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The solvability of the fractional partial differential equation with integral overdetermination condition for an inverse problem is
investigated in this paper. We analyze the direct problem solution by using the “energy inequality” method. Using the fixed point
technique, the existence and uniqueness of the solution of the inverse problem on the data are established.

1. Introduction

This work devoted to study the solvability of a pair of func-
tions fu, f g satisfying the following fractional parabolic
problem:

CDα
t u − Δu + βu = f tð Þg x, tð Þ ; x ∈Ω, t ∈ 0, T½ �, ð1Þ

with the initial condition

u x, 0ð Þ = φ xð Þ, x ∈Ω, ð2Þ

the boundary condition

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0, T½ �, ð3Þ

and the nonlocal conditionð
Ω

v xð Þu x, tð Þdx = θ tð Þ, t ∈ 0, T½ �: ð4Þ

Here, Ω is a bounded domain in ℝn with smooth bound-
ary ∂Ω:. The functions g, φ, and θ are known functions, and
β is a positive constant. And Γ ð·Þ denotes the gamma func-
tion. For any positive integer 0 < α < 1, the left Caputo deriv-
ative is defined as

CDα
t u x, tð Þ≔ 1

Γ 1 − αð Þ
ðt
0

∂u x, τð Þ
∂τ

1
t − τð Þα dτ: ð5Þ

Inverse parabolic equation problems occur naturally in
many fields, and there is extensive literature on inverse heat
equation problems (see [1–4], and references therein). The
form (4) is an additional information of problem.
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In engineering and physics, the parameter recognition in
a partial differential equation from the data of the integral
overdetermination condition plays an important role
[5–10]. From a physical point of view, these conditions can
be interpreted by a system averaging the domain of spatial
variables as measurements of the temperature uðx, tÞ.

Note that nonlocal problems related with integral over-
determination [11, 12]. Studies have shown that when we
deal with these kinds of nonclassical problems, classical
approaches sometimes do not work [13, 14]. To date, differ-
ent methods for addressing problems resulting from nonlo-
cal problem have been suggested. The choice of approach
depends on the form of nonlocal boundary value that are
involved.

We note that several authors have studied the inverse
parabolic problem with condition of type (4) and its special
solubility (see, for example, [3, 4, 15–20]). There are also
several articles dedicated to the study of the existence and
uniqueness of inverse problem solutions for different para-
bolic equations with unknown source functions. Inverse
problems related by determining unknown function in
source term of a parabolic equation with overdetermination
condition [21, 22].

In recent years, fractional differential equations have cre-
ated growing interest from engineers and scientists and have
great importance in modeling complex phenomena. Because
FDEs have memory, nonlocal space, and time relationships,
using these equations, complex phenomena can be modelled
[23–28].

Namely, in the present paper, a new research on the
inverse problem of a fractional parabolic equation is dis-
cussed, for which the solvability of the problem (1)–(4) is
reduced to the concept of a fixed point technique. This work
is divided into four sections; we start with an introduction
then we give some definitions of function space and impor-
tant lemmas. The third section is devoted to studying the
solvability of the direct fractional parabolic problem. Finally,
in the last section, we prove the existence and uniqueness of
the solution to the main problem.

2. Functional Space

Definition 1. Let us introduce certain notations used below,
we set

g∗ tð Þ =
ð
Ω

v xð Þg x, tð Þdx,QT =Ω × 0, T½ �: ð6Þ

We denote by Cðð0, TÞ, L2ðΩÞÞ the space is composed of
all continuous functions on ð0, TÞ with values in L2ðΩÞ. For
any 0 < α < 1, the Caputo and Riemann-Liouville derivatives
are defined, respectively, as follows:

(i) The left Caputo derivatives:

CDα
t u x, tð Þ≔ 1

Γ 1 − αð Þ
ðt
0

∂u x, τð Þ
∂τ

1
t − τð Þα dτ: ð7Þ

(ii) The left Riemann-Liouville derivatives:

RDα
t u x, tð Þ≔ 1

Γ 1 − αð Þ
∂
∂t

ðt
0

u x, τð Þ
t − τð Þα dτ: ð8Þ

(iii) The right Riemann-Liouville derivatives:

R
t D

αu x, tð Þ≔ 1
Γ 1 − αð Þ

∂
∂t

ðT
t

u x, τð Þ
τ − tð Þα dτ: ð9Þ

Many authors believe that the Caputo version is more natu-
ral because it makes it easier to manage inhomogeneous ini-
tial conditions. Then, the following relationship is related to
the two concepts (7) and (8), which can be checked by a
direct calculation:

RDα
t u x, tð Þ = CDα

t u x, tð Þ + u x, 0ð Þ
Γ 1 − αð Þtα : ð10Þ

Definition 2 (see [29]). For any real σ > 0, we define the
space lHσ

0ðIÞ as the closure of C∞
0 ðIÞ with respect to the fol-

lowing norm k·klHσ
0 ðIÞ:

uk klHσ Ið Þ ≔ uk k2L2 Ið Þ + uj j2lHσ
0 Ið Þ

� �1/2
, ð11Þ

where

uj j2lHσ Ið Þ ≔
R
0D

σ
t u

��� ���2
L2 Ið Þ

: ð12Þ

Definition 3. For any real σ > 0, we define the space rHσ
0ðIÞ

as the closure of C∞
0 ðIÞ with respect to the following norm

k·krHσ
0 ðIÞ:

uk krHσ
0 Ið Þ ≔ uk k2L2 Ið Þ + uj j2rHσ

0 Ið Þ
� �1/2

, ð13Þ

where

uj j2rHσ
0 Ið Þ ≔

R
t ∂

σ

Tu
��� ���2

L2 Ið Þ
: ð14Þ

Lemma 4 (see [29, 30]). For any real σ ∈ℝ+, if u ∈ lHαðIÞ
and v ∈ C∞

0 ðIÞ, then

RDσ
t u tð Þ, v tð Þ� �

L2 Ið Þ = u tð Þ, R
t D

σv tð Þ� �
L2 Ið Þ: ð15Þ

Lemma 5 (see [29, 30]). For 0 < σ < 2, σ ≠ 1, u ∈Hσ/2
0 ðIÞ, on

a

RDσ
t u tð Þ = RDσ/2 R

t Dσ/2
t u tð Þ: ð16Þ
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Lemma 6 (see [29, 30]). For σ ∈ℝ+,σ ≠ n + ð1/2Þ, the semi-
norms j:jlHσðIÞ, j:jrHσðIÞ and j:jcHσðIÞ are equivalent. Then, we
pose

:j jlHσ Ið Þ=
~ :j jrHσ Ið Þ=

~ :j jcHσ Ið Þ: ð17Þ

Lemma 7 (see [29]). For any real σ > 0, the space lHσ
0ðIÞ with

respect to the norm (11) is complete.

Definition 8. We denote by L2ð0, T , L2ð0, dÞÞ≔ L2ðQÞ the
space of square functions, integrated with the scalar product
in the Bochner sense,

u,wð ÞL2 0,T ,L2 0,dð Þð Þ =
ðT
0

u, ·ð Þ, w, ·ð Þð ÞL2 0,dð Þdt: ð18Þ

Since the space L2ð0, dÞ is a Hilbert space, it can be
shown that L2ð0, T , L2ð0, dÞÞ is a Hilbert space as well. Let
C∞ð0, TÞ denote the space of infinitely differentiable func-
tions on ð0, TÞ and C∞

0 ð0, TÞ denote the space of infinitely
differentiable functions with compact support in ð0, TÞ.

3. Solvability of the Direct Fractional
Parabolic Problem

3.1. Position of Problem. In the rectangular domain Q = ð0,
dÞ × ð0, TÞ =Ω × I, with d, T <∞ and 0 < α < 1, we shall
study the existence and uniqueness of solutions u = uðx, tÞ
to the following fractional parabolic problem:

CD
α
t u x, tð Þ − ∂2u x, tð Þ

∂x2

 !
+ bu x, tð Þ = ~f x, tð Þ inQ,

u x, 0ð Þ = φ xð Þ ∀x ∈ 0, dð Þ,
u 0, tð Þ = u d, tð Þ = 0 ∀t ∈ 0, Tð Þ:

8>>>>><
>>>>>:

ð19Þ

We consider the following fractional parabolic equation
of the type

Lu = CDα
t u −

∂2u
∂x2

+ bu = ~f , ð20Þ

with the initial condition

ℓu = u x, 0ð Þ = φ xð Þ,∀x ∈ 0, dð Þ, ð21Þ

and Dirichlet condition

u 0, tð Þ = u d, tð Þ = 0,∀t ∈ 0, Tð Þ, ð22Þ

where b ∈ℝ+
∗ ; ~f and φ are known functions.

We shall assume that the function φ satisfies a compati-
bility conditions, i.e.,

φ 0ð Þ = φ dð Þ = 0: ð23Þ

Now, introducing a new function

v x, tð Þ = u x, tð Þ −U xð Þ⇒ u x, tð Þ = v x, tð Þ +U xð Þ, ð24Þ

where

φ xð Þ =U xð Þ: ð25Þ

So, we get

Such that

CDα
t v x, tð Þ − ∂2v x, tð Þ

∂x2
+ bv x, tð Þ = f x, tð Þ, ð27Þ

with the initial condition

ℓv = v x, 0ð Þ = 0, ∀x ∈ 0, dð Þ, ð28Þ

the boundary condition of Dirichlet type

v 0, tð Þ = v d, tð Þ = 0, ∀t ∈ 0, Tð Þ, ð29Þ

where

f x, tð Þ = ~f x, tð Þ + ∂2φ xð Þ
∂x2

− bφ xð Þ: ð30Þ

CDα
t v x, tð Þ − ∂2v x, tð Þ

∂x2

 !
+ bv x, tð Þ = ~f x, tð Þ −Lφ xð Þ = f x, tð Þ inQ,

v x, 0ð Þ = 0 ∀x ∈ 0, dð Þ,
v 0, tð Þ = v d, tð Þ = 0 ∀t ∈ 0, Tð Þ:

8>>>>><
>>>>>:

ð26Þ
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3.2. A Priori Estimate. In this section, we illustrate the exis-
tence and uniqueness of the problem’s solution (27)–(29)
as a solution of the operator equation

Lv =F , ð31Þ

where L = ðL , ℓÞ, with domain of definition B consisting of
functions v ∈ L2ðQÞ, such that v, CDα

t v, ð∂v/∂xÞ ∈ L2ðQÞ,
and v verify (29).

The operator L is considered from B to F, where B is the
Banach space consisting of all functions vðx, tÞ having a
finite norm

vk k2B = CD
α/2
t v

��� ���2
L2 Qð Þ

+ vk k2L2 Qð Þ +
∂v
∂x

����
����
2

L2 Qð Þ
, ð32Þ

and F is the Hilbert space consisting of all elements
Fourier = ð f , 0Þ for which the norm L2ðQÞ is finite.

Theorem 9. For any function u ∈ B, we have the inequality

vk kB ≤ k Lvk kL2 Qð Þ, ð33Þ

where k is a positive constant independent of v.

Proof. Multiplying equation (27) by the following function:

Mv = v x, tð Þ, ð34Þ

and integrating over Q = ð0, dÞ × ð0, TÞ, we get
ð
Q
Lv ·Mvdxdt

=
ð
Q

C

Dα
t v x, tð Þ · v x, tð Þdxdt −

ð
Q

∂2v x, tð Þ
∂x2

v x, tð Þdxdt

+
ð
Q
b · v2 x, tð Þdxdt =

ð
Q
f x, tð Þ · v x, tð Þdxdt:

ð35Þ

As vðx, 0Þ = 0, so by applying Lemmas 4, 5, and 6
becomes

ð
Q

C

Dα
t v x, tð Þ:v x, tð Þdxdt

= CDα
t v x, tð Þ, v x, tð Þ� �

L2 Qð Þ

= RD α/2ð Þ
t

R
Dα/2
t v x, tð Þ, v x, tð Þ

� �
L2 Qð Þ

� RDα/2
t v x, tð Þ, R

t D
α/2v x, tð Þ� �

L2 Qð Þ
= uj j2cHα Qð Þ2 ≅ uj j2lHα Qð Þ

= CD
α/2
t v

��� ���2
L2 Qð Þ

,

According to Lemma 2ð Þ
According to Lemma 1ð Þ
According to Lemma 3ð Þ

ð36Þ

and by integration by parts over ð0, dÞ, we get

−
ð
Q

∂2v x, tð Þ
∂x2

v x, tð Þdxdt =
ð
Q

∂v x, tð Þ
∂x

� �2
dxdt: ð37Þ

So, we obtain

ð
Q

RD
α
t v x, tð Þ − ∂2v x, tð Þ

∂x2
+ bv x, tð Þ

 !
·Mvdxdt

≅ RDα/2
t v

�� ��2
L2 Qð Þ +

ð
Q

∂v x, tð Þ
∂x

� �2
dxdt +

ð
Q
bv2 x, tð Þdxdt

≤
1
2ε

ð
Q
f x, tð Þj j2dxdt + ε

2

ð
Q
v x, tð Þj j2dxdt:

ð38Þ

So, we get

CD
α/2
t v

��� ���2
L2 Qð Þ

+
ð
Q

∂v x, tð Þ
∂x

� �2
dxdt +

ð
Q

b −
ε

2

� �
v2 x, tð Þdxdt

≤
1
2ε

ð
Q
f x, tð Þj j2dxdt,

ð39Þ

which give

CD
α/2
t v

��� ���2
L2 Qð Þ

+
ð
Q

∂v x, tð Þ
∂x

� �2
dxdt +

ð
Q

b −
ε

2

� �
v2 x, tð Þdxdt

≤
1
2ε

ð
Q
f x, tð Þj j2dxdt:

ð40Þ

So, we have

CD
α/2
t v

��� ���2
L2 Qð Þ

≤
1
2ε

fk k2L2 Qð Þ: ð41Þ

On the other hand, we have

∂v
∂x

����
����
2

L2 Qð Þ
≤

1
2ε

fk k2L2 Qð Þ: ð42Þ

Also, we have

vk k2L2 Qð Þ ≤
1

2ε b − ε/2ð Þð Þ fk k2L2 Qð Þ: ð43Þ

By combining (41), (42), and (43), for ε < b/2, we get

CD
α/2
t v

��� ���2
L2 Qð Þ

+
∂v
∂x

����
����
2

L2 Qð Þ
+ vk k2L2 Qð Þ

≤
1
2ε

1 +
1

b − ε/2ð Þð Þ
� �

fk k2L2 Qð Þ:

ð44Þ
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Finally, it follows that

CD
α/2
t v

��� ���2
L2 Qð Þ

+
∂v
∂x

����
����
2

L2 Qð Þ
+ vk k2L2 Qð Þ ≤ C fk k2L2 Qð Þ, ð45Þ

with

C =
1
2ε

1 +
1

b − ε/2ð Þð Þ
� �

: ð46Þ

Therefore, we obtain that

vk kB ≤ k Lvk kF , where k =
ffiffiffiffi
C

p
: ð47Þ

Hence, the uniqueness of the solution.

Remark 10. This inequality kvkB ≤ kkLvkF gives the unique-
ness of the solution, indeed:

Let v1 and v2 two solutions, so

Lv1 =F

Lv2 =F

(
⇒ L v1 − v2ð Þ = 0, ð48Þ

then

v1 − v2k kB ≤ k 0k kF ⇒ v1 − v2k kB ≤ 0⇒ v1 − v2 = 0, ð49Þ

which gives the uniqueness of the solution.

Proposition 11. The operator L from B to F admits a closure.

Proof. Let ðvnÞn∈ℕ ⊂DðLÞ be a sequence such that:

vn ⟶ 0 inB,

Lvn ⟶F in F,
ð50Þ

it must be shown that

f ≡ 0: ð51Þ

The convergence of vn toward 0 in B entails that

vn ⟶ 0 in C∞
0 QTð Þð Þ′: ð52Þ

As the continuity of the fractional derivation(2) and the
derivation of the first order (as a particular case of the frac-
tional derivative) of ðC∞

0 ðQTÞÞ′ in ðC∞
0 ðQTÞÞ′, then (52)

implies

Lun ⟶ 0 in C∞
0 QTð Þð Þ′: ð53Þ

On the other hand, the convergence of Lvn to f in F
= L2ðQTÞ implies that

Lun ⟶ f in C∞
0 QTð Þð Þ′: ð54Þ

By virtue of the uniqueness of the limit in ðC∞
0 ðQTÞÞ′,

we conclude between (53) and (54) that

f ≡ 0: ð55Þ

Hence, the operator L is closable.

Definition 12. Let �L the closure of L and Dð�LÞ the definition
domain of �L. The solution of the equation

�Lv =F , ð56Þ

is called generalized strong solution of the problem (27)–
(29).

Theorem 9 is valid for a generalized strong solution, i.e.,
we have the following inequality:

vk kB ≤ k �Lv
�� ��

F
,∀v ∈D �L

� �
: ð57Þ

Consequently, this last inequality entails the following
corollaries:

Corollary 13. The strong solution of the problem (27)–(29) is
unique and depends continuously on f ∈ F.

Corollary 14. The range Rð�LÞ of the operator �L is equal to the
closure RðLÞ of RðLÞ.

Proof. Let z ∈ RðLÞ, then there exists a Cauchy sequence
ðznÞn in F consists of the elements of the set RðLÞ such that

lim
n⟶+∞

zn = z: ð58Þ

So there is a corresponding sequence ðvnÞn ⊂DðLÞ such
that

Lvn = zn: ð59Þ

From the estimate (41), we obtain

vp − vq
�� ��

B
≤ k Lvp − Lvq
�� ��

F
⟶ 0, when p, q⟶ +∞:

ð60Þ

We can deduce that ðvnÞn is a Cauchy sequence in B, so
there is v ∈ B

lim
n⟶+∞

vn = v inB: ð61Þ

By virtue of the definition of �L ( lim
n⟶+∞

vn = v in B; if

lim
n⟶+∞

Lvn = lim
n⟶+∞

zn = z, so lim
n⟶+∞

�Lvn = z and as �L is closed

so �Lv = z), the function v verifies that

v ∈D �L
� �

, �Lv = z: ð62Þ
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Thus, z ∈ Rð�LÞ, then

R Lð Þ ⊂ R �L
� �

: ð63Þ

So we conclude here that Rð�LÞ is closed because it is
complete (any complete subspace of a metric space (not nec-
essarily complete) is closed).

It remains to show the opposite inclusion.
Let z ∈ Rð�LÞ, then there is a sequence of ðznÞn in F con-

sists of the elements of the set Rð�LÞ such that

lim
n⟶+∞

zn = z, ð64Þ

where z ∈ Rð�LÞ, because Rð�LÞ is closed subset of a complete
space F; then, Rð�LÞ is complete.

So there is a corresponding sequence ðvnÞn ⊂Dð�LÞ such
that

�Lvn = zn: ð65Þ

From the estimate (57), we obtain

vp − vq
�� ��

B
≤ k �Lvp − �Lvq
�� ��

F
⟶ 0, if p, q⟶ +∞: ð66Þ

We can deduce that ðvnÞn is a Cauchy sequence in B, so
there is v ∈ B

lim
n⟶+∞

vn = vinB: ð67Þ

Once more, there is a corresponding sequence ðLðvnÞÞn
∈ RðLÞ such that

Lvn = �Lvn overR Lð Þ,∀n: ð68Þ

Then

lim
n⟶+∞

Lvn = z: ð69Þ

Consequently, z ∈ RðLÞ, and then, we conclude that

R �L
� �

⊂ R Lð Þ: ð70Þ

3.3. Existence of Solution. To show the existence of solutions,
we prove that RðLÞ is dense in F for all u ∈ B and for arbi-
trary F = ð f , 0Þ ∈ F.

Theorem 15. The problem (27)–(29) admits a solution.

Proof. The scalar product of F is defined by

Lv,Wð ÞF =
ð
QT

Lv ·wdxdt, where W = w, 0ð Þ ∈D Lð Þ:

ð71Þ

If we put w ∈ RðLÞ⊥, we have
ð
QT

CD
α
t v x, tð Þ − ∂2v x, tð Þ

∂x2
+ bv x, tð Þ

 !
·w x, tð Þdxdt = 0,

ð72Þ

where CDα
t v, ∂v/∂x, v ∈ L2ðQTÞ, with v satisfies the boundary

conditions of (27)–(29). From (72), we get the equality

ð
QT

C

Dα
t v x, tð Þ ·w x, tð Þdxdt −

ð
QT

∂2v x, tð Þ
∂x2

·w x, tð Þdxdt

+ b
ð
QT

v x, tð Þ ·w x, tð Þdxdt = 0:

ð73Þ

And from the equality (73), we give the function w in
terms of v as follows:

w = v, ð74Þ

then w ∈ L2ðQTÞ.
Replacing w in (73) by its representation (74) and inte-

grating by parts each term of (73) and by taking the condi-
tion of v, we obtain

ð
QT

CDα/2
t v x, tð Þ� �2

dxdt +
ð
QT

bv2 x, tð Þdxdt

≤ −
ð
QT

∂v x, tð Þ
∂x

� �2
dxdt ≤ 0,

ð75Þ

then

CD
α/2
t v

��� ���2
L2 QTð Þ

+ b vk k2L2 QTð Þ ≤ 0: ð76Þ

Hence

vk kL2 QTð Þ = 0: ð77Þ

And thus, v = 0 in QT which gives w = 0 in QT . This
proves Theorem 15. So RðLÞ = F.

4. Existence and Uniqueness of the Solution of
Main Problem

We are finding a solution in the form of the original inverse
problem. fu, f g = fz, f g + fy, 0g where y is the solution of
the direct problem

CDα
t y − Δy + βy = 0:  x, tð Þ ∈QT , ð78Þ

y x, 0ð Þ = φ xð Þ, x ∈Ω, ð79Þ

y x, tð Þ = 0,  x, tð Þ ∈ ∂Ω × 0, T½ �, ð80Þ
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while the pair fz, f g is the solution of the inverse problem

CDα
t z − Δz + βz = f tð Þg x, tð Þ:  x, tð Þ ∈Q, ð81Þ

z x, 0ð Þ = 0, x ∈Ω, ð82Þ
z x, tð Þ = 0,  x, tð Þ ∈ ∂Ω × 0, T½ �, ð83Þð
Ω

v xð Þz x, tð Þdx = E tð Þ, t ∈ 0, T½ �, ð84Þ

where

E tð Þ = θ tð Þ −
ð
Ω

v xð Þy x, tð Þdx: ð85Þ

We will assume that the functions that appear in the
problem data are measurable and fulfill the following condi-
tions:

g ∈ C 0, Tð Þ, L2 Ωð Þð Þ, v ∈W1
2 Ωð Þ, E ∈W2

2 0, Tð Þ,
g x, tð Þk k ⩽m ; g∗ tð Þj j ⩾ p > 0, for p ∈ℝ, x, tð Þ ∈QT,

φ xð Þ ∈W1
2 Ωð Þ where g∗ is defind in  5ð Þ:

8>><
>>:

ð86Þ

The correspondence between f and z can be seen as one
way of defining the linear operator.

A : L2 0, Tð Þ⟶ L2 0, Tð Þ, ð87Þ

with the values

Afð Þ tð Þ = 1
g∗

ð
Ω

▽z▽vdx

 �

: ð88Þ

In this view, the linear equation of the second form for
the function is rational to refer to f over the space L2ð0, TÞ
:

f = Af +W, ð89Þ

where

W =
CDα

t E + βE
g∗ : ð90Þ

Remark 16. As fu, f g = fz, f g + fy, 0g where y is the solu-
tion of the direct problem (78)–(80). Obviously, the previous
section implies that y exists and is unique, but instead of
demonstrating the solvability of the initial problem (1)–(4),
we demonstrate the existence and uniqueness of the inverse
problem (81)–(84) solution.

Theorem 17. Suppose the input of the inverse problem data
(81)–(84) satisfies ðHÞ. Then, the following assertions are
valid: (i) if the inverse problem (81)–(84) is solvable, then so
is equation (89). And (ii) if equation (89) has a solution
and the condition of compatibility has

E 0ð Þ = 0, ð91Þ

holds, then a solution to the inverse problem exists.

Proof.

(i) Suppose that the inverse problem (81)–(84) is solv-
able. We denote its solution by fz, f g. Multiplying
the function v scalarly in L2ðΩÞ both sides of (81),
we get

CDα
t

ð
Ω

zvdx +
ð
Ω

▽z▽vdx + β
ð
Ω

zvdx =
ð
Ω

f tð Þg∗ x, tð Þ:

ð92Þ

With (84) and (88), from (92), it follows that f = Af + ð
ðCDα

t E + βEÞ/g∗Þ. This gives that f solves equation (89).

(ii) Equation (89) has a solution in space, according to
the assumption, L2ð0, TÞ, say f . The resulting rela-
tionship (81)–(83) can be viewed as a direct problem
with a unique solution z∈W1

2ðQTÞ when inserting
this function in (81). Let us show that the z function
also satisfies the condition of integral overdetermi-
nation (84). By equation (92), the function z is sub-
ject to the following relation

CDα
t E + βE +

ð
Ω

▽z▽vdx = f tð Þg∗ tð Þ: ð93Þ

Subtracting equation (92) from equation (93), we get

CDα
t

ð
Ω

zvdx + β
ð
Ω

zvdx= CDα
t E + βE: ð94Þ

Integrating the preceding differential equation and tak-
ing into account the compatibility condition (89), we find
that the overdetermination condition (84) is satisfied by z
and the function pair fz, f g is a solution to the inverse prob-
lem (81)–(84).

This completes the theorem’s proof.

Now, we are touching on some properties of operator A.

Lemma 18. Let the condition ðHÞ hold. Then, there exists a
positive ε for which A is a contracting operator in L2ð0, TÞ.

Proof. Obviously, (88) yields the estimate

Afk kL2 0,Tð Þ ≤
k
p

ðT
0

▽z :,τð Þk k2L2 Ωð Þdτ
� �1/2

, ð95Þ

where

k = ▽vk kL2 Ωð Þ: ð96Þ

7Journal of Function Spaces



Multiplying both sides of (81) by z scalarly in L2ðQTÞ
and integrating the resulting by parts with use of (82), we get

CD
α/2
t z

��� ���2
L2 QTð Þ

+ ▽zk k2L2 QTð Þ + β zk k2L2 QTð Þ

=
ðT
0

f tð Þ
ð
Ω

g x, tð Þzdx
� �

dt:
ð97Þ

Thus, by using the Cauchy’s ε-inequality, we obtain

CD
α/2
t z

��� ���2
L2 QTð Þ

+ ▽zk k2L2 QTð Þ + β zk k2L2 QTð Þ

≤
m Ωj j
2ε

ðT
0
f tð Þj j2dt + ε

2
zk k2L2 QTð Þ:

ð98Þ

Choosing 0 < ε < 2β, we get

CD
α/2
t z

��� ���2
L2 QTð Þ

+ ▽zk k2L2 QTð Þ + β −
ε

2

� �
zk k2L2 QTð Þ

≤
m Ωj j
2ε

ðT
0
f τð Þj j2dt:

ð99Þ

Omitting some terms on the left-hand side (99) leads to

▽zk k2L2 QTð Þ =
ðT
0

▽z :,τð Þk k2L2 Ωð Þdτ ≤
m Ωj j
2ε

ðT
0
f τð Þj j2dt:

ð100Þ

According to (95) and (100), we can obtain the following
estimate:

Afk kL2 0,Tð Þ ≤ δ
ðT
0
f τð Þj j2dt, 0 ⩽ t ⩽ T , ð101Þ

where

δ =
k
ffiffiffiffi
m

p
Ωj j

p
ffiffiffiffiffi
2ε

p : ð102Þ

So, we obtain

Afk kL2 0,Tð Þ ≤ δ fk kL2 0,Tð Þ: ð103Þ

It is obvious from the above that there is positive ε such
that

δ < 1: ð104Þ

Inequality (103) shows that the operator A is a contract-
ing mapping on L2ð0, TÞ.

The following result may be useful with respect to the
particular solvability of the inverse problem concerned.

Theorem 19. Let the compatibility condition (91) and the
condition ðHÞ hold. Then, the inverse problem (81)–(84) has
a unique solution fz, f g.

Proof. This means that the equation (89) has a unique solu-
tion f in L2ð0, TÞ.

The existence of a solution to the inverse problem (81)–
(84) is verified, according to Lemma 6.

The uniqueness of this solution has yet to be proven.
Suppose the contrary that there are two distinct solu-

tions fz1, f1g and fz2, f2g of the under consideration inverse
problem.

Also, the linear operator A is contracting on L2ð0, TÞ
from Lemma 18, which gives that f1 = f2; then, by the theo-
rem of the uniqueness of the solution of main direct problem
(78)–(80), we will just have z1 = z2.

Corollary 20. The solution f to equation (91) depends con-
tinuously, under the conditions of Theorem 19, on the data
W.

Proof. Let V1 and V2 twosets of data that satisfy Theorem
19’s assumptions.

Let f and g be solutions of the equation (89) correspond-
ing to the data V1 and V2, respectively. According to (103),
we have

f = Af + V1,

g = Ag + V2:
ð105Þ

Let us estimate the difference first, f − g. It is easy to see
with the use of (103) that

f − gk kL2 0,Tð Þ = Af +V1ð Þ − Ag +V2ð Þk kL2 0,Tð Þ
= A f − gð Þ + V1 −V2ð Þk kL2 0,Tð Þ
⩽ δ f − gk kL2 0,Tð Þ + V1 −V2ð Þk kL2 0,Tð Þ,

ð106Þ

so, we get

f − gk kL2 0,Tð Þ ⩽
1

1 − δð Þ V1 −V2ð Þk kL2 0,Tð Þ: ð107Þ

5. Conclusion and Perspectives

This work contains a new inverse problem by investigating
the fractional derivatives where we develop the method of
fixed point and energy inequality method for proving the
solvability of an inverse fractional problem. We note that
our work extends to the existence of open problems as a
study of the nonlinear case of this problem and the numer-
ical part.
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