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Fractional derivatives are used to model the transmission of many real world problems like COVID-19. It is always hard to find
analytical solutions for such models. Thus, approximate solutions are of interest in many interesting applications. Stability theory
introduces such approximate solutions using some conditions. This article is devoted to the investigation of the stability of
nonlinear differential equations with Riemann-Liouville fractional derivative. We employed a version of Banach fixed point
theory to study the stability in the sense of Ulam-Hyers-Rassias (UHR). In the end, we provide a couple of examples to
illustrate our results. In this way, we extend several earlier outcomes.

1. Introduction

Fractional calculus (FC) has been appearing in a wide
range of fields, such as chemistry, economics, polymer
rheology, and aerodynamics. This is due to the existence
of many nice tools (see e.g., [1, 2]) that are not available
in the classical calculus. In particular, FC enables
researches to model in an efficient way many complicated
real world problems, e.g., COVID-19 (see [3]), Ebola virus
(see [4]), and HIV (see [5]). Moreover, it has recent inter-
esting applications in image processing (see [6]) and in
diabetes (see [7]).

The stability problem named after Ulam is currently a
research trend in many applications (see e.g., [8] for more
references and details). It pupped up as a consequence of
the famous question asked by Ulam at a conference held in
Wisconsin University in the fall term of 1940 (see [9]).
The mentioned Ulam’s stability problem can be rewritten
as follows:

Let ðG∗∗, ρÞ be a metric group and G∗ be a group. Is it
true that for some ε1 > 0, there is a δ1 > 0 that satisfies if T
: G∗ ⟶G∗∗ verifies

ρ T t1t2ð Þ, T t1ð ÞT t2ð Þð Þ < δ1, ð1Þ

for every t1, t2 ∈G∗; thus, there exists a homomorphism g
: G∗ ⟶G∗∗ fulfilling

ρ T t1ð Þ, g t1ð Þð Þ < ε1, ð2Þ

for all t1 ∈G∗.
Answers have been introduced for the question of Ulam

by many mathematicians. For instance, in 1941, Hyers gave
an exact answer to Ulam’s question. Afterwards, Rassias in
1978 (see [10]) introduced a general form of the result of
Hyers. The famous result obtained by Rassias can be
rewritten:
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Theorem 1. [10]. Assume that B∗, B∗∗ are Banach spaces and
assume some continuous mapping from ℝ into B∗∗. Suppose
that there exists ω ≥ 0 and ϑ ∈ ½0, 1Þ such that

h b1 + b2ð Þ − h b1ð Þ − h b2ð Þk k ≤ ω b1k kϑ + b2k kϑ
� �

, b1, b2 ∈ B∗ \ 0f g:
ð3Þ

Then, there is a unique solution Ψ : B∗ ⟶ B∗∗ of the
Cauchy equation ðhðb1 + b2Þ = hðb1Þ + hðb2ÞÞ with

h b1ð Þ −Ψ b1ð Þk k ≤ 2ω b1k kϑ
2 − 2ϑ
�� �� , b1 ∈ B∗ \ 0f g: ð4Þ

Through the past six decades, the stability subject has
been a common issue of investigations in many places (see,
e.g., [12, 15, 22, 23, 9, 20, 21, 25, 27, 26, 28]). As a conse-
quence of the interesting results presented in this direction,
many articles devoted to this subject have been introduced
([24, 16, 29] and the references therein). In 2010, Jung
employed a fixed point technique (FPT) to study the stability
of the equation ρ′ = ρðθ, λÞ (see [11]). It should be remarked
that Jung in [11] generalized the work of Alsina and Ger to
the nonlinear case. In 2012, Bojor (see [12]) used different
assumptions to study the stability of

h′ xð Þ +m xð Þh xð Þ = r xð Þ, ð5Þ

and improved the result of Jung in [11].
In 2015, Tunç and Biçer in [13] improved the approach

of Jung in [11] for the functional differential equation:

z′ x1ð Þ = F x1, z x1ð Þ, z x1 − τð Þð Þ: ð6Þ

In [14], Huang et al. investigated the stability of the fol-
lowing equation:

T nð Þ x1ð Þ = F x1, T x1ð Þ, T ′ x1ð Þ,⋯,T n−1ð Þ x1ð Þ
� �

: ð7Þ

In [15], Popa and Pugna studied the UH stability (UHS)
of Euler’s equation. In [16], Shen introduced Ulam stability
for equations on time scales. In [17], the authors employed
weakly Picard operator theory to investigate the UHS of
some kind of equations in Banach Spaces. Furthermore, they
obtained the UHR stability for such kind of equations via
Pachpatte’s integral inequalities. FPT has been employed in
[18] to study the stability of a nonlinear Volterra integrodif-
ferential equation with delay and in [19] to study the stabil-
ity of impulsive Volterra integral equation.

The framework of the paper is as follows. In Section 2,
we introduce some preliminaries; in Section 3, we present
the stability results in UHR sense; in Section 4, we illustrate
our results with two examples, and Section 5 is devoted to
the conclusion.

2. Preliminaries

From now on, we use ℝ to denote real numbers set and ℂ to
denote the complex numbers set. We define the generalized
metric on a nonempty set S as follows.

Definition 2. [20]. The mapping σ : S × S⟶ ½0,∞� is said to
be a generalized metric on S if and only if σ fulfills the
assertions:

G1σðr1, r2Þ = 0 if and only if r1 = r2;
G2σðr1, r2Þ = σðr2, r1Þ for all r1, r2 ∈ S;
G3σðr1, r3Þ ≤ σðr1, r2Þ + σðr2, r3Þ for all r1, r2, r3 ∈ S.

Now, we present the notion of UHR stability.

Definition 3. The following fractional differential equation

F x, ν,Dλ
Tx νð Þ

� �
= 0 ð8Þ

is UHR stable if for given ϵ > 0 and a function xðνÞ which
satisfies

F x, ν,Dλ
Tx νð Þ

� ���� ��� ≤ ϵΠ νð Þ: ð9Þ

There is a solution x0ðνÞ of (8) with jxðνÞ − x0ðνÞj ≤ ∈Πðν
ÞΦðνÞ, where Πð·Þ and Φð·Þ are some functions that do
not depends on x and x0.

The following theorem represents one of the central
results of FPT (see [20]).

Theorem 4. For a generalized complete metric space ðZ, γÞ.
Suppose an operator Γ : Z⟶ Z that is strictly contractive
with some Lipschitz constant L < 1, if there exists an integer
that is nonnegative k such that γðΓk+1y, ΓkyÞ <∞ for some
y ∈ Z, then the following are true:

(a) The sequence Γny converges to a fixed point y∗ of Γ

y∗ is the unique fixed point of Γ in Z∗ ≔ fy1 ∈ Z : γðΓky
, y1Þ<∞g
(c) If y1 ∈ Z

∗, then γðy1, y∗Þ ≤ ð1/1 − LÞγðΓy1, y1Þ

The current article is written to study the stability of the
following differential equation with right-sided Riemann-
Liouville fractional derivative

Dλ
Tx

� �
νð Þ = f ν, x νð Þð Þ, for all ν ∈ 0, T½ �, ð10Þ

with initial conditions

Dλ−i
T x

� �
Tð Þ = ai ∈ℝ, i = 1, 2⋯ , n − 1ð Þ, an = In−λT x Tð Þ = 0,

ð11Þ

where f : ½0, T� ×ℝ⟶ℝ is some continuous nonlinear

2 Journal of Function Spaces



function and n = −½−λ�, where ½·� is the well-known greatest
integer function.

3. Stability Results

This section is used to present the main findings of this
article. In other words, we use it to prove the UHR stabil-
ity of (10).

Let us first use E = Cð½0, T�,ℝÞ to denote the space of all
continuous functions from the interval ½0, T� into the set of
reals ℝ. In the next subsections, we investigate the stability
of (10) when 0 < λ < 1 and when λ > 1. We start with the
case 0 < λ < 1 as follows.

3.1. The Case 0 < λ < 1. The following theorem represents
the stability of (10) in the sense of UHR.

Theorem 5. Assume that f : ½0, T� ×ℝ⟶ℝ satisfies

f ν, ρ1ð Þ − f ν, ρ2ð Þj j ≤ K ρ1 − ρ2j j,∀ν ∈ 0, T½ �, ρs ∈ℝ, s = 1, 2:
ð12Þ

If a continuous function x ∈ E satisfies I1−λT xðTÞ = 0, then

Dλ
Tx

� �
νð Þ − f ν, x νð Þð Þ

��� ��� ≤ ϵψ νð Þ, ð13Þ

for all ν ∈ ½0, T�, where ψðνÞ is a nonincreasing function.
Then, there is a unique function x0 such that

x0 νð Þ = 1
Γ λð Þ

ðT
ν

s − νð Þλ−1 f s, x0 sð Þð Þds,

x νð Þ − x0 νð Þj j ≤ δ + K
K

Tλ

Γ λ + 1ð Þ Eλ K + δð ÞTλ
� �

ϵψ νð Þ,∀ν ∈ 0, T½ �,

ð14Þ

for any positive constants δ.

Proof. We start the proof by defining the metric on E in this
manner

d x1, x2ð Þ≔ inf M > 0 :
x1 νð Þ − x2 νð Þj j

Eλ K + δð Þ T − νð Þλ
� � ≤Mψ νð Þ

8<
:

9=
;:

ð15Þ

We can prove that the space ðE, dÞ is a complete gener-
alized metric space (see Lemma 1 in [21]).

Define the operator A : E⟶ E with

Auð Þ νð Þ≔ 1
Γ λð Þ

ðT
ν

s − νð Þλ−1 f s, u sð Þð Þds: ð16Þ

Since we have Au ∈ E for all u ∈ E and

Au0ð Þ νð Þ − u0 νð Þj j
Eλ K + δð Þ T − νð Þλ
� � < +∞,∀u0 ∈ E, ν ∈ 0, T½ �, ð17Þ

Therefore, dðAu0, u0Þ <∞. Note also that we have dðu0, uÞ
<∞, ∀u ∈ E, and then fu ∈ E : dðu0, uÞ<∞g = E:

In addition, for any u1, u2 ∈ E we get

Au1ð Þ νð Þ − Au2ð Þ νð Þj j = 1
Γ λð Þ

ðT
ν

s − νð Þλ−1 f s, u1 sð Þð Þ − f s, u2 sð Þð½ �ds
����

����
≤

K
Γ λð Þ

ðT
ν

s − νð Þλ−1 u1 sð Þ − u2 sð Þj jds

≤
K

Γ λð Þ
ðT
ν

s − νð Þλ−1 u1 sð Þ − u2 sð Þj j
Eλ K + δÞ T − sð Þλ

� �Eλ K + δð Þ T − sð Þλ
� �

ds

≤
Kd u1, u2ð Þ

Γ λð Þ
ðT
ν

ψ sð Þ s − νð Þλ−1Eλ K + δð Þ T − sð Þλ
� �

ds

≤
Kd u1, u2ð Þ

Γ λð Þ ψ νð Þ
ðT
ν

s − νð Þλ−1Eλ K + δð Þ T − sð Þλ
� �

ds,

ð18Þ

for all ν ∈ ½0, T�.
Now, using the fact that

ðT
ν

s − νð Þλ−1 Eλ K + δð Þ T − sð Þλ
� �

ds

≤
Γ λð Þ
K + δ

Eλ K + δð Þ T − νð Þλ
� �

,
ð19Þ

for all ν ∈ ½0, T�.
Then,

Au1ð Þ νð Þ − Au2ð Þ νð Þj j ≤ K
K + δ

d u1, u2ð ÞEλ K + δð Þ T − νð Þλ
� �

ψ νð Þ,

ð20Þ

which implies that

d Au1,Au2ð Þ ≤ K
K + δ

d u1, u2ð Þ, ð21Þ

which proves that A is a strictly contractive. Following the
same way as in the proof of Theorem 7.1 in [22], we get

x νð Þ − 1
Γ λð Þ

ðT
ν

s − νð Þλ−1 f s, x sð Þð Þds
����

����
≤

1
Γ λð Þ

ðT
ν

s − νð Þλ−1ϵψ sð Þds ≤ ϵ

Γ λð Þψ νð Þ
ðT
ν

s − νð Þλ−1ds

≤
ϵ

Γ λ + 1ð Þψ νð Þ T − νð Þλ,

ð22Þ
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which means that

d x,Axð Þ ≤ ϵ

Γ 1 + λð ÞT
λ: ð23Þ

Now, in view of Theorem 4 there is a solution x∗ with

d x∗, xð Þ ≤ δ + K
δ

ϵTλ

Γ 1 + λð Þ , ð24Þ

and then

x∗ νð Þ − x νð Þj j ≤ δ + K
δ

Tλ

Γ λ + 1ð Þ Eλ K + δð ÞTλ
� �

ϵψ νð Þ,

ð25Þ

for all ν ∈ ½0, T�. This results prove that in view of Definition
3, (10) is UHR stable.

Remark 6. In the current work, we do not assume any con-
strains on K unlike the case of results in [22] where the
assumption 0 < KLM < 1 is a basic condition.

Now, we investigate the stability of (10) in the case where
λ > 1 as follows.

3.2. The Case λ > 1

Theorem 7. Assume that f : ½0, T� ×ℝ⟶ℝ satisfies

f ν, ρ1ð Þ − f ν, ρ2ð Þj j ≤ K ρ1 − ρ2j j,∀ν ∈ 0, T½ �, ρi ∈ℝ, i = 1, 2:
ð26Þ

If a continuous function x ∈ E satisfies ðDλ−i
T xÞðTÞ = ai

, ði = 1, 2⋯ , n − 1Þ, an = In−λT xðTÞ = 0,n = −½−λ�, then

Dλ
Tx

� �
νð Þ − f ν, x νð Þð Þ

��� ��� ≤ ϵψ νð Þ, ð27Þ

for all ν ∈ ½0, T�, where ψðνÞ is a nonincreasing function.
Then, there is a unique function x0 with

x0 νð Þ = 〠
n−1

j=1

−1ð Þn−jaj
Γ λ − j + 1ð Þ T − νð Þλ−j + 1

Γ λð Þ
ðT
ν

s − νð Þλ−1 f s, x0 sð Þð Þds,

x νð Þ − x0 νð Þj j ≤ Tλe K+δð ÞT

1 − cð ÞΓ λ + 1ð Þ ϵψ νð Þ, ∀ν ∈ 0, T½ �,

ð28Þ

where c = KTλ−1/ΓðλÞðK + δÞ and some positive constant δ
such that 0 < c < 1.

Proof. We start by defining the metric on E by the form

d x1, x2ð Þ≔ inf M > 0 :
x1 νð Þ − x2 νð Þj j
e K+δð Þ T−νð Þ ≤Mψ νð Þ

� �
, ð29Þ

and we define the operator A : E⟶ E such that

Auð Þ νð Þ≔ 〠
n−1

j=1

−1ð Þn−jaj
Γ λ − j + 1ð Þ T − νð Þλ−j

+ 1
Γ λð Þ

ðT
ν

s − νð Þλ−1 f s, u sð Þð Þds:
ð30Þ

Since we have Au ∈ E for all u ∈ E and

Au0ð Þ νð Þ − u0 νð Þj j
e K+δð Þ T−νð Þ < +∞,∀u0 ∈ E, ν ∈ 0, T½ �, ð31Þ

so that it is clear that dðAu0, u0Þ <∞. Note also that we
have dðu0, uÞ <∞, ∀u ∈ E, and then fu ∈ E : dðu0, uÞ<∞g
= E:

In addition, for any u1, u2 ∈ E, we get

Au1ð Þ νð Þ − Au2ð Þ νð Þj j = 1
Γ λð Þ

ðT
ν

s − νð Þλ−1 f s, u1 sð Þð Þ − f s, u2 sð Þð½ �ds
����

����
≤

K
Γ λð Þ

ðT
ν

s − νð Þλ−1 u1 sð Þ − u2 sð Þj jds

≤
K Tð Þλ−1d u1, u2ð Þ

Γ λð Þ ψ νð Þ e
K+δð Þ T−νð Þ

K + δ
:

ð32Þ

Then, (using 0 < c < 1)

d Au1,Au2ð Þ ≤ KTλ−1

Γ λð Þ K + δð Þ d u1, u2ð Þ ≤ cd u1, u2ð Þ, ð33Þ

which proves that the operator A is strictly contractive. Fol-
lowing the same way as in the proof of Theorem 5 in [22],
we have

x νð Þ − Axð Þ νð Þj j ≤ 1
Γ λð Þ

ðT
ν

s − νð Þλ−1ϵψ sð Þds

≤
ϵ

Γ λ + 1ð Þψ νð Þ T − νð Þλ:
ð34Þ

Then,

d x,Axð Þ ≤ ϵ

Γ λ + 1ð ÞT
λ: ð35Þ

Now, there is a solution x∗ (due to Theorem 4) with

d x∗, xð Þ ≤ 1
1 − cð Þ

ϵTλ

Γ λ + 1ð Þ , ð36Þ

and then

x∗ νð Þ − x νð Þj j ≤ Tλe K+δð ÞT

1 − cð ÞΓ λ + 1ð Þ ϵψ νð Þ, ð37Þ

for all ν ∈ ½0, T�:
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Remark 8. Notice that in the current work, we do not assume
any condition on K unlike the case of Theorem 7in [22]
where the condition 0 < KLM < 1 is a basic condition.

4. Examples

The following examples are used to illustrate our findings.

Example 9. Consider equation (10) for λ = 0:5, T = 10, and
f ðν, xÞ = ν2 cos ðxÞ.

We have

ν2 cos x1ð Þ − ν2 cos x2ð Þ�� �� ≤ 100 x1 − x2j j, ∀ ν ∈ 0, 10½ �, x1, x2 ∈ℝ:

ð38Þ

Then, K = 100.
Suppose that x ∈ Cð½0, 10�,ℝÞ satisfies I0:510 xð10Þ = 0 and

D0:5
10 x

� �
νð Þ − ν2 cos x νð Þð Þ�� �� ≤ 1, ð39Þ

for all ν ∈ ½0, 10�.
Here, ϵ = 1 and ψðνÞ = 1. Using Theorem 5, there is a

continuous function x0 such that

x0 νð Þ = 1
Γ 0:5ð Þ

ð10
ν

s − νð Þ−0:5s2 cos x0 sð Þð Þds,

x νð Þ − x0 νð Þj j ≤ 11E0:5 11ð Þ
10Γ 1:5ð Þ , ∀ν ∈ 0, 10½ �:

ð40Þ

Example 10. Consider equation (10) for λ = 1:5, T = 5, and
f ðν, xÞ = ν3 sin ðxÞ.

We have

ν3x1 − ν3x2
�� �� ≤ 125 x1 − x2j j, ∀ν ∈ 0, 5½ �, x1, x2 ∈ℝ:

ð41Þ

Then, K = 125.
Suppose that x ∈ Cð½0, 5�,ℝÞ satisfies ðD0:5

5 xÞð5Þ = a ∈ℝ,
I0:55 xð5Þ = 0 and

D1:5
5 x

� �
νð Þ − ν3 sin x νð Þð Þ�� �� ≤ 1, ð42Þ

for all ν ∈ ½0, 5�.
Here, ϵ = 1 and ψðνÞ = 1. Using Theorem 7, there is a

continuous function x0 such that

x0 νð Þ = −
a

Γ 1:5ð Þ 5 − νð Þ0:5 + 1
Γ 1:5ð Þ

ð5
ν

s − νð Þ0:5s3 sin x0 sð Þð Þds,

x νð Þ − x0 νð Þj j ≤ 51:5e1600

Γ 2:5ð Þ 1 − 125
ffiffiffi
5

p
/320Γ 1:5ð Þ

� � , ∀ν ∈ 0, 5½ �:

ð43Þ

5. Conclusion

A version of Banach’s contraction principle has been suc-
cessfully utilized in this work to study the UHR stability of
nonlinear differential equations with Riemann-Liouville
fractional derivatives. In this way, under specific assump-
tions and conditions, the stability results have been obtained.
In our analysis, we get rid of some constrains that have been
posed on the lipschitz constants in some interesting recent
related works. Two illustrative examples are given at the
end to apply our theoretical results and show its validity.
Potential future directions of our work can be dedicated to
applying our obtained results to some practical applications.
Some possible extensions and generalizations of our
obtained results can also be our future investigations.
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