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One of the most interesting tasks in mathematics is, undoubtedly, to solve any kind of equations. Naturally, this problem has
occupied the minds of mathematicians since the dawn of algebra. There are hundreds of techniques for solving many classes of
equations, facing the problem of finding solutions and studying whether such solutions are unique or multiple. One of the
recent methodologies that is having great success in this field of study is the fixed point theory. Its iterative procedures are
applicable to a great variety of contexts in which other algorithms fail. In this paper, we study a very general class of integral
equations by means of a novel family of contractions in the setting of metric spaces. The main advantage of this family is the
fact that its general contractivity condition can be particularized in a wide range of ways, depending on many parameters.
Furthermore, such a contractivity condition involves many distinct terms that can be either adding or multiplying between
them. In addition to this, the main contractivity condition makes use of the self-composition of the operator, whose associated
theorems used to be more general than the corresponding ones by only using such mapping. In this setting, we demonstrate
some fixed point theorems that guarantee the existence and, in some cases, the uniqueness, of fixed points that can be
interpreted as solutions of the mentioned integral equations.

1. Introduction

Nowadays, nonlinear analysis is one of the most active
branches of mathematics. Its applications to real-life con-
texts have attained great success. Physics, engineering,
chemistry, biology, and economy are some of the scientific
areas that have benefited the most from the techniques
developed in nonlinear analysis. In this context, fixed point
theory has played an important role in the development of
new methodologies for the determination of solutions of cer-
tain equations of several types, such as matrix equations,
integral equations, and differential equations.

In principle, the elements used by fixed point theory
are few and very simple to handle a nonlinear operator
for which we want to find its possible fixed points, a real
metric that endows the underlying space with a complete

character, and an inequality (called the contractivity condi-
tion) that is strong enough to ensure the existence of fixed
points. With these three ingredients, it is possible to pro-
pose good fixed point theorems, as has been done for
the last seventy years (see, for instance, Boyd and Wong
[1], Caristi [2], Chatterjea [3], Hardy and Rogers [4], Kan-
nan [5, 6], Ćirić [7], Geragthy [8], Meir and Keeler [9],
Samet et al. [10], Khojasteh et al. [11], Kutbi et al. [12],
and Jleli and Samet [13]).

Based on these three initial tools, the possibilities that
this field of study has shown have been practically endless.
On the one hand, researchers have worked with increasingly
abstract metric spaces. In some of these cases, the object
associated with the distance between two points has not been
a single real number but much more general abstract objects.
On the other hand, the operators involved in these studies
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have been increasingly general, including the possibility of
studying multidimensional fixed points (see [14]). Finally,
the contractivity condition is the part that has received the
most attention within the field of fixed point theory.

In recent times, major efforts have been done in order to
introduce as weak as possible contractivity conditions. For
instance, it is usual to find auxiliary functions that help to con-
sider extremely weak inequalities. Having this aim inmind, we
would like to highlight here two possible extensions.

(i) On the one hand, although the first contractivity
conditions only considered a small quantity of
terms, after the appearance of the Ćirić theorem
[7], the current versions involve more and more
terms in their developments. This is the case, for
instance, of Karapnar’s interpolative-type contrac-
tions [15], but many other results can be cited in this
line of research (see [16, 17])

(ii) On the other hand, in general, notice that the good
and reasonable properties that an operator T : M
⟶M satisfies are usually inherited by the self-
composition T2 = T ∘ T , but it is possible that T2

enjoys those good properties without T doing it.
This is the case, for instance, of continuity: it is pos-
sible for T2 to be continuous without T being con-
tinuous. In this sense, some results (like Istrăţescu’s
fixed point theorem; see [18, 19]) employing T2 are
more general than their corresponding ones with T

One of the powerful applications of fixed point theory
can be found in the context of integral equations, whose
recent numerical treatments have made great scientific
advances in this field (see, for instance, collocation methods
[20], operational matrix methods [21–23], Galerkin methods
[24, 25], and Krylov subspace methods [26]).

In this paper, we introduce a new family of contractive
mappings that we call hybrid-interpolative Reich-Istrăţescu-
type contractions because they are inspired by the previous
classes of contractive operators. The main advantage of this
new family of contractive mappings is that they allow us to
present, at the same time, contractivity conditions that involve
a large number of terms, including some with the self-
composition T2 of the operator, and which are placed either
adding or multiplying to the other terms. Furthermore, we
introduce some fixed point results that confirm that this kind
of operators is appropriate in this field of study. Finally, we
illustrate the utility of the novel theorems by introducing a
novel application in the setting of integral equations.

This work is organized as follows. Section 2 is dedicated
to presenting some notations, preliminaries, and related
results in the field of fixed point theory. In Section 3, we
describe a complete study about the behavior of the Picard
sequences that we will handle in the following sections.
The main results of this paper can be found in the Section
4, and direct consequences are placed in Section 5. The
application of the main statements is developed in Section
6. Finally, some conclusions and prospect works are dis-
cussed in Section 7.

2. Background on Fixed Point Theory

In this work, we denote by ℝ and ℕ = f0, 1, 2,⋯g the set
of all real numbers and the set of nonnegative integers,
respectively. Let ðM, dÞ be a metric space and let T : M
⟶M be a mapping. A point u ∈M is a fixed point of
T if Tu = u. We will denote by ∗FixTðMÞ the set of all
fixed points of T in M.

Given n ∈ℕ, the mapping Tn = T ∘ T ∘ ⋯ðnÞ ∘ T : M
⟶M is the n-th iterate of T (as convention, we agree that
T0 is the identity mapping on M). Given z0 ∈M, the
sequence fzngn∈ℕ defined by zn = Tnz0 for all n ∈ℕ is the
Picard sequence of T based on z0. Such sequence can recur-
sively be defined as zn+1 = Tzn for all n ∈ℕ. A mapping T is
called a Picard operator if each Picard sequence of such
operator converges to one of its fixed points.

A binary relation on the set M is a nonempty subset R
of the Cartesian product M ×M. We will write zRt when
two points z, t ∈M verify ðu, tÞ ∈R.

Definition 1. Let α : M ×M⟶ ½0,∞Þ be a function. A map-
ping T : M⟶M such that

if z ∈M, α z, Tzð Þ ≥ 1⇒ α Tz, T2z
� �

≥ 1 ð1Þ

is known as an α-orbital admissible mapping.

One of the first results in fixed point theory in which the
contractivity condition was stated in terms of its self-
composition T2 = T ∘ T rather than in terms of T was due
to Istrăţescu (see [18, 19]).

Theorem 2 (Istrăţescu [18, 19]). Given a complete metric
space ðM, dÞ, every continuous map T : M⟶M is a Picard
operator provided that there exist a, c ∈ ð0, 1Þ such that a + c
< 1 and

d T2z, T2t
� �

≤ ad Tz, Ttð Þ + cd z, tð Þ, ð2Þ

for all z, t ∈M.

Notice that the good properties (like continuity) of an
operator T are usually inherited by T2, but it is possible that
T2 enjoys those good properties without T doing it. In this
sense, some results employing T2 are more general that their
corresponding ones with T . Some generalizations of this
result in different abstract metric spaces (b-metric spaces,
ordered metric spaces, cone metric spaces, etc.) were pre-
sented in recent papers (see [27–29]).

In other lines of research, inspired by Kannan’s theorem
[5, 6], Karapnar introduced in [15] a family of contractions
in which the distances of the right-hand side of the contrac-
tivity condition are multiplying instead of adding up. Also,
notice that his contractivity condition must only be verified
by pairs of points in the metric space that are not fixed
points of the considered nonlinear operator, which avoids
any kind of indetermination of the involved powers.
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Theorem 3 (Karapnar [15]). Let ðM, dÞ be a complete metric
space and let T : M⟶M be a mapping such that there exist
constants k ∈ 0, 1Þ and λ ∈ ð0, 1Þ satisfying

d Tz, Ttð Þ ≤ k · d z, Tzð Þλ · d t, Ttð Þ1−λ, ð3Þ

for all z, t ∈M \ ∗FixTðMÞ. Then, T has a unique fixed point
in M.

In the previous result, as z and t are not fixed points of T
, then dðz, TzÞ > 0 and dðt, TtÞ > 0. Furthermore, as λ > 0
and 1 − λ > 0, then the expressions dðz, TzÞλ and d
ðt, TtÞ1−λ are well defined. However, in the main results that
we will introduce later, we will employ expressions such as

a4 d Tz, Ttð Þλ, ð4Þ

which we would like to explain for the sake of clarity: on the
one hand, (4) means the product a4 · ½dðTz, TtÞ�λ, where a4
and λ are nonnegative real numbers (notice that the expo-
nent λ only affects the distance dðTz, TtÞ, and we avoid to
write the brackets); on the other hand, the power d
ðTz, TtÞλ is not well defined when the base and the exponent
take the value 0 at the same time. However, for our purposes,
we must advise the reader that, when the base and the expo-
nent are 0 at the same time, we will use the convention 00 = 1
.

3. Study of the Behavior of Some
Picard Sequences

In this section, we describe the behavior of some sequences
that will be of importance in the proofs of the main results
of this work.

Proposition 4. Given c ∈ ½0,∞Þ, let frng ⊂ ½0,∞Þ be a
sequence such that

rn+2 ≤ c · max rn, rn+1f gfor all n ∈ℕ: ð5Þ

Let Δ =max fr0, r1g. Then,

r2n ≤ cn Δ, r2n+1 ≤ cnΔ for all n ≥ 1, ð6Þ

which is equivalent to

rn+2 ≤ c∗E n/2½ � · Δ for all n ∈ℕ: ð7Þ

In particular, if c ∈ ½0, 1Þ, then frng⟶ 0.

Proof. For n = 0 in (5),

r2 ≤ c ⋅max r0, r1f g = cΔ ð8Þ

and for n = 1 in (5),

r3 ≤ c · max r1, r2f g ≤ c · max r1, c · max r0, r1f gf g
= c · max r1, c r0, c r1f g ≤ c · max r1, c r0f g
≤ c · max r1, r0f g = cΔ:

ð9Þ

This means that inequalities (6) hold for n = 1. Suppose
that (6) holds for some n ∈ℕ, that is,

r2n ≤ cn Δ, r2n+1 ≤ cnΔ: ð10Þ

Therefore,

r2n+2 ≤ c · max r2n, r2n+1f g ≤ c · max cnΔ, cnΔf g = cn+1Δ,
r2n+3 ≤ c · max r2n+1, r2n+2f g ≤ c · max cn Δ, cn+1Δ

� �
= cn+1Δ:

ð11Þ

This completes the induction.☐

Lemma 5. Let fzngn∈ℕ be a sequence on a metric space
ðM, dÞ. Suppose that there is c ∈ ½0, 1Þ such that

d zn+2, zn+3ð Þ ≤ c · max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf g for all n ∈ℕ:

ð12Þ

Then, fzngn∈ℕ is a Cauchy sequence in ðM, dÞ.

Proof. Let us consider the sequence frng defined by rn = dð
zn, zn+1Þ for all n ∈ℕ. By the hypothesis, this sequence ver-
ifies (5). Then, Proposition 4 guarantees that

d z2n, z2n+1ð Þ = r2n ≤ cnΔ, d z2n+1, z2n+2ð Þ = r2n+1 ≤ cn Δ for all n ≥ 1,
ð13Þ

where Δ =max fr0, r1g. In particular,

d z2n, z2n+1ð Þ + d z2n+1, z2n+2ð Þ ≤ 2cnΔ for all n ≥ 1: ð14Þ

If c = 0 or Δ = 0, then fzngn≥2 is a constant sequence, so it
is a Cauchy sequence. Suppose that c > 0 and Δ > 0. In order
to prove that the sequence fzngn∈ℕ is a Cauchy sequence in
ðM, dÞ, let ε > 0 be arbitrary. Since ε/ð2ΔÞ > 0 and 0 < c < 1,
there is a natural number n0 > 1 such that

〠
+∞

k=n0
ck < ε

2Δ : ð15Þ

In particular,

2Δ 〠
p

k=n0
ck < 2Δ 〠

+∞

k=n0
ck < ε for all p ∈ℕ such that p ≥ n0: ð16Þ
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Let n,m ∈ℕ such that m > n ≥ 2n0. Let p be a natural
number such that p ≥ n0 + 1 and 2p ≥m. Therefore, by (14),

d zn, zmð Þ ≤ 〠
m−1

j=n
d zj, zj+1
� �

≤ 〠
2p−1

j=2n0
d zj, zj+1
� �

= 〠
p−1

k=n0
d z2k, z2k+1ð Þ + d z2k+1, z2k+2ð Þ½ �

≤ 〠
p−1

k=n0
2ck Δ ≤ 2Δ 〠

p

k=n0
ck < 2Δ 〠

+∞

k=n0
ck < ε:

ð17Þ

This proves that fzngn∈ℕ is a Cauchy sequence in ðM, dÞ
.☐

Remark 6. Taking into account that, in general, the notation
Δαn is not well defined because the number ΔðαnÞ is distinct
to ðΔαÞn, we clarify that, in the next statement, we use the
convention:

Δαn = Δ αnð Þ: ð18Þ

Proposition 7. Given c ∈ ½0,∞Þ and α ∈ ð0, 1Þ, let frng ⊂ ½0,
∞Þ be a sequence such that

rn+2 ≤ c · max rn, rn+1f gα for all n ∈ℕ: ð19Þ

Let Δ =max fr0, r1, 1g. Then,

r2n ≤ c1+α+α
2+⋯+αn−1Δαn , r2n+1 ≤ c1+α+α

2+⋯+αn−1Δαn for all n ≥ 1:

ð20Þ

Therefore,

limsup
n⟶+∞

rn ≤ c1/ 1−αð Þ: ð21Þ

Proof. If c = 0, the announced properties are trivial. Suppose
that c > 0. Since α ∈ ð0, 1Þ, we know that

αm+1 < αm < αm−1 <⋯ < α2 < α for allm ∈ℕ,m ≥ 1: ð22Þ

Therefore, as Δ ≥ 1, then

Δαm+1 < Δαm < Δαm−1 <⋯ < Δα2 < Δα for allm ∈ℕ,m ≥ 1:
ð23Þ

Using n = 0 in (19),

r2 ≤ c · max r0, r1f gα ≤ cΔα, ð24Þ

and if n = 1 in (19), using (23),

r3 ≤ c · max r1, r2f gα ≤ c · max Δ, cΔαf gα

= c · max Δα, cα Δα2
n o

≤ c · max Δα, cαΔαf g
= cΔα · max 1, cαf g = cΔα:

ð25Þ

The previous two inequalities mean that (20) holds for
n = 1. Suppose that (20) is fulfilled for some n ∈ℕ, and we
are going to prove it for n + 1. Indeed,

r2n+2 ≤ c · max r2n, r2n+1f gα

≤ c · max c1+α+α
2+⋯+αn−1Δαn , c1+α+α2+⋯+αn−1Δαn

n oα

= c · c1+α+α
2+⋯+αn−1Δαn

� �α
= c · cα+α

2+⋯+αn−1+αn Δαn+1
� �

= c1+α+α
2+⋯+αn−1+αn Δαn+1 ,

ð26Þ

and using (23),

r2n+3 ≤ c · max r2n+1, r2n+2f gα

≤ c · max c1+α+α
2+⋯+αn−1 Δαn , c1+α+α2+⋯+αn−1+αn Δαn+1

n oα

= c · max cα+α
2+⋯+αn−1+αn Δαn+1 , cα+α2+⋯+αn−1+αn+αn+1 Δαn+2

n o
≤ c · max cα+α

2+⋯+αn−1+αn Δαn+1 , cα+α2+⋯+αn−1+αn+αn+1 Δαn+1
n o

= cΔαn+1 · max cα+α
2+⋯+αn−1+αn , cα+α2+⋯+αn−1+αn+αn+1

n o
= cΔαn+1 · cα+α2+⋯+αn−1+αn = c1+α+α

2+⋯+αn−1+αn Δαn+1 ,
ð27Þ

which completes the induction. Then, (20) holds.
Taking into account that fαngn∈ℕ ⟶ 0, we know that

fΔαngn∈ℕ ⟶ Δ0 = 1. On the other hand,

lim
n⟶+∞

1 + α + α2+⋯+αn−1 + αn
� �

= 〠
+∞

k=0
αk = 1

1 − α
, ð28Þ

then

lim
n⟶+∞

c1+α+α
2+⋯+αn−1+αn = c1/ 1−αð Þ: ð29Þ

Hence,

limsup
n⟶+∞

rn ≤ c1/ 1−αð Þ: ð30Þ

In order to check how different the conditions (19),
where α ∈ ð0, 1Þ, and (5), where α = 1, are, let us consider
the following example.☐
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Example 8. Let frngn∈ℕ ⊂ ð0,∞Þ be the sequence defined by

r1 = r2 = 0:25, rn+2 = c · max rn, rn+1f gα for all n ∈ℕ, ð31Þ

where c = α = 0.5. Then, it can be easily proven by induction
that frng is the constant sequence given by rn = 0.25 for all
n ∈ℕ. Indeed, if rn = rn+1 = 0.25 for some n ∈ℕ, then

rn+2 = c · max rn, rn+1f gα = 0:5 · max 0:25,0:25f g0:5 = 0:25:
ð32Þ

As a consequence, frng⟶ 0:25, but it does not con-
verge to zero, as in Proposition 4.

Corollary 9. Let fzngn∈ℕ be a sequence on a metric space ð
M, dÞ. Suppose that there are c ∈ ½0, 1Þ and α, β ∈ ½0, 1� verify-
ing α + β = 1 such that

d zn+2, zn+3ð Þ ≤ c · d zn, zn+1ð Þα · d zn+1, zn+2ð Þβ for all n ∈ℕ:

ð33Þ

Then, fzngn∈ℕ is a Cauchy sequence in ðM, dÞ.

Proof. Notice that, for all n ∈ℕ,

d zn+2, zn+3ð Þ ≤ c · d zn, zn+1ð Þα · d zn+1, zn+2ð Þβ
≤ c · max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf gα

· max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf gβ
= c · max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf gα+β
= c · max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf g:

ð34Þ

Then, Lemma 5 is applicable.☐

4. Fixed Point Theorems for Hybrid-
Interpolative Reich-Istrăţescu-
Type Contractions

In this section, we introduce the novel class of contractive
mappings based on Reich and Istrăţescu’s approaches.

Definition 10. Let ðM, dÞ be a metric space and let α : M ×
M⟶ ½0,∞Þ be a function. A mapping T : M⟶M is a
hybrid-interpolative Reich-Istrăţescu-type contraction in
the case that for some λ ∈ 0,∞Þ, there exist a constant k ∈ 0
, 1Þ and six numbers a1, a2, a3, a4, a5, δ ≥ 0 such that, for all
distinct z, t ∈M \ ∗FixTðMÞ,

α z, tð Þd T2z, T2t
� �

≤ k ·I λ z, tð Þ, ð35Þ

where

Remark 11.

(1) As we have commented in the second section, when
λ > 0, the expression dðz, tÞλ is well defined even if
the base is zero. However, although z ≠ t in (36), in
the case λ = 0, it is possible that we can find the inde-
termination 00 in the expression of I λðz, tÞ. In such
a case, we will use the convention 00 = 1 to avoid
such indetermination. In other words, if some expo-
nent in the expression of I λðz, tÞ is zero, then its
correspondent power will take the value 1. Notice
that in this case, it is impossible that all exponents
are zero because ∑5

i=1ai + δ = 1

(2) We can believe that the cases

〠
5

i=1
ai + δ ≤ 1, 〠

5

i=1
ai + δ = 1 ð38Þ

are equivalent because if ∑5
i=1ai + δ < 1, then we can

replace δ by δ′ ∈ 0, 1Þ such that ∑5
i=1ai + δ′ = 1, and

the mapping T is also a hybrid-interpolative Reich-
Istrăţescu-type contraction by considering the new
parameters a1, a2, a3, a4, a5, δ′ ≥ 0. However, as we
will show later, when λ = 0, we cannot permit the
sum of the exponents to be less than 1 because, in

I λ z, tð Þ =
a1d z, tð Þλ + a2d z, Tzð Þλ + a3d t, Ttð Þλ + a4d Tz, Ttð Þλ + a5d Tz, T2z

� �λ+δ d Tt, T2t
� �λi1/λ,�

for λ > 0,

d z, tð Þa1 · d z, Tzð Þa2 · d t, Ttð Þa3 · d Tz, Ttð Þa4 · d Tz, T2z
� �a5 · d Tt, T2t

� �δ, for λ > 0,

8><
>: ð36Þ

〠
5

i=1
ai + δ ≤ 1, if λ > 0, 〠

5

i=1
ai + δ = 1, if λ = 0: ð37Þ
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such case, the sequence of distances between a term
and its consecutive might not converge to zero (so
it is not Cauchy)

(3) Although the definition of I λðz, tÞ, for λ > 0, is very
different to the definition of I 0ðz, tÞ (λ = 0) because
the first case uses additions and the second case
involves products, there is a particular case in which
both algebraic expressions lead to the same contrac-
tivity condition. It corresponds to the choice:

a1 = 1, a2 = a3 = a4 = a5 = δ = 0: ð39Þ

In this case, if λ > 0,

I λ z, tð Þ = 1 · d z, tð Þλ
h i1/λ

= d z, tð Þ, ð40Þ

and if λ = 0,

I 0 z, tð Þ = d z, tð Þ1 · d z, Tzð Þ0 · d t, Ttð Þ0 · d Tz, Ttð Þ0

· d Tz, T2z
� �0 · d Tt, T2t

� �0
= d z, tð Þ · 1 · 1 · 1 · 1 · 1 = d z, tð Þ:

ð41Þ

Notice that this case corresponds to the Banach contrac-
tivity condition particularized to T2 instead of T :

α z, tð Þd T2z, T2t
� �

≤ k · d z, tð Þ, ð42Þ

which appears when αðz, tÞ = 1 for all z, t ∈M. Other similar
cases will be discussed in Remark 23.

The first main theorem of this work is the following one.

Theorem 12. Let ðM, dÞ be a complete metric space. A con-
tinuous hybrid-interpolative Reich-Istrăţescu-type contrac-
tion T : M⟶M has at least a fixed point provided that
the mapping T is α-orbital admissible and there exists z0 ∈
M such that αðz0, Tz0Þ ≥ 1.

Proof. From the hypothesis, we know that there exists z0 ∈M
such that αðz0, T0Þ ≥ 1. Since T is α-orbital admissible, αðT
z0, T2z0Þ ≥ 1, and by an inductive reasoning, we get that αð
Tnz0, Tn+1z0Þ ≤ 1 for any n ∈ℕ. Starting from this point z0
∈M, we define the sequence fzng in M as follows:

z1 = Tz0, z2 = Tz1 = T2z0,⋯, zn = Tzn−1 = Tnz0: ð43Þ

If there is some n ∈ℕ satisfying that zn = zn+1, then zn is
a fixed point of T , and the proof finishes here. On the con-
trary case, suppose that zn is distinct to zn+1 for all n ∈ℕ.☐

We will divide the proof into two cases, namely, λ > 0
and λ = 0. In both cases, we prove that the sequence fzng
is Cauchy.

Case A. For the first case, λ > 0, given any n ∈ℕ, taking
in (35) z = zn and t = zn+1, we have

d zn+2, zn+3ð Þ ≤ α zn+2, zn+3ð Þ d T2zn, T2zn+1
� �

≤ k ·I λ zn, zn+1ð Þ = k

· a1d zn, zn+1ð Þλ + a2 d zn, Tznð Þλ + a3 d zn+1, Tzn+1ð Þλ
h
+ a4 d Tzn, Tzn+1ð Þλ+a5 d Tzn, T2zn

� �λ
+ δd Tzn+1, T2zn+1

� �λi1/λ = k · a1 d zn, zn+1ð Þλ
h

+ a2 d zn, zn+1ð Þλ + a3 d zn+1, zn+2ð Þλ + a4 d zn+1, zn+2ð Þλ

+a5 d zn+1, zn+2ð Þλ + δ d zn+2, zn+3ð Þλ
i1/λ

= k · a1 + a2ð Þ d zn, zn+1ð Þλ + a3 + a4 + a5ð Þd zn+1, zn+2ð Þλ
h

+ δ d zn+2, zn+3ð Þλ
i1/λ

≤ k

· a1 + a2 + a3 + a4 + a5ð Þ max d zn, zn+1ð Þλ, d zn+1, zn+2ð Þλ
n oh

+ δ d zn+2, zn+3ð Þλ
i1/λ

:

ð44Þ

Using the power of λ,

d zn+2, zn+3ð Þλ ≤ kλ a1 + a2 + a3 + a4 + a5ð Þ max
� d zn, zn+1ð Þλ, d zn+1, zn+2ð Þλ
n o
+ kλ δ d zn+2, zn+3ð Þλ:

ð45Þ

Therefore,

1 − kλ δ
� �

d zn+2, zn+3ð Þλ

≤ kλ a1 + a2 + a3 + a4 + a5ð Þ max d zn, zn+1ð Þλ, d zn+1, zn+2ð Þλ
n o

≤ kλ 1 − δð Þ max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf gð Þλ,
ð46Þ

which means that, for all n ∈ℕ,

d zn+2, zn+3ð Þλ ≤ kλ 1 − δð Þ
1 − kλ δ

· max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf gð Þλ,

ð47Þ

or, equivalently,

d zn+2, zn+3ð Þ ≤ kλ 1 − δð Þ
1 − kλ δ

 !1/λ

· max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf g:

ð48Þ

Let us denote

c = kλ 1 − δð Þ
1 − kλ δ

 !1/λ

: ð49Þ
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Clearly,

c = kλ 1 − δð Þ
1 − kλ δ

 !1/λ

= kλ − kλ δ

1 − kλ δ

 !1/λ

< 1: ð50Þ

This proves that there is c ∈ 0, 1Þ such that

d zn+2, zn+3ð Þ ≤ c max d zn, zn+1ð Þ, d zn+1, zn+2ð Þf g for all n ∈ℕ:

ð51Þ

Lemma 5 concludes that fzngn∈ℕ is a Cauchy sequence
in ðM, dÞ.

Case B. For the case λ = 0, given n ∈ℕ, taking z = zn and
t = zn+1, we have

I λ zn, zn+1ð Þ = d zn, zn+1ð Þa1 · d zn, Tznð Þa2 · d zn+1, Tzn+1ð Þa3
· d Tzn, Tzn+1ð Þa4 · d Tzn, T2zn

� �a5
· d Tzn+1, T2zn+1
� �δ = d zn, zn+1ð Þa1

· d zn, zn+1ð Þa2 · d zn+1, zn+2ð Þa3 · d zn+1, zn+2ð Þa4
· d zn+1, zn+2ð Þa5 · d zn+2, zn+3ð Þδ

= d zn, zn+1ð Þa1+a2 · d zn+1, zn+2ð Þa3+a4+a5
· d zn+2, zn+3ð Þδ:

ð52Þ

Hence, the contractivity condition (35) means that

d zn+2, zn+3ð Þ ≤ α zn+2, zn+3ð Þ d zn+2, zn+3ð Þ
= α zn+2, zn+3ð Þd T2zn, T2zn+1

� �
≤ k ·I λ zn, zn+1ð Þ = k · d zn, zn+1ð Þa1+a2

· d zn+1, zn+2ð Þa3+a4+a5 · d zn+2, zn+3ð Þδ:

ð53Þ

If δ = 1, then a1 = a2 = a3 = a4 = a5 = 0, and the previous
inequality would be

0 < d zn+2, zn+3ð Þ ≤ k · d zn+2, zn+3ð Þ, ð54Þ

which is false. Then, necessarily δ < 1, so ∑5
i=1ai = 1 − δ > 0,

which means that the numbers

α = a1 + a2
1 − δ

,

β = a3 + a4 + a5
1 − δ

ð55Þ

satisfy α + β = 1. As a result, property (53) is equivalent to

d zn+2, zn+3ð Þ ≤ k · d zn, zn+1ð Þa1+a2 · d zn+1, zn+2ð Þa3+a4+a5
· d zn+2, zn+3ð Þδ ⇔ d zn+2, zn+3ð Þ1−δ ≤ k

· d zn, zn+1ð Þa1+a2 · d zn+1, zn+2ð Þa3+a4+a5 ⇔ d zn+2, zn+3ð Þ
≤ k1/ 1−δð Þ · d zn, zn+1ð Þ a1+a2ð Þ/ 1−δð Þ

· d zn+1, zn+2ð Þ a3+a4+a5ð Þ/ 1−δð Þ ⇔ d zn+2, zn+3ð Þ
≤ k1/ 1−δð Þ · d zn, zn+1ð Þα · d zn+1, zn+2ð Þβ,

ð56Þ

for all n ∈ℕ. Taking into account that k ∈ 0, 1Þ,

0 < 1 − δ ≤ 1⇒ 1 ≤ 1
1 − δ

⇒ k1/ 1−δð Þ ≤ k < 1: ð57Þ

Since 0 < k1/ð1−δÞ < 1 and α + β = 1, Corollary 9 finally
concludes that fzngn∈ℕ is a Cauchy sequence in ðM, dÞ.

In both cases (λ > 0 and λ = 0), we have demonstrated
that fzngn∈ℕ is a Cauchy sequence in ðM, dÞ. As it is com-
plete, then there exists a point u ∈M such that fzng⟶ u
as n⟶∞. Moreover, due to the continuity of the mapping
T , we conclude that Tu = u; that is, u is a fixed point of T .

Remark 14.Notice that in the previous proof we have shown,
without using the continuity of the mapping T ; that is, in
both cases (λ > 0 and λ = 0), the Picard sequence fzngn∈ℕ
is Cauchy in the metric space ðM, dÞ. Using its complete-
ness, it follows that there exists a point u ∈M such that f
zng⟶ u as n⟶∞. Then, we can use this argument in
the next results because the continuity of the mapping T is
only used in the last part of the proof.

When λ = 0 and ∑5
i=1ai + δ < 1, the statement given by

Theorem 12 is false. For instance, if a1 = a2 = a3 = a4 = a5 =
δ = 0, the contractive condition (36) does not provide any
kind of control on dðT2z, T2tÞ because the value of I 0ðz, t
Þ is always 1 (all exponents are zero). However, even if all
constants a1, a2, a3, a4, a5, and δ are strictly positive, the
operator T could be fixed point free, as we show in the next
example.

Example 15. Let M = f0, 0:001, 0:002, 0:003, 0:004g be
endowed with the Euclidean distance d. Let T : M⟶M
be defined by

Tz =
z + 0:001, if z < 0:004,
0, ifz = 0:004:

(
ð58Þ

Clearly, dðz, tÞ ≤ 0:004, so

d T2z, T2t
� �

≤ 0:004 for all z, t ∈M: ð59Þ

If we define

k = 0:95, a1 = a2 = a3 = a4 = a5 = δ = 0:05, ð60Þ
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the values of k ·I 0ðz, tÞare given in the following table:

ð61Þ

As a consequence, if α is given by αðz, tÞ = 1 for all z, t
∈M, then the mapping T satisfies

d T2z, T2t
� �

≤ 0:004 < 0:1 < k ·I 0 z, tð Þ, ð62Þ

for all distinct z, t ∈M. Therefore, T is a hybrid-interpolative
Reich-Istrăţescu-type contraction. Furthermore, ðM, dÞ is
complete, T is α-orbital admissible, and there exists z0 ∈M
such that αðz0, Tz0Þ ≥ 1. However, T is fixed point free.

Remark 16. The reason why Theorem 12 could fail when λ
= 0 and ∑5

i=1ai + δ < 1 is the following one: a sequence
fzngn∈ℕ satisfying

d zn+2, zn+3ð Þ ≤ k · d zn, zn+1ð Þα · d zn+1, zn+2ð Þβ for all n ∈ℕ,
ð63Þ

could be non-Cauchy when α + β < 1. For instance, let
fzngn∈ℕ be the sequence defined by

zn = 0:25n for all n ∈ℕ: ð64Þ

If M = fzn : n ∈ℕg ⊂ ½0,∞Þ is endowed with the Euclid-
ean distance, then

d zn, zn+1ð Þ = zn+1 − znj j = 0:25 n + 1ð Þ − 0:25nj j = 0:25 for all n ∈ℕ:

ð65Þ

Therefore, if we take

k = δ = 1
2 ,

a1 = a2 =
1
16 ,

a3 = a4 = a5 =
1
24 ,

ð66Þ

then, for all n ∈ℕ,

k · d zn, zn+1ð Þ a1+a2ð Þ/ 1−δð Þ · d zn+1, zn+2ð Þ a3+a4+a5ð Þ/ 1−δð Þ

= 0:5 · 0:250:25 · 0:250:25 = 0:25 = d zn+2, zn+3ð Þ:
ð67Þ

However, the sequence fzngn∈ℕ positively diverges, so it
is not Cauchy.

If the operator T is continuous on M, then the composi-
tion T2 = T ∘ T also is. However, the mapping T2 could be

continuous even if T is not continuous. In this case, we
can replace the continuity of the mapping T with a weaker
condition, namely, the continuity of T2, whose set of fixed
points is nonempty, as it is shown in the next statement.

Theorem 17. Let ðM, dÞ be a complete metric space and T
: M⟶M be a hybrid-interpolative Reich-Istrăţescu-type
contraction such that T2 is continuous. If, in addition,

(1) T is α-orbital admissible

(2) there exists z0 ∈M such that αðz0, Tz0Þ ≥ 1

(3) αðu, TuÞ ≥ 1 for u ∈ ∗FixT2ðMÞ
then T has a fixed point.

Proof. Let fzn = Tnz0gn∈ℕ be the Picard sequence of T whose
initial point is z0. In Remark 14, we commented that this
sequence has a limit u ∈M. Since the mapping T2 is contin-
uous, then

d u, T2u
� �

= lim
n⟶∞

d zn+2, T2u
� �

= lim
n⟶∞

d T2zn, T2u
� �

= 0:

ð68Þ

Thereby, T2u = u; that is, u is a fixed point of T2. As a
result, the mapping T2 has at least one fixed point; that is,
the set ∗FixT2ðMÞ is nonempty. Furthermore, T3u = Tu. In
order to check that u is also a fixed point of T , suppose, by
contradiction, that u ≠ Tu. In this case, Tu is not a fixed
point either because, in such a case, Tu = T2u = u, which is
false. Then, u, Tu ∈M \ ∗FixTðMÞ.☐

Case A. If λ > 0, then

I λ u, Tuð Þ = a1d u, Tuð Þλ + a2d u, Tuð Þλ + a3d Tu, T2u
� �λh

+ a4d Tu, T2u
� �λ + a5d Tu, T2u

� �λ+δd T2u, T3u
� �λi1/λ

= a1d u, Tuð Þλ + a2d u, Tuð Þλ + a3d Tu, uð Þλ + a4d Tu, uð Þλ
h
+ a5d Tu, uð Þλ+δd u, Tuð Þλ

i1/λ
= a1 + a2 + a3 + a4 + a5 + δð Þd u, Tuð Þλ
h i1/λ

≤ d u, Tuð Þλ
h i1/λ

= d u, Tuð Þ:
ð69Þ

Since αðu, TuÞ ≥ 1, then from (35),

0 < d u, Tuð Þ ≤ α u, Tuð Þd u, Tuð Þ = α u, Tuð Þd T2u, T3u
� �

≤ k ·I λ u, Tuð Þ ≤ k · d u, Tuð Þ,
ð70Þ

which is a contradiction. Then, Tu = u, so u is a fixed point
of T .
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Case B. If λ = 0, then

I 0 u, Tuð Þ = d u, Tuð Þa1 · d u, Tuð Þa2 · d Tu, T2u
� �a3

· d Tu, T2u
� �a4 · d Tu, T2u

� �a5 · d T2u, T3u
� �δ

= d u, Tuð Þa1 · d u, Tuð Þa2 · d Tu, uð Þa3 · d Tu, uð Þa4
· d Tu, uð Þa5 · d u, Tuð Þδ = d u, Tuð Þa1+a2+a3+a4+a5+δ

= d u, Tuð Þ,
ð71Þ

and the argument of the previous case can be repeated here.
For the case λ > 0, by adding a supplementary condition,

we can show the uniqueness of the fixed point.

Theorem 18. Under the hypotheses of Theorem 17, if we sup-
pose that the contractivity condition (35) holds for all distinct
points u, v ∈M and also that αðu, vÞ ≥ 1 for every u, v ∈ ∗Fi
xTðMÞ, then T has a unique fixed point.

Proof. Theorem 17 guarantees that the set of fixed points of
T is nonempty. Suppose that T has two distinct fixed points
u, v ∈ ∗FixTðMÞ.☐

Case A. If λ > 0, replacing such points in (35), we obtain

I λ u, vð Þ = a1 d u, vð Þλ + a2 d u, Tuð Þλ + a3 d v, Tvð Þλ
h
+ a4 d Tu, Tvð Þλ+a5 d Tu, T2u

� �λ + δ d Tv, T2v
� �λi1/λ

= a1 d u, vð Þλ + a4 d u, vð Þλ
h i1/λ

= a1 + a4ð Þ1/λ d u, vð Þ
≤ d u, vð Þ:

ð72Þ

Therefore,

d u, vð Þ ≤ α u, vð Þ d u, vð Þ = α u, vð Þ d T2u, T2v
� �

≤ k ·I λ u, vð Þ ≤ k · d u, vð Þ < d u, vð Þ,
ð73Þ

which is impossible. Then, T cannot have two distinct fixed
points.

Case B. If λ = 0, then

I 0 u, vð Þ = d u, vð Þa1 · d u, Tuð Þa2 · d v, Tvð Þa3 · d Tu, Tvð Þa4
· d Tu, T2u
� �a5 · d Tv, T2v

� �δ = d u, vð Þa1 · 0a2
· 0a3 · d u, vð Þa4 · 0a5 · 0δ:

ð74Þ

If a2 > 0 or a3 > 0 or a5 > 0 or δ > 0, then I 0ðu, vÞ = 0, so
the contractivity condition (35) leads to

d u, vð Þ ≤ α u, vð Þd u, vð Þ = α u, vð Þd T2u, T2v
� �

≤ k ·I λ u, vð Þ = 0,
ð75Þ

which is false because u and v are distinct points. On the

contrary, if a2 = a3 = a5 = δ = 0, we agreed that 0a2 = 0a3 =
0a5 = 0δ = 1, so

a1 + a4 = 〠
5

i=1
ai + δ = 1,

I 0 u, vð Þ = d u, vð Þa1+a4 = d u, vð Þ:
ð76Þ

The argument shown in (73) proves that this case is also
impossible, so the mapping T cannot have two distinct fixed
points in any case.

Also, a particular result holds for the case λ = 0; more
exactly, we can remove the continuity conditions of T or
T2.

Theorem 19. Let ðM, dÞ be a complete metric space, and let
T : M⟶M be a hybrid-interpolative Reich-Istrăţescu-type
contraction for λ = 0 such that a1 > 0 or a2 > 0 or a5 > 0. If
we suppose that

(i) T is α-orbital admissible

(ii) there exists z0 ∈M such that αðz0, Tz0Þ ≥ 1

(iii) for any sequence fzngn∈ℕ in M such that αðzn, zn+1
Þ ≥ 1 for n ∈ℕ and fzng⟶ u as n⟶∞, we have
that αðzn, uÞ ≥ 1 for all n ∈ℕ

then T has a fixed point.

Proof. Following the proof of Theorem 12, we considered the
Picard sequence zn = Tnz0 for all n ∈ℕ. If this sequence con-
tains a fixed point, the proof is finished. On the contrary
case, we have shown that it is a Cauchy sequence on ðM, d
Þ, so it converges to a point u ∈M. To prove that u is a fixed
point of T , suppose, by contradiction, that u ≠ Tu.

Without loss of generality, we can assume that fzngn∈ℕ
satisfies zn ≠ zm for all n,m ∈ℕ such that n ≠m. In this case,
there is n0 ∈ℕ such that zn and u are distinct and they are
not fixed points of T for all n ≥ n0. Let us check that u is a
fixed point of T2. Indeed, for all n ≥ n0,

d zn+2, T2u
� �

≤ α zn, uð Þd T2zn, T2u
� �

≤ k ·I 0 zn, uð Þ
= k · d zn, uð Þa1 · d zn, Tznð Þa2 · d u, Tuð Þa3

· d Tzn, Tuð Þa4 · d Tzn, T2zn
� �a5

· d Tu, T2u
� �δ = k · d zn, uð Þa1 · d zn, zn+1ð Þa2

· d u, Tuð Þa3 · d zn+1, Tuð Þa4 · d zn+1, zn+2ð Þa5
· d Tu, T2u
� �δ

:

ð77Þ

Since a1 > 0 or a2 > 0 or a5 > 0, letting n⟶∞ in (77),
we find out that dðu, T2uÞ = 0; that is, u is a fixed point of
T2. Now, following the lines from Theorem 17, we obtain
a contradiction that proves that u is also a fixed point of T .☐
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Let us show an example in which we can deduce the exis-
tence of a fixed point from Theorem 19 even when T and T2

are not continuous at the same time.

Example 20. Let ðM, dÞ be the complete metric space where
M = ½−1, 1�, and d : M ×M⟶ 0,∞Þ is the metric dðz, tÞ
= jz − tj for all z, t ∈M. Let T : M⟶M be the mapping
defined for each z ∈M by

Tz =

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
, if z ∈ −1, 0½ Þ,

z2

2 , if z ∈ 0, 1½ �:

8><
>: ð78Þ

Its self-composition is given by

T2z =

1 − z2

2 , if z ∈ −1, 0½ Þ,

z4

8 , if z ∈ 0, 1½ �:

8>><
>>: ð79Þ

Clearly, T and T2 are not continuous mappings. Next, let
us show that T is a hybrid-interpolative Reich-Istrăţescu-
type contraction w.r.t. the function α : M ×M⟶ ½0,∞Þ
defined as follows:

α z, tð Þ =

3
2 , if z, t ∈ 0, 1½ �,
1, if z = −1, t = 1,
0, otherwise:

8>>><
>>>:

ð80Þ

Let us take

k = 3
4 , a1 = a4 =

1
2 , a2 = a3 = a5 = δ = 0: ð81Þ

Assumptions (i), (ii), and (iii) of Theorem 19 are satis-
fied. Furthermore, the contractivity condition can be
checked as follows:

(a) For every z, t ∈ 0, 1�, we have

α z, tð Þd T2z, T2t
� �

= 3
2

z4

8 −
t4

8










 = 3 z2 − t2



 

 z2 + t2
� �

16

≤
3
8 z2 − t2


 

 = 3

8 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − t2j j

p
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − t2j j

p
= 3
8 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z + tj j · z − tj j

p
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · z2 − t2j j

2

r

= 3
8 ·

ffiffiffi
2

p
·
ffiffiffiffiffiffiffiffiffiffiffiffi
z + tj j

p
·
ffiffiffiffiffiffiffiffiffiffiffiffi
z − tj j

p
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

2 −
t2

2












s

≤
3
8 ·

ffiffiffi
2

p
·
ffiffiffi
2

p
· z − tj j1/2 · z

2

2 −
t2

2











1/2

= 3
4 · d z, tð Þ1/2 · d Tz, Ttð Þ1/2,

ð82Þ

(b) For z = −1 and t = 1, we have

α −1, 1ð Þd T2 −1ð Þ, T21
� �

= 1
8 < 3

4
= 3
4 · d −1, 1ð Þ1/2 · d T −1ð Þ, T1ð Þ1/2:

ð83Þ

(c) For all other cases,

α z, tð Þd T2z, T2t
� �

= 0 ≤ 3
4 · d z, tð Þ1/2 · d Tz, Ttð Þ1/2:

ð84Þ

Hence, from Theorem 19, we conclude that T has a fixed
point.

5. Consequences

In the field of fixed point theory, it is commonly accepted
that a contractivity condition is all the more general if it
has more possibilities of being particularized, giving rise to
versions of already known theorems. Therefore, in order to
show the power of the main introduced results, in this sec-
tion we are going to illustrate several contexts in which they
can be applied.

The first important framework appears when the map-
ping α : M ×M⟶ ½0,∞Þ constantly takes the value 1; that
is, αðz, tÞ = 1 for each z, t ∈M. In this case, the hypotheses
about the α-orbital admissibility and the existence of a point
z0 ∈M such that αðz0, Tz0Þ ≥ 1 are trivial.

Corollary 21. Let ðM, dÞ be a complete metric space, and let
T : M⟶M be a mapping such that

(i) either T or T2 is continuous

(ii) for some λ ∈ 0,∞Þ, there exist a constant k ∈ 0, 1Þ and
six numbers a1, a2, a3, a4, a5, δ ∈ ½0, 1� such that, for
all distinct z, t ∈M \ ∗FixTðMÞ,

d T2z, T2t
� �

≤ k ·I λ z, tð Þ, ð85Þ

where I λðz, tÞ is defined by (36) and

〠
5

i=1
ai + δ ≤ 1, if λ > 0,

〠
5

i=1
ai + δ = 1, if λ = 0:

ð86Þ

Then, T has a fixed point.
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In addition to this, for the case λ > 0, if we suppose that
the contractivity condition (85) holds for all distinct points
u, v ∈M, then T has a unique fixed point.

Proof. It follows from Theorems 12, 17, and 18 applied to the
case in which αðz, tÞ = 1 for each z, t ∈M.☐

The following result follows by choosing in the set of
constants fa1, a2, a3, a4, a5, δg one of them as 1 and the
other ones as 0. Notice that six corollaries are being summa-
rized into only one.

Corollary 22. Let ðM, dÞ be a complete metric space, let α
: M ×M⟶ ½0,∞Þ be a function, and let T : M⟶M be
a mapping such that

(i) either T or T2 is continuous, T is α-orbital admissi-
ble, and there exists z0 ∈M such that αðz0, Tz0Þ ≥ 1

(ii) there exists a constant k ∈ 0, 1Þ such that at least one
of the following conditions is fulfilled for all distinct
z, t ∈M \ ∗FixTðMÞ:

α z, tð Þd T2z, T2t
� �

≤ k · d z, tð Þ,
α z, tð Þd T2z, T2t

� �
≤ k · d z, Tzð Þ,

α z, tð Þd T2z, T2t
� �

≤ k · d t, Ttð Þ,
α z, tð Þd T2z, T2t

� �
≤ k · d Tz, Ttð Þ,

α z, tð Þd T2z, T2t
� �

≤ k · d Tz, T2z
� �

,

α z, tð Þd T2z, T2t
� �

≤ k · d Tt, T2t
� �

:

ð87Þ

Then, T has a fixed point.

Proof. This result corresponds to the case λ > 0 in Theorem
12 (T continuous) or Theorem 17 (T2 continuous) when
the contractivity condition (35) is considered by using the
following respective choices for constants:

a1 = 1, a2 = a3 = a4 = a5 = δ = 0 ;
a2 = 1, a1 = a3 = a4 = a5 = δ = 0,
a3 = 1, a1 = a2 = a4 = a5 = δ = 0,
a4 = 1, a1 = a2 = a3 = a5 = δ = 0,
a5 = 1, a1 = a2 = a3 = a4 = δ = 0,
δ = 1, a1 = a2 = a3 = a4 = a5 = 0:

ð88Þ

☐

Remark 23. Notice that we would have obtained the same six
contractivity conditions (87) for the case λ = 0 under the six
cases given by (88).

The following result follows by using αðz, tÞ = 1 for each
z, t ∈M in the previous statement.

Corollary 24. Let ðM, dÞ be a complete metric space, and let
T : M⟶M be a mapping such that

(i) either T or T2 is continuous

(ii) there exists a constant k ∈ 0, 1Þ such that at least one
of the following conditions is fulfilled for all distinct
z, t ∈M \ ∗FixTðMÞ:

d T2z, T2t
� �

≤ k · d z, tð Þ,
d T2z, T2t
� �

≤ k · d z, Tzð Þ,
d T2z, T2t
� �

≤ k · d t, Ttð Þ,
d T2z, T2t
� �

≤ k · d Tz, Ttð Þ,
d T2z, T2t
� �

≤ k · d Tz, T2z
� �

,

d T2z, T2t
� �

≤ k · d Tt, T2t
� �

:

ð89Þ

Then, T has a fixed point.

Particular cases are especially interesting, like in the fol-
lowing case, in which it is not necessary to assume the con-
tinuity of the mapping T .

Corollary 25 (Istrăţescu [18, 19]). Let ðM, dÞ be a complete
metric space, and let T : M⟶M be a continuous mapping
such that there exist a, b ∈ ð0, 1Þ with a + b < 1 satisfying

d T2z, T2t
� �

≤ a · d z, tð Þ + b · d Tz, Ttð Þ for all z, t ∈M: ð90Þ

Then, T has a unique fixed point.

Proof. Let us consider the choices λ = 1 and αðz, tÞ = 1 for
each z, t ∈M. Let k = a + b ∈ ð0, 1Þ, and let

a1 =
a
k
, a4 =

b
k
, a2 = a3 = a5 = δ = 0: ð91Þ

Then, for each distinct z, t ∈M,

k ·I 1 z, tð Þ = k · a
k
d z, tð Þ + b

k
d Tz, Ttð Þ

� �
= a · d z, tð Þ + b · d Tz, Ttð Þ,

ð92Þ

which means that the contractivity condition

α z, tð Þd T2z, T2t
� �

≤ k ·I 1 z, tð Þ for all distinct z, t ∈M \ ∗FixT Mð Þ
ð93Þ

holds because of (90). Under this framework, the proof of
Theorem 12 (using any initial point z0 ∈M) guarantees that
the Picard sequence fzn = Tnz0gn∈ℕ converges to a point
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u0 ∈M. Since T is continuous, then fzn+1 = Tzngn∈ℕ con-
verges to Tu0, so Tu0 = u0.

Furthermore, T has a unique fixed point because if u0
and v0 were two distinct fixed points of T , then

d u0, v0ð Þ = d T2u0, T2v0
� �

≤ a · d u0, v0ð Þ + b · d Tu0, Tv0ð Þ
= a + bð Þ d u0, v0ð Þ < d u0, v0ð Þ,

ð94Þ

which is impossible.
In the following result, we employ a binary relation for

controlling the pairs of points that must satisfy the contrac-
tivity condition. Let R be a binary relation on the set M. A
mapping T : M⟶M is R-orbital admissible if TzRTt
for all z, t ∈M such that zRt.☐

Corollary 26. Let ðM, dÞ be a complete metric space endowed
with a binary relation R, and let T : M⟶M be a continu-
ous mapping. Assume that for some λ ∈ 0,∞Þ, there exist a
constant k ∈ 0, 1Þ and six numbers a1, a2, a3, a4, a5, δ ≥ 0 sat-
isfying (37) such that, for all distinct z, t ∈M \ ∗FixTðMÞ
such that zRt,

d T2z, T2t
� �

≤ k ·I λ z, tð Þ: ð95Þ

If T is R-orbital admissible and there is z0 ∈M such that
z0RTz0, then T has at least one fixed point.

Proof. Let us consider the function αR : M ×M⟶ ½0,∞Þ
defined by

αR z, tð Þ =
1, if zRt,
0, otherwise:

(
ð96Þ

Then, T is αR-orbital admissible and there is z0 ∈M
such that αRðz0, Tz0Þ = 1. The contractivity condition (95)
is equivalent to (35) under the assumptions (37). Hence,
Theorem 12 is applicable.☐

In the previous corollary, when M is endowed with a
binary relation R, we can replace the completeness of the
metric space by the weaker version: the metric space ðM, d
Þ is R-increasingly complete if each d-Cauchy sequence
fzngn∈ℕ ⊆M satisfying that znRzn+1 for all n ∈ℕ is d-con-
vergent to a point of M. In this case, Corollary 26 can be
stated as follows.

Corollary 27. Let ðM, dÞ be aR-increasingly complete metric
space w.r.t. a binary relation R on M, and let T : M⟶M
be a continuous mapping. Assume that for some λ ∈ 0,∞Þ,
there exist a constant k ∈ 0, 1Þ and six numbers a1, a2, a3, a4
, a5, δ ≥ 0 satisfying (37) such that, for all distinct z, t ∈M \

∗FixTðMÞ such that zRt,

d T2z, T2t
� �

≤ k ·I λ z, tð Þ: ð97Þ

If T is R-orbital admissible and there is z0 ∈M such that
z0RTz0, then T has at least one fixed point.

Proof. Using the function αR defined in (96) and following
the lines of the proof of Theorem 12, we get that the
Picard sequence fzn = Tnz0gn∈ℕ is a Cauchy sequence in
ðM, dÞ such that znRTzn for all n ∈ℕ, that is, znRzn+1
for all n ∈ℕ. Since ðM, dÞ is an R-increasingly complete
metric space, such sequence is convergent to a point u0
∈M. Then, the rest of the proof of Theorem 12 can be
repeated.☐

The following consequence corresponds to the choice α
ðz, tÞ = 1 for each z, t ∈M in Theorem 19. Notice that here
the operator T has not been continuous.

Corollary 28. Let ðM, dÞ be a complete metric space, and let
T : M⟶M be a mapping for which there exist a constant
k ∈ 0, 1Þ and six numbers a1, a2, a3, a4, a5, δ ≥ 0 such that,
for all distinct z, t ∈M \ ∗FixTðMÞ,

d T2z, T2t
� �

≤ k · d z, tð Þa1 · d z, Tzð Þa2 · d t, Ttð Þa3
· d Tz, Ttð Þa4 · d Tz, T2z

� �a5 · d Tt, T2t
� �δ

:

ð98Þ

Suppose that ∑5
i=1ai + δ = 1 and a1 + a2 + a5 > 0. Then, T

has at least one fixed point.
Furthermore, if the contractivity condition (98) holds for

all distinct points u, v ∈M and also αðu, vÞ ≥ 1 for every u,
v ∈ ∗FixTðMÞ, then T has a unique fixed point.

Proof. This result follows from the case λ = 0 in Theorem 19
by using the function αðz, tÞ = 1 for each z, t ∈M. Notice
that the condition a1 + a2 + a5 > 0 means that at least one
of the constants a1, a2, or a5 is strictly positive.

To prove the uniqueness, suppose that u, v ∈ ∗FixTðMÞ
are two distinct fixed points of T . Then,

I 0 u, vð Þ = d u, vð Þa1 · d u, Tuð Þa2 · d v, Tvð Þa3 · d Tu, Tvð Þa4
· d Tu, T2u
� �a5 · d Tv, T2v

� �δ = d u, vð Þa1 · 0a2 · 0a3
· d u, vð Þa4 · 0a5 · 0δ:

ð99Þ

If a2 > 0 or a3 > 0 or a5 > 0 or δ > 0, we can deduce that
I 0ðu, vÞ = 0, so the contractivity condition (98) leads to

d u, vð Þ = d T2u, T2v
� �

≤ k ·I λ u, vð Þ = 0, ð100Þ
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which is false because u and v are distinct points. On the
contrary, if a2 = a3 = a5 = δ = 0, we agreed that 0a2 = 0a3 =
0a5 = 0δ = 1, so

a1 + a4 = 〠
5

i=1
ai + δ = 1,

I 0 u, vð Þ = d u, vð Þa1+a4 = d u, vð Þ:
ð101Þ

Therefore,

d u, vð Þ = d T2u, T2v
� �

≤ k ·I 0 u, vð Þ = k · d u, vð Þ < d u, vð Þ,
ð102Þ

which is impossible. Then, T cannot have two distinct fixed
points.☐

6. An Application to Integral Equations

Let Cð½τ0,Θ�, ½0, 1�Þ be the space of all continuous functions
with value on ½0, 1� where Θ > 0 and for all z, t ∈ Cð½τ0,Θ�,
½0, 1�Þ:

d z, tð Þ = sup
τ∈τ0,Θ�

z τð Þ − t τð Þj j: ð103Þ

Obviously, the pair ðM, dÞ, where M = Cð½τ0,Θ�, ½0, 1�Þ,
forms a complete metric space.

A family fCðτÞ: τ ∈ℝg of bounded linear operators is
said to be a strongly continuous cosine family if and only if

(1) Cð0Þ = I (here I is the identity operator)

(2) for each z ∈M, CðτÞz is strongly continuous in τ on
ℝ

(3) Cðτ + υÞ + Cðτ − υÞ = 2CðτÞCðυÞ for all τ, υ ∈ℝ
For a strongly continuous cosine family fCðτÞ: τ ∈ℝg in

M, we consider the following:

(1) The associated sine family fSðτÞ: τ ∈ℝg where SðτÞ
z = Ð τ0CðυÞzdυ, for τ ∈ℝ and z ∈M

(2) The infinitesimal generator A : M⟶M defined by
Az = ðd2/dτ2ÞCðτÞzjτ=0, for z ∈DðAÞ, where DðAÞ
= fz ∈M ∣ Cð·Þz ∈ C2ðℝ,MÞg

Let also M ≥ 1 and N > 0 be two constants such that jC
ðtÞj ≤M and jSðtÞj ≤N for any τ ∈ ½τ0,Θ�:

We consider the equation

z″ τð Þ = Az τð Þ + ξ τ, z τð Þ,
ðτ
τ0

ζ τ, υ, z υð Þð Þdυ
 !

, 0 < τ0 <Θ,

ð104Þ

z τ0ð Þ = z0, z′ τ0ð Þ =w0, z0,w0 ∈ 0, 1�, ð105Þ

where ξ : ½τ0,Θ� × 0, 1� ×ℝ⟶ℝ and ζ : ½τ0,Θ� × τ0,Θ� ×
0, 1�⟶ℝ are continuous functions.

A function z ∈M defined by

z τð Þ = C τ − τ0ð Þz0 + S τ − τ0ð Þw0

+
ðτ
τ0

S τ − υð Þξ υ, z υð Þ,
ðυ
τ0

ζ υ, s, z sð Þð Þds
 !

dυ, τ ∈ τ0,Θ�

ð106Þ

is said to be the mild solution of equation (104).

Theorem 29. In this context, if

(a) the mapping T : M⟶M defined for τ ∈ τ0,Θ� by

Tz τð Þ = C τ − τ0ð Þz0 + S τ − τ0ð Þw0

+
ðτ
τ0

S τ − υð Þξ υ, z υð Þ,
ðυ
τ0

ζ υ, s, z sð Þð Þds
 !

dυ,

ð107Þ

is continuous

(b) for τ, υ ∈ ½τ0,Θ� and z1, z2, t1, t2 ∈M, there exist some
constants k1 > 0, k2 > 1 such that

ξ τ, z1 τð Þ, t1 τð Þð Þ − ξ τ, z2 τð Þ, t2 τð Þð Þj j
≤ k1 z1 τð Þ − z2 τð Þj j + t1 τð Þ − t2 τð Þj j½ �,

ζ τ, υ, z1 υð Þð Þ − ζ τ, υ, z2 υð Þð Þj j ≤ k2 z1 υð Þ − z2 υð Þj j½ �1/2:
ð108Þ

(c) Nk1Θ
2½Nk1ð1 + k2ΘÞ + k2� < 1 and Nk1ð1 + k2ΘÞ > 1

then equation (104) has a unique mild solution on ½
τ0,Θ�:

Proof. We notice that the mild solution of equation (104) is
precisely a fixed point of the mapping T . For this reason, we
check if the assumption of Theorem 12 holds. Considering
the function α : M ×M⟶ ½0,∞Þ defined as αðz, tÞ = 1 for
any z, t ∈M, we have that T is α-orbital admissible and there
exists z0 ∈M such that αðz0, Tz0Þ = 1. Moreover, for z, t ∈M,

13Journal of Function Spaces



we have

d Tz, Ttð Þ = sup
τ∈τ0,Θ�

Tz τð Þ − Tt τð Þj j

= sup
τ∈τ0,Θ�

ðτ
τ0

S τ − υð Þξ υ, z υð Þ,
ðυ
τ0

ζ υ, s, z sð Þð Þds
 !

dυ







− −
ðτ
τ0

S τ − υð Þξ υ, t υð Þ,
ðυ
τ0

ζ υ, s, t sð Þð Þds
 !

dυ







≤ sup

τ∈τ0,Θ�

ðτ
τ0

S τ − υð Þj j ξ υ, z υð Þ,
ðυ
τ0

ζ υ, s, z sð Þð Þds
 !






− ξ υ, t υð Þ,
ðυ
τ0

ζ υ, s, t sð Þð Þds
  !




dυ

≤N sup
τ∈τ0,Θ�

ðτ
τ0

k1 ∣z υð Þ − t υð Þ∣+∣
ðυ
τ0

ζ υ, s, z sð Þð Þds
"

−
ðυ
τ0

ζ υ, s, t sð Þð Þds ∣
#
dυ ≤N

ðτ
τ0

k1 sup
τ∈τ0,Θ�

∣ z υð Þ
"

− t υð Þ∣+
ðυ
τ0

k2 sup
τ∈τ0,Θ�

z sð Þ − t sð Þj j1/2ds
#
dυ

=Nk1 d z, tð Þ τ − τ0ð Þ +
ðτ
τ0

k2 d z, tð Þ½ �1/2 υ − τ0ð Þdυ
" #

=Nk1 d z, tð Þ τ − τ0ð Þ + k2 d z, tð Þ½ �1/2 τ − τ0ð Þ2
2

" #
:

ð109Þ

Analogically,

d T2z, T2t
� �

= sup
τ∈τ0,Θ�

T2z τð Þ − T2t τð Þ

 

 = sup
τ∈τ0,Θ�

T Tz τð Þð Þ − T Tt τð Þð Þj j

≤ sup
τ∈τ0,Θ�

ðτ
τ0

S τ − υð Þj j ξ υ, Tz υð Þ,
ðυ
τ0

ζ υ, s, Tz sð Þð Þds
 !






− −ξ υ, Tt υð Þ,
ðυ
τ0

ζ υ, s, Tt sð Þð Þds
 !#

dυ

≤N sup
τ∈τ0,Θ�

ðτ
τ0

k1 Tz υð Þ − Tt υð Þj j +
ðυ
τ0

ζ υ, s, Tz sð Þð Þds







"

−
ðυ
τ0

ζ υ, s, Tt sð Þð Þds





�dυ ≤N

ðτ
τ0

k1 sup
τ∈τ0,Θ�\

∣ Tz υð Þ
"

− Tt υð Þ∣+
ðυ
τ0

k2 sup
τ∈τ0,Θ�

z sð Þ − t sð Þj j1/2ds
#
dυ

=Nk1 d Tz, Ttð Þ τ − τ0ð Þ +
ðτ
τ0

k2 d Tz, Ttð Þ½ �1/2 υ − τ0ð Þdυ
" #

=Nk1 d Tz, Ttð Þ τ − τ0ð Þ + k2 d Tz, Ttð Þ½ �1/2 τ − τ0ð Þ2
2

" #
,

ð110Þ

and taking (109) into account, we have

d T2z, T2t
� �

≤Nk1 Nk1 d z, tð Þ τ − τ0ð Þ + k2 d z, tð Þ½ �1/2 τ − τ0ð Þ2
2

" #
τ − τ0ð Þ

"

+ k2 d Tz, Ttð Þ½ �1/2 τ − τ0ð Þ2
2

#

≤Nk1 Nk1 d z, tð Þ½ �1/2 Θ2 + k2
Θ3

2

� �
+ k2 d Tz, Ttð Þ½ �1/2 Θ

2

2

� �

= Nk1Θð Þ2 1 + k2
Θ

2

� 

· d z, tð Þ

�1/2
+Nk1k2

Θ2

2 · d Tz, Ttð Þ
�1/2

≤ Nk1Θð Þ2 1 + k2Θð Þ · d z, tð Þ�1/2 +Nk1k2Θ
2 · d Tz, Ttð Þ�1/2:

ð111Þ

If we denote k =Nk1Θ
2½Nk1ð1 + k2ΘÞ + k2� < 1, choos-

ing a1 = ðNk1ΘÞ2ð1 + k2ΘÞ/k < 1, a4 =Nk1Θ
2k2/k < 1, a2 =

a3 = a5 = δ = 0, and λ = 1/2, we have that the relation (35)
holds. Therefore, T is a hybrid-interpolative Reich-
Istrăţescu-type contraction, and from Theorem 12, it follows
that the mapping T has a fixed point or, equivalent, that
equation (104) has a mild solution.☐

7. Conclusions and Future Lines of Research

In this paper, we have introduced a great family of contrac-
tions that we have called hybrid-interpolative Reich-
Istrăţescu-type contractions in the setting of metric spaces.
The main advantage of this family is the fact that its general
contractivity condition can be particularized in several ways,
depending on many parameters (λ, k, a1, a2, a3, a4, a5, δ).
Furthermore, such contractivity condition involves many
distinct terms that can be either adding or multiplying
between them (it depends on λ). In addition to this, we must
highlight that the main contractivity condition makes use of
the self-composition T2 = T ∘ T , whose associated theorems
used to be more general than the corresponding results by
only using T .

For the study of the behavior of the Picard sequence that is
used in the main results, an analysis of the convergence of cer-
tain sequences of nonnegative real terms that naturally appear
in the proofs that we have introduced has been carried out. If
the reader pays attention, some of these sequences repeatedly
appear in the field of the fixed point theory. For example, the
condition “dðzn+1, zn+2Þ ≤ λdðzn, zn+1Þ for all n ∈ℕ” appears
in many demonstrations in this field of study. Therefore, the
results of Section 3 have been of great help in the development
of the main results.

In this setting, we have demonstrated some fixed point
theorems that guarantee the existence and, in some cases,
the uniqueness, of fixed points. To illustrate the power of
the introduced results, we have shown several consequences
of the main statements. We have also remarked how the pro-
posed results are optimal with respect to the involved
parameters; that is, when a result includes the hypothesis
about ∑5

i=1ai + δ < 1, we have described an example in which
the equality in the previous strict inequality leads to the
invalidity of the corresponding result.
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Finally, we have taken advantage of the main contents of
the manuscript in order to introduce a novel application in
which, under very general conditions, we are able to deduce
the existence of solution of a kind of integral equations.

Prospective work must be done in this line of research.
On the one hand, further studies should be done on how
to reformulate the contractivity condition in order to be able
to develop fixed point theory in more general abstract metric
spaces (for instance, b-metric spaces or fuzzy metric spaces).
On the other hand, we propose studying the possible exis-
tence of fixed points for an operator T such that

α z, tð Þd T2z, T2t
� �

≤ k · max d z, tð Þ, d z, Tzð Þ, df
� t, Ttð Þ, d Tz, Ttð Þ, d Tz, T2z

� �
, d Tt, T2t
� ��

,
ð112Þ

for all distinct points z, t ∈Ω, whereΩ is an appropriate sub-
set of a metric space ðM, dÞ.
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