÞ, 1 < qðtÞ ≤ 2, T is a positive constant,
and f : ½0, T� ×R⟶R is a given continuous function.

2. Preliminary Knowledge

In this section, we introduce some fundamental definitions
and lemmas.

Definition 1 (see [27]). The Riemann-Liouville fractional
integral of order q for a continuous function f : ½0,∞Þ⟶
R is defined as

0I
q
t f tð Þ = 1

Γ qð Þ
ðt
0
t − sð Þq−1 f sð Þds, q > 0, ð3Þ

provided the integral exists.

Definition 2 (see [27]). For ðn − 1Þ times absolutely continu-
ous function f :½0,∞Þ⟶R, the Caputo derivative of frac-
tional order q is defined as

C
0D

q
t f tð Þ = 1

Γ n − qð Þ
ðt
0
t − sð Þn−q−1 f nð Þ sð Þds,

 n − 1 < q < n, n = q½ � + 1,
ð4Þ

where ½q� denotes the integer part of the real number q.

Definition 3 (see [3]). The Riemann-Liouville fractional inte-
gral of variable order qðtÞ for a continuous function f : ½0,
∞Þ⟶R is defined as

0I
q tð Þ
t f tð Þ =

ðt
0

t − sð Þq tð Þ−1

Γ q tð Þð Þ f sð Þds, q tð Þ > 0, t > 0, ð5Þ

provided that the right-hand side is pointwise defined.

Definition 4 (see [3]). For ðn − 1Þ times absolutely continu-
ous function f : ½0,∞Þ⟶R, the Caputo fractional deriva-
tive of variable order qðtÞ is defined as

C
0D

q tð Þ
t f tð Þ =

ðt
0

t − sð Þn−q tð Þ−1

Γ n − q tð Þð Þ f nð Þ sð Þds, n − 1 < q tð Þ < n,

dnf
dtn

, n = q tð Þ:

8>>><
>>>:

ð6Þ

Definition 5 (see [25]). Let I ⊂R, I is called a generalized
interval if it is either an interval, or fag or ∅.

A finite set θ is called a partition of I if each x in I lies in
exactly one of the generalized intervals ξ in θ.

A function f : I ⟶R is called piecewise constant
with respect to partition θ of I if for any ξ ∈ θ, f is con-
stant on ξ.

Theorem 6 (see [27]). Let E be a closed, convex, and non-
empty subset of a Banach space X; let F: E⟶ E be a contin-
uous mapping such that FE is a relatively compact subset of X
. Then, F has at least one fixed point in E.

Lemma 7 (see [27]). Let α > 0, and let yðtÞ ∈ L∞ða, bÞ or yð
tÞ ∈ C½a, b�, then  C

a D
α
t aI

α
t yðtÞ = yðtÞ:

Lemma 8 (see [27]). Let n = ½α� + 1 for α ∉N0 ; n = α for α
∈N0, if yðtÞ ∈ ACn½a, b� or yðtÞ ∈ Cn½a, b�, then

aI
α
t
C
a D

α
t y tð Þ = y tð Þ − 〠

n−1

k=0

yk að Þ
k!

t − að Þk: ð7Þ

3. Main Results

Let J = ½0, T�. Denote CðJ ,RÞ be the Banach space of all con-
tinuous functions x : J ⟶R with the norm kxk = sup

t∈J
jxðtÞj

and introduce the following assumption.
ðH1Þ Let n ∈N be an integer, θ = fJ1 = ½0, T1�, J2 = ðT1,

T2�,⋯, Jn = ðTn−1, Tn�g be a partition of the interval J , and
qðtÞ: J ⟶ ð1, 2� be a piecewise constant function with
respect to θ with the following forms:

q tð Þ = 〠
n

i=1
qiIi tð Þ =

q1, if t ∈ J1,
q2, if t ∈ J2,
⋮  

qn, if t ∈ Jn,

8>>>>><
>>>>>:

ð8Þ

where 1 < qi ≤ 2 are constants, and Ii is the indicator of the
interval ðTi−1, Ti�, i = 1, 2,⋯, n (with T0 = 0, Tn = T), IiðtÞ
= 1 for t ∈ ðTi−1, Ti�, and IiðtÞ = 0 for elsewhere.

Let Ωi = CðJi,RÞ be the Banach space of all continuous
functions x : Ji ⟶R with the norm kxkΩi

= sup
t∈J i

jxðtÞj, i =
1, 2,⋯, n (with T0 = 0, Tn = T).

The Caputo fractional derivative of variable order qðtÞ
for the function xðtÞ could be presented as a sum of Caputo
fractional derivatives of constant orders qi by Definition 4,
i = 1, 2,⋯, n:

C
0D

q tð Þ
t x tð Þ =

ðT1

0

t − sð Þ1−q1
Γ 2 − q1ð Þ x

2ð Þ sð Þds+⋯+
ðt
Ti−1

t − sð Þ1−qi
Γ 2 − qið Þ x

2ð Þ sð Þds:

ð9Þ

Thus, according to (9), problem (2) can be written in the
following form:

C
0D

q tð Þ
t x tð Þ =

ðT1

0

t − sð Þ1−q1
Γ 2 − q1ð Þ x

2ð Þ sð Þds+⋯

+
ðt
Ti−1

t − sð Þ1−qi
Γ 2 − qið Þ x

2ð Þ sð Þds = f t, x tð Þð Þ:
ð10Þ
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Definition 9. The problem (2) has a solution, if there are
functions xi, so that xi ∈ CðJi,RÞ, satisfy (10) and xið0Þ = −
xiðTÞ, C

0D
p
t xið0Þ = −C

0D
p
t xiðTÞ.

Let the function x ∈ CðJ ,RÞ be such that xðtÞ ≡ xðTi−1Þ
on ½0, Ti−1�, then consider (2) as the following form:

C
Ti−1

Dqi
t x tð Þ = f t, x tð Þð Þ, t ∈ Ti−1, Tið �,

x Ti−1ð Þ = −x Tið Þ, C
Ti−1

Dp
t x Ti−1ð Þ = −C

Ti−1
Dp
t x Tið Þ:

8<
:

ð11Þ

Proposition 10. For any xðtÞ ∈Ωi, f ðt, xðtÞÞ ∈ CðJi ×R,RÞ,
xðtÞ is a unique solution of problem (11) if and only if x sat-
isfy the integral equation:

x tð Þ =
ðTi

Ti−1

Gi t, sð Þf s, x sð Þð Þds, ð12Þ

where Giðt, sÞ is Green’s function given by

Proof. If xðtÞ ∈Ωi is a solution of problem (11), applying

Ti−1
Iqit on both sides of (11), according to Lemma 8, we get

x tð Þ= Ti−1
Iqit f t, x tð Þð Þ + c1 + c2 t − Ti−1ð Þ, ð14Þ

according to the facts that C
Ti−1

Dp
t c1 = 0,CTi−1

Dp
t t =

ðt − Ti−1Þ1−p/Γð2 − pÞ, C
Ti−1

Dp
t Ti−1

Iqit xðtÞ= Ti−1
Iqi−pt xðtÞ, and

initial condition of problem (11), we get

c2 = −
Γ 2 − pð Þ

Γ qi − pð Þ Ti − Ti−1ð Þ1−p
ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds,

c1 =
Ti − Ti−1ð ÞΓ 2 − pð Þ

2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds

−
1

2Γ qið Þ
ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þds:

ð15Þ

Thus, the solution of problem (11) is

x tð Þ = 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þds + Ti − Ti−1 − 2tð ÞΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

�
ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds − 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þds:

ð16Þ

Green’s function can be written as

x tð Þ =
ðTi

Ti−1

Gi t, sð Þf s, x sð Þð Þds: ð17Þ

It implies that xðtÞ is the solution to the integral equa-
tion (12). In turn, if xðtÞ ∈Ωi is the solution to the integral
equation (12), according to Lemma 7, we deduce that xðtÞ
is the solution of the problem (11). Hence, we complete this
proof.

Theorem 11. Assume that ðH2Þf ðt, xðtÞÞ ∈ CðJi ×R,RÞ and
there exists a positive constant L such that j f ðt, xðtÞÞj ≤ L, for
any t ∈ ðTi−1, Ti�, xðtÞ ∈R. Then, problem (11) has at least a
solution.

Proof. According to Proposition 10, problem (11) is equiva-
lent to the following integral equation:

x tð Þ = 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þds

+ Ti − Ti−1 − 2tð ÞΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds

−
1

2Γ qið Þ
ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þds:

ð18Þ

Gi t, sð Þ =

t − sð Þqi−1
Γ qið Þ + Ti − sð Þqi−p−1Γ 2 − pð Þ Ti − Ti−1 − 2tð Þ

2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ −
Ti − sð Þqi−1
2Γ qið Þ , s ≤ t,

Ti − sð Þqi−p−1Γ 2 − pð Þ Ti − Ti−1 − 2tð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ −

Ti − sð Þqi−1
2Γ qið Þ , t ≤ s:

8>>>><
>>>>:

ð13Þ
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Define operator T : Ωi ⟶Ωi by

Tx tð Þ = 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þds + Ti − Ti−1 − 2tð ÞΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

�
ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds − 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þds,

ð19Þ

Bri
= fxðtÞ ∈Ωi, kxkΩi

≤ ri, t ∈ Jig,where ri ≥ LðTi − Ti−1Þqi−1
½3Γðqi − p + 1ÞðTi − Ti−1Þ + Γð2 − pÞΓðqi + 1ÞðTi + Ti−1Þ�/2Γ
ðqi − p + 1ÞΓðqi + 1Þ, observe that Bri

is a closed, bounded,
and convex subset of Banach space Ωi. For any xðtÞ ∈Ωi,
we have

It implies T : Ωi ⟶Ωi is well defined.
Now, we consider the continuity of operator T . Since f

ðt, xðtÞÞ ∈ CðJi ×R,RÞ, given an arbitrary ε > 0, for any xð
tÞ, yðtÞ ∈Ωi,we can findδ > 0such that j f ðt, xðtÞÞ − f ðt, yðtÞÞ

j < 2Γðqi − p + 1ÞΓðqi + 1Þε/ðTi − Ti−1Þqi−1½3Γðqi − p + 1ÞðTi
− Ti−1Þ + Γð2 − pÞΓðqi + 1ÞðTi + Ti−1Þ�. When jxðtÞ − yðtÞj
< δ for t ∈ Ji, for any t ∈ Ji, we have

Tx tð Þj j = 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þds + Ti − Ti−1 − 2tð ÞΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds − 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þds
�����

�����
≤ L

1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1ds + Ti − Ti−1 − 2tj jΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1ds + 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1ds
" #

≤ L
t − Ti−1ð Þqi
Γ qi + 1ð Þ + Ti − Ti−1ð Þqi−p

Γ qi − p + 1ð Þ
Ti − Ti−1 − 2tj jΓ 2 − pð Þ

2 Ti − Ti−1ð Þ1−p + Ti − Ti−1ð Þqi
2Γ qi + 1ð Þ

" #

≤
L Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �

2Γ qi − p + 1ð ÞΓ qi + 1ð Þ ≤ ri:

ð20Þ

Tx tð Þ − Ty tð Þj j ≤ 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þ − f s, y sð Þð Þj jds

+ Ti − Ti−1 − 2tð ÞΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þ − f s, y sð Þð Þj jds + 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þ − f s, y sð Þð Þj jds

≤
1

Γ qið Þ
ðt
Ti−1

t − sð Þqi−1ds + Ti − Ti−1 − 2tj jΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1ds + 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1ds
" #

� 2Γ qi − p + 1ð ÞΓ qi + 1ð Þε
Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �

" #

≤
t − Ti−1ð Þqi
Γ qi + 1ð Þ + Ti − Ti−1ð Þqi−p

Γ qi − p + 1ð Þ
Ti − Ti−1 − 2tj jΓ 2 − pð Þ

2 Ti − Ti−1ð Þ1−p + Ti − Ti−1ð Þqi
2Γ qi + 1ð Þ

" #

× 2Γ qi − p + 1ð ÞΓ qi + 1ð Þε
Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �

" #

< Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �
2Γ qi − p + 1ð ÞΓ qi + 1ð Þ

× 2Γ qi − p + 1ð ÞΓ qi + 1ð Þε
Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �

" #
= ε:

ð21Þ

4 Journal of Function Spaces



We get the operator T is continuous.
For each xðtÞ ∈Ωi, we prove that if t1, t2 ∈ Ji, and 0 < t2

− t1 < δ, then kTxðt2Þ − Txðt1Þk < ε:

Tx t2ð Þ − Tx t1ð Þk k

= 1
Γ qið Þ

ðt2
Ti−1

t2 − sð Þqi−1 f s, x sð Þð Þds − 1
Γ qið Þ

ðt1
Ti−1

t1 − sð Þqi−1 f s, x sð Þð Þds
�����
+ t1 − t2ð ÞΓ 2 − pð Þ

Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þds
�����

≤
1

Γ qið Þ
ðt1
Ti−1

t2 − sð Þqi−1 − t1 − sð Þqi−1 f s, x sð Þð Þj jds

+ 1
Γ qið Þ

ðt2
t1

t2 − sð Þqi−1 f s, x sð Þð Þj jds + t2 − t1ð ÞΓ 2 − pð Þ
Ti − Ti−1ð Þ1−pΓ qi − pð Þ

�
ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þj jds

≤ L
t2 − Ti−1ð Þqi − t1 − Ti−1ð Þqi

Γ qi + 1ð Þ + t2 − t1ð Þ Ti − Ti−1ð Þqi−1Γ 2 − pð Þ
Γ qi − p + 1ð Þ

" #
:

ð22Þ

By the mean value theorem, we have

Tx t2ð Þ − Tx t1ð Þk k ≤ L
t2 − Ti−1ð Þqi − t1 − Ti−1ð Þqi

Γ qi + 1ð Þ
�

+ t2 − t1ð Þ Ti − Ti−1ð Þqi−1Γ 2 − pð Þ
Γ qi − p + 1ð Þ

#

≤ L
Ti − Ti−1ð Þqi−1

Γ qið Þ + L
Ti − Ti−1ð Þqi−1Γ 2 − pð Þ

Γ qi − p + 1ð Þ

" #
δ < ε:

ð23Þ

Therefore, kTxðt2Þ − Txðt1Þk < ε. According to the
previous analysis, we know that is equicontinuous and
uniformly bounded. We know by the Arzela-Ascoli theo-
rem that T is compact on Bri

, so the operator T is
completely continuous. So, Theorem 11 implies that the
antiperiodic boundary value problem of variable order
(11) has at least a solution on Ji. This completes the
proof.

Theorem 12. Assume that ðH3Þf ðt, xðtÞÞ ∈ CðJi ×R,RÞ
such that j f ðt, xðtÞÞ − f ðt, yðtÞÞj ≤ KjxðtÞ − yðtÞj, for any t
∈ Ji, xðtÞ, yðtÞ ∈R, and if KðTi − Ti−1Þqi−1½3Γðqi − p + 1ÞðTi
− Ti−1Þ + Γð2 − pÞΓðqi + 1ÞðTi + Ti−1Þ�/Γðqi − p + 1ÞΓðqi + 1
Þ < 1, then problem (11) has a unique solution.

Proof. Let sup
t∈J i

j f ðt, 0Þj =M <∞, Bri
= fxðtÞ ∈Ωi, kxkΩi

≤ ri,

t ∈ Jig, where

ri ≥
M Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �

Γ qi − p + 1ð ÞΓ qi + 1ð Þ :

ð24Þ

For any xðtÞ ∈ Bri
, we have

Tx tð Þj j ≤ 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þj jds + Ti − Ti−1 − 2tj jΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þj j ds

+ 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þj jds ≤ 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1 f s, x sð Þð Þ − f s, 0ð Þj j + f s, 0ð Þj jð Þds

+ Ti − Ti−1 − 2tj jΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1 f s, x sð Þð Þ − f s, 0ð Þj j + f s, 0ð Þj jð Þds

+ 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1 f s, x sð Þð Þ − f s, 0ð Þj j + f s, 0ð Þj jð Þds

≤ Kri +Mð Þ 1
Γ qið Þ

ðt
Ti−1

t − sð Þqi−1ds + Ti − Ti−1 − 2tj jΓ 2 − pð Þ
2 Ti − Ti−1ð Þ1−pΓ qi − pð Þ

ðTi

Ti−1

Ti − sð Þqi−p−1ds + 1
2Γ qið Þ

ðTi

Ti−1

Ti − sð Þqi−1ds
" #

≤ Kri +Mð Þ Ti − Ti−1ð Þqi−1 3Γ qi − p + 1ð Þ Ti − Ti−1ð Þ + Γ 2 − pð ÞΓ qi + 1ð Þ Ti + Ti−1ð Þ½ �
2Γ qi − p + 1ð ÞΓ qi + 1ð Þ

" #
≤ ri:

ð25Þ
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It implies that TBri
⊆ Bri

. For any xðtÞ, yðtÞ ∈Ωi, t ∈ Ji,

It follows that T is a contraction mapping. Thus, the
Banach fixed point theorem yields that T has a unique fixed
point which is the unique solution of the antiperiodic
boundary value problem (11).

Theorem 13. Assume that ðH1Þ, ðH2Þ hold for all i =1, 2, ⋯,
n, then the problem (2) has at least a solution in CðJ ,RÞ.

Proof. According to Theorem 11, problem (11) has at least a
solution x∗ ∈Ωi. Define the function

xi =
x∗i Ti−1ð Þ, t ∈ 0, Ti−1½ �,
x∗i , t ∈ Ji:

(
ð27Þ

Thus, the function xi ∈ Cð½0, Ti�,RÞ satify (10) and xið0
Þ = −xiðTÞ, C

0D
p
t xið0Þ = −C

0D
p
t xiðTÞ. Then, the function

x tð Þ =

x1 tð Þ, t ∈ J1,

x2 tð Þ =
x∗2 T1ð Þ, t ∈ J1,
x∗2 , t ∈ J2,

(

⋮

xn tð Þ =
x∗n Tn−1ð Þ, t ∈ 0, Tn−1½ �,
x∗n , t ∈ Jn,

(

8>>>>>>>>>>><
>>>>>>>>>>>:

ð28Þ

is a solution of problem (2) in CðJ ,RÞ.

Theorem 14. Assume that ðH1Þ, ðH3Þ hold for all i = 1, 2,
⋯, n, then problem (2) has a unique solution in CðJ ,RÞ.

The proof of Theorem 14 is similar to Theorem 13.

4. Conclusion

This paper is devoted to considering the existence of solu-
tions to the antiperiodic fractional boundary value problems
for nonlinear differential equations of variable order, which

is a piecewise constant function based on the essential differ-
ence about the variable order. Based on the fixed point the-
ory, the results are obtained. It is also worth considering
fractional differential equations of variable-order problems
related to thermodynamics, fluid mechanics, resonance, etc.
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