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Motivated by the wide-spread of both integer and fractional third-order dispersive Korteweg-de Vries (KdV) equations in
explaining many nonlinear phenomena in a plasma and many other fluid models, thus, in this article, we constructed a system
for calculating an analytical solution to a fractional fuzzy third-order dispersive KdV problems. We implemented the Shehu
transformation and the iterative transformation technique under the Atangana-Baleanu fractional derivative. The achieved
series result was contacted and determined the analytic value of the suggested models. For the confirmation of our system,
three various problems have been represented, and the fuzzy type solution was determined. The fuzzy results of upper and
lower section of all three problems are simulate applying two different fractional orders among zero and one. Because it
globalises the dynamic properties of the specified equation, it delivers all forms of fuzzy solutions occurring at any fractional
order among zero and one. The present results can help many researchers to explain the nonlinear phenomena that can create
and propagate in several plasma models.

1. Introduction

In recent years, researchers and scientists have been par-
ticularly interested in fractional calculus (FC), which
encompasses fractional-order integrals and derivatives. FC
offers a wide range of applications, with accurate and pre-
cise solutions in various modern biological and physical
phenomena. The integral differential operators in frac-
tional differential calculus have a higher freedom of
degree. The solution studies have given a keen attraction
in this area, and papers, monographs, and book, among
other things, have been published in current history, con-
taining numerous inquiries into various aspects such as
existing theories and analytic conclusions [1–7]. FC can
be used to a variety of fields in both practical and pure

mathematics. Physical models of real-world phenomenon
usually contain considerable uncertainty due to a variety
of variables. Fuzzy sets also actually be a good method
for modelling the unpredictability brought up by impreci-
sion and vagueness. We implement it here to areas where
needs to be explained ambiguity, such as medical, ecologic,
social, financial, and sciences [8–15]. In 1965, Zadeh pro-
posed the set theory of fuzzy to investigate these issues
[16]. The fuzzy set approach has been applied in other
areas, i.e., topology, control system, fuzzy automata,
fixed-point theories, etc. Chang and Zadeh expanded on
the fuzzy set notion by introducing fuzzy control and
mapping [17]. Several academics are generalized the con-
cept of fuzzy mapping and control to develop basic fuzzy
calculus [18–20]. In the last many centuries, fractional
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fuzzy integral and differential equations have attracted
much attention from researchers in applied sciences. The
fundamental concept of integral fuzzy equations was first
described by Dubois and Prade [21]. However, in situa-
tions where information is ambiguous and inaccurate, the
parameters are expressed by fuzzy numbers rather than
crisp numbers. Fractional fuzzy integral and differential
equations can be used to simulate these types of problems.
The mathematical modelling of particular real-world
models maintaining uncertainty in data has given rise to
fuzzy PDEs. PDEs have important implementations in sev-
eral areas of engineering, plasma physics, and many sci-
ence branches, as we will observe in future. Because
numerous schemes in mechanical and machines and aero-
space technology areas of study are applicable to heat, heat
transfer is an important area of aerospace and mechanical
engineering investigation [22]. As a result, numerous
scholars investigated the solution of fuzzy FDEs using
these models [23]. The researchers [24] used an effective
mathematical technique to analyze analytical solutions to
nonlinear Lane-Emden models and an efficient numerical
method for the fractional advection dispersion model and
vibration equations that arise in porous media. Many frac-
tional PDEs applying in hydro-magnetic waves in a cold
plasma, ion-acoustic waves in plasma, and magneto acous-
tic wave numerical simulation and analytical approaches
are used [25, 26]. Nonlinear effects occur in many applied
science areas, such as plasma physics, mathematical biol-
ogy, nonlinear optics, quantum mechanics, chemical kinet-
ics, solid-state physics, and fluid dynamics [27–34]. These
processes are modeled on nonlinear partial differential
equations (PDEs) of a various higher order. PDEs are
commonly used in the description of physical processes.
The nonlinear nature of most of the essential physical sys-
tems is hidden. The exact result of such nonlinear phe-
nomena may not be possible for some physical problems.
For instance in a plasma physics, there are many nonin-
tegrable PDEs that can not support exact analytic solu-
tions such as the integer and fractional damped third-
order KdV-type equations and the damped integer and
fractional fifth-order KdV-type equations (the family of
damped Kawahara equation) and many other equations
related to plasma physics [35–40]. Moreover, in non-
Maxwellian plasma models that have trapped particles fol-
low nonisothermal or Schamel distribution in addition to
the particle kinematic viscosity, in this case, the fluid equa-
tions of the plasma model can be reduced to a nonintegr-
able damped Schamel KdV-Burgers equation [41, 42]. On
the other side, there are other types of nonintegrable PDEs
that can be used for describing modulated envelope struc-
tures in a plasma like a damped integer and fractional
cubic nonlinear Schrödinger-type equations (CNLSE). This
family also does not have exact analytic solutions but can
support some approximate analytical and numerical solu-
tions. Anyway, most nonlinear phenomena that can exist
in plasma physics, nonlinear optics, quantum physics,
etc. can only be investigated using useful techniques to
solve their evolution equations [43–49]. In 1895, Korteweg
and de Vries proposed a KdV model to design Russells

soliton phenomenon, such as small and huge water waves.
Solitons are steady waves of solitary; this implies that these
lone waves are particles. The mathematical model for
exploring dispersive wave phenomena in several research
areas is the KdV equations, such as quantum mechanics,
fluid dynamics, optics, and plasma physics [44, 45].
Fifth-order KdV/Kawahara form equations utilized to ana-
lyze different nonlinear phenomena in particle physics and
in plasma physics [38–40]. It plays a vital function in the
distribution of waves [50]. In their analysis, the KdV form
equation has dispersive terms of the third and fifth-order
relevant to the magneto acoustic wave problem in near-
critical angle propagation that appears to be cool
collision-free plasma and dispersive terms [51]. Numerous
number of researchers used this family of differential
equations to model many nonlinear phenomena that arise
and propagate in various plasma model. For example, El-
Tantawy research group applied the Poincaré-Lighthill-
Kuo (PLK) method for reducing the fluid equation of an
ultracold neutral plasma (UNP) to two-coupled planar
and nonplanar KdV equations for studying the face-to-
face planar and nonplanar soliton collisions and corre-
sponding phase shifts after collisions. Moreover, the
head-on collisions between the two-counterpart KdV and
modified KdV (mKdV) planar solitons were investigated
in different plasma models [52–54]. In addition to, the
planar and nonplanar Gardner equations were used for
modeling the several types of acoustic waves (AWs) in dif-
ferent plasma models [55–58]. All the abovementioned
equations succeeded in giving a good description to many
nonlinear phenomena that arise and propagate within dif-
ferent plasma systems and many other branches of sci-
ence. On the other hand, many researchers tended to
model most of the mysterious phenomena in plasma phys-
ics by describing them using fractional differential equa-
tions such as fractional KdV-type equations and many
related equations in higher order because they give a more
accurate and comprehensive description better than the
integer differential equations [59–61]. As a result, numer-
ous scholars investigated the solution of many fuzzy FDEs
using these models of plasma physics. The researchers
used an effective mathematical technique to analyze ana-
lytical solutions to nonlinear Lane-Emden models and an
efficient numerical method for the fractional advection dis-
persion model and vibration equations that arise in porous
media. Many fractional PDEs applying in hydro-magnetic
waves in a cold plasma, ion-acoustic waves in plasma,
and magneto acoustic wave numerical simulation and ana-
lytical approaches are used. Which as innovation is con-
cerned, we suggest an initial value solitary wave solutions
for the KdV equation under the fuzzy Caputo fractional
operator. Because of the fuzzy number, we use an uniden-
tified quantity’s fuzziness and initial condition to estimate
its result in fuzzy type with two section. Many researchers
have been working on integer and fractional order diffu-
sion equations, as well as the fuzzy heat equation. For
the study of the given equation with various external
source components, we examine both fuzziness and frac-
tional order [62–66].
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2. Basic Concept of Fuzzy and
Fractional Calculus

This section demonstrates various key components related
to fractional calculus and fuzzy sets, as well as some major
research on the Shehu transformation.

Definition 1. We assume that φ : R↦ ½0, 1� is a fuzzy num-
ber; then, it is identified to be fuzzy set if it maintains the
successive hypotheses [67–70]:

(1) φ is regular (in several η0 ∈R ; φð℘0Þ = 1)
(2) φ is semicontinuous upper

(3) φð℘1ω + ð1 − ωÞ℘2Þ ≥ ðφð℘1Þ∧φð℘2ÞÞ∀ω ∈ ½0, 1�, ℘1,
℘2 ∈R,, i.e., φ is convex

(4) clf℘∈R, φð℘Þ > 0g is compact

Definition 2. Assume that a set of fuzzy φ is ℓ-level set dis-
cussed [67–70].

φ½ �ℓ = Φ ∈R : φ Φð Þ ≥ 1f g, ð1Þ

where ℓ ∈ ½0, 1� and Φ ∈R.

Definition 3. The parameter version a set of fuzzy is desig-
nated by ½φ%ðℓÞ, �φðℓÞ� so that ℓ ∈ ½0, 1� gratify the subse-
quent presumption [67–70]:

(1) φðℓÞ is left continuous, nondecreasing, left continu-
ous at 0, and over bounded ð0, 1�

(2) φðℓÞ is right continuous, nonincreasing, right contin-
uous at 0, and over bounded ð0, 1�

(3) φðℓÞ ≤ �φðℓÞ

Definition 4. For ℓ ∈ ½0, 1� and scalar of Y , assume they are
two fuzzy sets [67–70] eν1 = ðν1, μ1Þ, eν2 = ðν2 , μ2Þ; then, the
subtraction, multiplication, and addition, respectively, are
stated as follows:

(1) eν1 ⊖ eν2 = ðν1ð%ℓÞ − ν2ðℓÞ, ν1ð%ℓÞ − ν2ðℓÞÞ
(2) eν1 ⊕ eν2 = ðν1ð%ℓÞ + ν2ðℓÞ, ν1ðℓÞ +%ν2ðℓÞÞ
(3) Y ⊙ eν1 = fðY%ν1 , Yν1ÞY ≥ 0, ð%Yν1, Yν1ÞY < 0

Definition 5. Assume a mapping of fuzzy Θ : ~E × ~E↦R

have two fuzzy sets [67–70] eν1 = ð%ν1 , ν1Þ, eν2 = ð%ν2 , ν2Þ;
then, Θ-distance among eν1 and eν2 is define as follows:
Θ eν1, eν2ð Þ = sup

ℓ∈ 0,1½ �
max ν1 ℓð Þ − ν2 ℓð Þ

��� ���, ν1 ℓð Þ − ν2 ℓð Þj j
n oh i

:

ð2Þ

Definition 6. Suppose that E : ðb1, b2Þ↦ ~E and %η0 ∈ ðb1,
b2Þ:. Then, E is defined as a heavily generalized differentiable
variable at η0 if E%′ðη0Þ ∈ ~E exists such that [67–70]:

(i) E′ðη0Þ = lim
h↦0

ðEðη0 + ℏÞ ⊖ gHE%ðη0Þ/ℏÞ = lim
ℏ↦0

ðE%ðη0
Þ ⊖ gHEðη0 − ℏ%Þ/ℏÞ

(ii) E′ðη0Þ = lim
ℏ↦0

ðEðη0Þ ⊖ gHE%ðη0 + ℏÞ/−ℏÞ = lim
ℏ↦0

ðE%ð
η0 − ℏÞ ⊖ gHE%ðη0Þ/−ℏÞ

Definition 7. Suppose a mapping of fuzzy Ω : R↦ ~E, if for
any ϵ > 0∃δ > 0 and fixed values of ν0 ∈ ½a1, a2�, we have
[67–70]:

Θ E νð Þ, E ν0ð Þð Þ < ϵ ; whenever ν − ν0j j < δ, ð3Þ

then E is known to be continuous.

Theorem 8. Suppose that fuzzy value term E : R↦ ~E such
that Eðη0 ; ℓÞ = ½Eðη0 ; ℓÞ, �Eðη0 ; ℓÞ� and ℓ ∈ ½0, 1�: Then
[67–70]:

(1) ðη0 ; ℓÞ and Eðη0 ; ℓÞ are differentiable, if E is a (21)-
differentiable, and

E′ η0ð Þ
h iℓ

= E ′ η0 ; ℓð Þ, �E′ η0 ; ℓð Þ
h i

: ð4Þ

(2) Eðη0 ; ℓÞ and �Eðη0 ; ℓÞ are differentiable, if E is a (23)-
differentiable, and

E′ η0ð Þ
h iℓ

= �E′ η0 ; ℓð Þ, E ′ η0 ; ℓð Þ
h i

: ð5Þ

Definition 9. Suppose that a mapping of fuzzy ΦðℓÞ
gH =ΦðℓÞ

∈ℂF ½0, s� ∩ LF ½0, s�: Then, the fuzzy gH-fractional differen-
tiability of Caputo fuzzy number mappings Φ is expressed as
[67–70]

gHDνΦð Þ Ið Þ = J ℓ−ν
a1

⊙ Φ ℓð Þ
� �

ηð Þ

= 1
Γ ℓ − νð Þ ⊙

ðI
a1

I1−℘ð Þℓ−ν−1 ⊙Φ ℓð Þ ℘ð Þd℘, ν ∈ ℓ − 1, ℓð �, ℓ ∈ℕ,I > a1:

ð6Þ

Consequently, the parameter varieties of Φ = ½ΦℓðIÞ,
�ΦℓðI%Þ�, ℓ ∈ ½0, 1� and I10 ∈ ð0, sÞ, and CFD in the sense
of fuzzy are defined as

Dν
ið Þ−gHΦ I10ð Þ

h i
ℓ
= Dν

ið Þ−gHΦ I10ð Þ,Dθ
ið Þ−gH �Φ I10ð Þ

h i
, ℓ ∈ 0, 1½ �:

ð7Þ
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where ℓ = ½ℓ�:

Dν
ið Þ−gHΦ I10ð Þ

h i
= 1
Γ ℓ − νð Þ

ðI
0
I − xð Þℓ−ν−1 dℓ

dxℓ Φ ið Þ−gH xð Þdx
" #

I=I10

:

Dθ
ið Þ−gH �Φ I10ð Þ

h i
= 1
Γ ℓ − νð Þ

ðI
0
I − xð Þℓ−ν−1 dℓ

dxℓ
�Φ ið Þ−gH xð Þdx

" #
I=I10

:

ð8Þ

Definition 10. Suppose that a mapping of fuzzy ~ΦðIÞ ∈ eℍ1

ð0, TÞ and ν ∈ ½0, 1�, then the fuzzy gH-fractional differen-
tiability Atangana-Baleanu of fuzzy number mappings is
defined as

gHDνΦð Þ Ið Þ = B νð Þ
1 − ν

⊙
ðt1
0
Φ ′ xð Þ ⊙ Eν

−ν I − xð Þν
1 − ν

� �
dx

� �
:

ð9Þ

As a result, the parametric approach is used of Φ = ½
%Φ ℓðIÞ, �Φℓð%IÞ�, ℓ ∈ ½0, 1�, and I0 ∈ ð0, sÞ is defined as

ABCDν
ið Þ−gH ~Φ I0 ; ℓð Þ

h i
= ABCDν

ið Þ−gHΦ I0 ; ℓð Þ, ABCDθ
ið Þ−gHΦ I0 ; ℓð Þ

h i
, ℓ ∈ 0, 1½ �:

ð10Þ

where

ABCDθ
ið Þ−gHΦ I0 ; ℓð Þ = B νð Þ

1 − ν

ðt1
0
Φ ið Þ−gH′ xð ÞEθ

−ν I − xð Þθ
1 − ν

" #
dx

" #
t1=I0

,

ABCDθ
ið Þ−gH �Φ I0 ; ℓð Þ = B νð Þ

1 − ν

ðI
0
�Φ ið Þ−gH′ xð ÞEθ

−ν I − xð Þθ
1 − ν

" #
dx

" #
I=I0

,

ð11Þ

where BðνÞ represents a normalised function with the value
of 1 when ν is supposed to be zero and one.

Definition 11. Consider a continuous real-valued mapping Ψ
and there is an improper fuzzy Riemann-integrable mapping
exp ð−ω/σÞ ⊙ ~ΦðIÞ on ½0, +∞Þ. Then, the integral Ð +∞0 exp
ð−ω/σÞ ⊙ ~ΦðIÞdI is identified to be the fuzzy Shehu trans-
form, and it is stated over the set of mappings [67–70]:

S = ~Φ gð Þ: ∃A , p1, p2 > 0, ~Φ Ið Þ�� �� <A exp Ij j
ζ j

 !
, if I ∈ −1ð ÞJ × 0,+∞½ Þ

( )
,

ð12Þ

as

S ~Φ Ið Þ� �
= S ω, σð Þ =

ð+∞
0

exp −ω
σ

I
� �

⊙ ~Φ Ið ÞdI, ω, σ > 0:

ð13Þ

Remark 12. In (34), ~Φ completes the hypothesis of the reduc-
ing diameter Φ and tiameter �Φ of a fuzzy mapping Φ. If σ
= 1, then fuzzy the Shehu transformation is red ∗ Laplace
transformation [67–70].ð+∞

0
exp −ω

σ
I

� �
⊙ ~Φ Ið ÞdI

=
ð+∞
0

exp −ω
σ

I
� �

Φ I ; ℓð ÞdI,
ð+∞
0

exp −ω
σ

I
� �

�Φ I ; ℓð ÞdI
	 


:

ð14Þ

Moreover, consider Shehu transformation of classical
form [67–70], we get:

S Φ I ; ℓð Þ½ � =
ð+∞
0

exp −ω
σ

I
� �

Φ I ; ℓð ÞdI, ð15Þ

S �Φ I ; ℓð Þ� �
=
ð+∞
0

exp −ω
σ

I
� �

�Φ I ; ℓð ÞdI: ð16Þ

The aforementioned expressions can then be expressed as

S ~Φ Ið Þ� �
= S Φ I ; ℓð Þ½ �, S �Φ I ; ℓð Þ� �� �

= S ω, σð Þ, �S ω, σð Þ� �
:

ð17Þ

Definition 13.Assume that it is an integral fuzzy mapping value
c
gHDν

I
~ΦðIÞ, and ΦðIÞ is the primitive of c

gHDν
I
~ΦðIÞ on ½0

, +∞Þ; then, the Caputo fractional order ν is shown as [67–70]

S c
gHDν

I
~Φ Ið Þ

h i
= ω

σ

� �ν
⊙ S ~Φ Ið Þ� �

⊖ 〠
ℓ−1

κ=0

ω

σ

� �ν−κ−1
⊙ ~Φ

κð Þ 0ð Þ, ν ∈ ℓ − 1, ℓð �,

ω

σ

� �ν
⊙ S ~Φ Ið Þ� �

⊖ 〠
ℓ−1

κ=0

ω

σ

� �ν−κ−1
⊙ ~f

κð Þ 0ð Þ

= ω

σ

� �ν
S Φ I ; ℓð Þ½ � − 〠

ℓ−1

κ=0

ω

σ

� �ν−κ−1
⊙Φ κð Þ 0 ; ℓð Þ,

 

� ω

σ

� �ν
S �Φ I ; ℓð Þ� �

− 〠
ℓ−1

κ=0

ω

σ

� �ν−κ−1
�Φ κð Þ 0 ; ℓð Þ

!
:

ð18Þ

Bokhari et al. described the fractional derivative ABC oper-
ator in the sense Shehu transform. Moreover, we apply the con-
cept of fuzzy fractional derivative of ABC in a Shehu fuzzy
transformation sense as follows.

Definition 14. Consider Φ ∈ℂF ½0, s� ∩ LF ½0, s� such that ~Φð
IÞ = ½ΦðI, ℓÞ, �ΦðI, ℓÞ�, ℓ ∈ ½0, 1� ; then, the fuzzy of Shehu
transformation of ABC of order ν ∈ ½0, 1� is describe given
as:

S gHDν
I
~Φ Ið Þ� �

= B νð Þ
1 − ν + ν σ/ωð Þν ⊙ ~V σ, ωð Þ ⊖ σ

ω
~Φ 0ð Þ

� �
:

ð19Þ
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Moreover, applying the fact of Salahshour et al. [67],
we get

3. Main Result

Consider the general fuzzy fractional partial differential
equation

S ABCD℘
I
~Φ ζ, ξ,Ið Þ� �

= S D2
ζ
~Φ ζ, ξ,Ið Þ +D2

ξ
~Φ ζ, ξ,Ið Þ + ~k rð ÞF ζ, ξ,Ið Þ

h i
,

ð21Þ

where ℘∈ð0, 1�; therefore, the Shehu transform of (21) is

B ℘ð Þ
1−℘+℘ σ/ωð Þ℘ S

~Φ ζ, ξ,Ið Þ� �
−

B ℘ð Þ
1−℘+℘ σ/ωð Þ℘

v
ω

� �
~Φ ζ, ξ,Ið Þ

= S D2
ζ
~Φ ζ, ξ,Ið Þ +D2

ξ
~Φ ζ, ξ,Ið Þ + ~k rð ÞF ζ, ξ,Ið Þ

h i
,

ð22Þ

applying the initial condition, we achieved as

S ~Φ ζ, ξ,Ið Þ� �
= g ζ, ξð Þ

ω
+ 1−℘+℘ σ/ωð Þ℘

B ℘ð Þ S

� D2
ζ
~Φ ζ, ξ,Ið Þ +D2

ξ
~Φ ζ, ξ,Ið Þ + ~k rð ÞF ζ, ξ,Ið Þ

h i
:

ð23Þ

Decompose the result as ~Φðζ, ξ,IÞ =∑∞
n=0 ~Φnðζ, ξ,IÞ;

then, (23) applies

S 〠
∞

n=0
~Φn ζ, ξ,Ið Þ = g ζ, ξð Þ

ω
+ 1−℘+℘ σ/ωð Þ℘

B ℘ð Þ S

� D2
ζ 〠

∞

n=0
~Φn ζ, ξ,Ið Þ +D2

ξ 〠
∞

n=0
~Φn ζ, ξ,Ið Þ + ~k rð ÞF ζ, ξ,Ið Þ

" #
:

ð24Þ

Parts of the result can be taken as a comparison

S ~Φ0 ζ, ξ,Ið Þ� �
= g ζ, ξð Þ

ω
+ 1−℘+℘ σ/ωð Þ℘

B ℘ð Þ S ~k rð ÞF ζ, ξ,Ið Þ
h i

,

S ~Φ1 ζ, ξ,Ið Þ� �
= 1−℘+℘ σ/ωð Þ℘

B ℘ð Þ S D2
ζ
~Φ0 ζ, ξ,Ið Þ +D2

ξ
~Φ0 ζ, ξ,Ið Þ� �

,

S ~Φ2 ζ, ξ,Ið Þ� �
= 1−℘+℘ σ/ωð Þ℘

B ℘ð Þ S D2
ζ
~Φ1 ζ, ξ,Ið Þ +D2

ξ
~Φ1 ζ, ξ,Ið Þ� �

,

⋮

S ~Φn+1 ζ, ξ,Ið Þ� �
= 1−℘+℘ σ/ωð Þ℘

B ℘ð Þ S D2
ζ
~Φn ζ, ξ,Ið Þ +D2

ξ
~Φn ζ, ξ,Ið Þ� �

:

ð25Þ

Taking the inverse Shehu transform, we obtain

Φ0 ζ, ξ,Ið Þ = g ζ, ξð Þ + S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S k rð ÞF ζ, ξ,Ið Þ½ �

� �
,

�Φ0 ζ, ξ,Ið Þ = g ζ, ξð Þ + S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S �k rð ÞF ζ, ξ,Ið Þ� �� �

,

Φ1 ζ, ξ,Ið Þ = S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S D2

ζΦ0 ζ, ξ,Ið Þ +D2
ξΦ0 ζ, ξ,Ið Þ� �� �

,

�Φ1 ζ, ξ,Ið Þ = S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S D2

ζ
�Φ0 ζ, ξ,Ið Þ +D2

ξ
�Φ0 ζ, ξ,Ið Þ� �� �

,

Φ2 ζ, ξ,Ið Þ = S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S D2

ζΦ1 ζ, ξ,Ið Þ +D2
ξΦ1 ζ, ξ,Ið Þ� �� �

,

�Φ2 ζ, ξ,Ið Þ = S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S D2

ζ
�Φ1 ζ, ξ,Ið Þ +D2

ξ
�Φ1 ζ, ξ,Ið Þ� �� �

,

⋮

Φn+1 ζ, ξ,Ið Þ = S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S D2

ζΦn ζ, ξ,Ið Þ +D2
ξΦn ζ, ξ,Ið Þ� �� �

,

�Φn+1 ζ, ξ,Ið Þ = S−1 1−℘+℘ σ/ωð Þ℘
B ℘ð Þ S D2

ζ
�Φn ζ, ξ,Ið Þ +D2

ξ
�Φn ζ, ξ,Ið Þ� �� �

:

ð26Þ

Thus, the solution becomes

Φ ζ, ξ,Ið Þ =Φ0 ζ, ξ,Ið Þ +Φ1 ζ, ξ,Ið Þ +Φ2 ζ, ξ,Ið Þ+⋯,
ð27Þ

B νð Þ
1 − ν + ν σ/~ωð Þν ⊙ ~V σ, ωð Þ ⊖ ω

σ
~Φ 0ð Þ

� �
= B νð Þ

1 − ν + ν σ/~ωð Þν V σ, ω ; ℓð Þ − σ

ω
Φ 0 ; ℓð Þ

� �
, B νð Þ
1 − ν + ν σ/ζð Þθ

�V σ, ω ; ℓð Þ − σ

~ω
�Φ 0 ; ℓð Þ

� � !
: ð20Þ
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�Φ ζ, ξ,Ið Þ = �Φ0 ζ, ξ,Ið Þ + �Φ1 ζ, ξ,Ið Þ + �Φ2 ζ, ξ,Ið Þ+⋯:

ð28Þ

Equation (27) is the series type solution.

4. Numerical Problems

Problem 15. Consider the fractional fuzzy KdV equation is
given as

ABCD℘
I
~Φ ζ,Ið Þ + 2 ∂

~Φ ζ,Ið Þ
∂ζ

+ ∂3 ~Φ ζ, τð Þ
∂ζ3

= 0, 0 < ℘ ≤ 1,

ð29Þ

with the initial condition

~Φ ζ, 0ð Þ = ~k sin ζ: ð30Þ

Applying the proposed method of Equation (29), we get

Φ0 ζ,Ið Þ = k rð Þ sin ζ,
�Φ0 ζ,Ið Þ = �k rð Þ sin ζ,

Φ1 ζ,Ið Þ = −k rð Þ cos ζ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

,

�Φ1 ζ,Ið Þ = −�k rð Þ cos ζ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

,

Φ2 ζ,Ið Þ = −k rð Þ sin ζ
1

B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

,

�Φ2 ζ,Ið Þ = −�k rð Þ sin ζ
1

B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

,

Φ3 ζ,Ið Þ = k rð Þ cos ζ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
,

�Φ3 ζ,Ið Þ = �k rð Þ cos ζ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
:

ð31Þ

Using Equation (27) to achieve the series form solution,
we get

~Φ ζ,Ið Þ = ~Φ0 ζ,Ið Þ + ~Φ1 ζ,Ið Þ + ~Φ2 ζ,Ið Þ + ~Φ3 ζ,Ið Þ + ~Φ4 ζ,Ið Þ+⋯:

ð32Þ

In lower and upper portion types can be written as

Φ ζ,Ið Þ =Φ0 ζ,Ið Þ +Φ1 ζ,Ið Þ +Φ2 ζ,Ið Þ
+Φ3 ζ,Ið Þ +Φ4 ζ,Ið Þ+⋯,

�Φ ζ,Ið Þ = �Φ0 ζ,Ið Þ + �Φ1 ζ,Ið Þ + �Φ2 ζ,Ið Þ
+ �Φ3 ζ,Ið Þ + �Φ4 ζ,Ið Þ+⋯,

Φ ζ,Ið Þ = k rð Þ sin ζ−k rð Þ cos ζ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

− k rð Þ sin ζ
1

B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �
+ k rð Þ cos ζ 1

B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
+⋯,

�Φ ζ,Ið Þ = �k rð Þ sin ζ−�k rð Þ cos ζ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

− �k rð Þ sin ζ
1

B2 ℘ð Þ
℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

+ �k rð Þ cos ζ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
+⋯:

ð33Þ

The exact result is

~Φ ζ,Ið Þ = ~k sin ζ +Ið Þ: ð34Þ

Figure 1 shows that the accuracy of this method by lower
and upper branches of fuzzy solution of problem 15 link with
the fuzzy Shehu transformation and Atangana-Baleanu oper-
ator is shown in this article. Figure 2 shows the two-
dimensional upper and lower branch plots. The behaviour
defines the variance in the mappingsg%Φðζ,IÞ on the space
coordinate ξ with the consider of I and the unpredictability
parameters rε½0, 1�. The graph shows that, as the passage of
time, the mappings ~Φðζ,IÞ will become much intricate.

Problem 16. Consider the fractional fuzzy KdV equation is
given as

ABCD℘
I
~Φ ζ, ξ,Ið Þ + 2 ∂

3 ~Φ ζ, ξ, τð Þ
∂ζ3

+ ∂3 ~Φ ζ, ξ, τð Þ
∂ξ3

= 0, 0 < ℘ ≤ 1,

ð35Þ

with the initial condition

~Φ ζ, ξ, 0ð Þ = ~k cos ζ + ξð Þ: ð36Þ

Applying the proposed method of Equation (35), we
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Figure 1: The first graph shows the approximate solution of fuzzy upper and lower portions, and the second figure is the various fractional
order of ℘.
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Figure 3: The first graph shows the approximate solution of fuzzy upper and lower portions, and the second figure is the various fractional
order of ℘.
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get

Φ0 ζ, ξ,Ið Þ = k rð Þ cos ζ + ξð Þ,
�Φ0 ζ, ξ,Ið Þ = �k rð Þ cos ζ + ξð Þ,

Φ1 ζ, ξ,Ið Þ = −2k rð Þ sin ζ+ξð Þ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

,

�Φ1 ζ, ξ,Ið Þ = −2�k rð Þ sin ζ+ξð Þ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

,

Φ2 ζ, ξ,Ið Þ = −4k rð Þ cos ζ + ξð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

,

�Φ2 ζ, ξ,Ið Þ = −4�k rð Þ cos ζ + ξð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

,

Φ3 ζ, ξ,Ið Þ = 8k rð Þ sin ζ + ξð Þ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
,

�Φ3 ζ, ξ,Ið Þ = 8�k rð Þ sin ζ + ξð Þ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
:

ð37Þ

Using Equation (27) to achieve the series form solu-
tion, we get

~Φ ζ, ξ,Ið Þ = ~Φ0 ζ, ξ,Ið Þ + ~Φ1 ζ, ξ,Ið Þ + ~Φ2 ζ, ξ,Ið Þ
+ ~Φ3 ζ, ξ,Ið Þ + ~Φ4 ζ, ξ,Ið Þ+⋯:

ð38Þ

In lower and upper portion types can be written as

Φ ζ, ξ,Ið Þ =Φ0 ζ, ξ,Ið Þ +Φ1 ζ, ξ,Ið Þ +Φ2 ζ, ξ,Ið Þ
+Φ3 ζ, ξ,Ið Þ +Φ4 ζ, ξ,Ið Þ+⋯,

�Φ ζ, ξ,Ið Þ = �Φ0 ζ, ξ,Ið Þ + �Φ1 ζ, ξ,Ið Þ + �Φ2 ζ, ξ,Ið Þ
+ �Φ3 ζ, ξ,Ið Þ + �Φ4 ζ, ξ,Ið Þ+⋯:

Φ ζ, ξ,Ið Þ = k rð Þ cos ζ + ξð Þ − 2k rð Þ sin ζ+ξð Þ 1
B ℘ð Þ

� ℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

− 4k rð Þ cos ζ + ξð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �
+ 8k rð Þ sin ζ + ξð Þ 1

B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
⋯,

�Φ ζ, ξ,Ið Þ = �k rð Þ cos ζ + ξð Þ − 2�k rð Þ sin ζ+ξð Þ 1
B ℘ð Þ

� ℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

− 4�k rð Þ cos ζ + ξð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �
+ 8�k rð Þ sin ζ + ξð Þ 1

B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
⋯:

ð39Þ

The exact result is

~Φ ζ,Ið Þ = ~k cos ζ + ξ + 2Ið Þ: ð40Þ

Figures 3 and 4 show that the accuracy of this method
by upper and lower branches of fuzzy solutions of prob-
lem 16 link with the fuzzy Shehu transformation and
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Figure 4: The approximate solution graph of fuzzy upper and lower branches and the 2nd figure is the various fractional order of ℘.
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Atangana-Baleanu operator is represented in this article.
Figure 5 the approximate solution graph of fuzzy upper
and lower branches and the 2nd figure is the various frac-
tional order of ℘ with respect to time. The behaviour
defines the variance in the mappings ~Φðζ,IÞ on the space
coordinate ξ with the consider of I and the unpredictabil-
ity parameters rε½0, 1�. The graph shows that, as the pas-
sage of time, the mappings ~Φðζ,IÞ will become much
intricate.

Problem 17. Consider the fractional fuzzy KdV equation is
given as

ABCD℘
I
~Φ ζ,Ið Þ + ~Φ ζ,Ið Þ ∂

~Φ ζ, τð Þ
∂ζ

+ ∂3 ~Φ ζ, τð Þ
∂ζ3

= 0, 0 < ℘ ≤ 1,

ð41Þ

with the initial condition

~Φ ζ, 0ð Þ = ~k 1 − ζð Þ: ð42Þ

Applying the proposed method of Equation (42), we get

Φ0 ζ,Ið Þ = k rð Þ 1 − ζð Þ,
�Φ0 ζ,Ið Þ = �k rð Þ 1 − ζð Þ,

Φ1 ζ,Ið Þ = k rð Þ 1−ζð Þ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

,

�Φ1 ζ,Ið Þ = �k rð Þ 1−ζð Þ 1
B ℘ð Þ

℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

,

Φ2 ζ,Ið Þ = 2k rð Þ 1 − ζð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

,

�Φ2 ζ,Ið Þ = 2�k rð Þ 1 − ζð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �

,

Φ3 ζ,Ið Þ = 6k rð Þ 1 − ζð Þ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
,

�Φ3 ζ,Ið Þ = 6�k rð Þ 1 − ζð Þ 1
B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
:

ð43Þ

Using Equation (27) to achieve the series form solution,
we get

~Φ ζ,Ið Þ = ~Φ0 ζ,Ið Þ + ~Φ1 ζ,Ið Þ + ~Φ2 ζ,Ið Þ + ~Φ3 ζ,Ið Þ
+ ~Φ4 ζ,Ið Þ+⋯:

ð44Þ

In lower and upper portion types can be written as

Φ ζ,Ið Þ =Φ0 ζ,Ið Þ +Φ1 ζ,Ið Þ +Φ2 ζ,Ið Þ +Φ3 ζ,Ið Þ
+Φ4 ζ,Ið Þ+⋯,

�Φ ζ,Ið Þ = �Φ0 ζ,Ið Þ + �Φ1 ζ,Ið Þ + �Φ2 ζ,Ið Þ
+ �Φ3 ζ,Ið Þ + �Φ4 ζ,Ið Þ+⋯:

Φ ζ,Ið Þ = k rð Þ 1 − ζð Þ + k rð Þ 1−ζð Þ 1
B ℘ð Þ

� ℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

+ 2k rð Þ 1 − ζð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �
+ k rð Þ cos ζ 1

B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
+⋯,

�Φ ζ,Ið Þ = �k rð Þ 1 − ζð Þ + �k rð Þ 1−ζð Þ 1
B ℘ð Þ

� ℘I℘

Γ ℘+1ð Þ + 1−℘ð Þ
 �

+ 2�k rð Þ 1 − ζð Þ 1
B2 ℘ð Þ

� ℘2I2℘

Γ 2℘+1ð Þ + 2℘ 1−℘ð Þ I℘

Γ ℘+1ð Þ + 1−℘ð Þ2
 �
+ �k rð Þ cos ζ 1

B3 ℘ð Þ

� ℘3I3θ

Γ 3℘+1ð Þ + 3℘2 1−℘ð Þ I2℘

Γ 2℘+1ð Þ + 3℘ 1−℘ð Þ2 Iθ

Γ ℘+1ð Þ

( )
+⋯:

ð45Þ

The exact result is

~Φ ζ,Ið Þ = 1 − ζ

1 −I
: ð46Þ

Figure 6 shows that the accuracy of this method by
upper and lower branches of fuzzy solution of problem 17
link with the fuzzy Shehu transformation and Atangana-
Baleanu operator is represented in this article. Figure 7 the
approximate solution graph of fuzzy upper and lower
branches and the 2nd figure is the various fractional order
of ℘. The behaviour defines the variance in the mappings
~Φðζ,IÞ on the space coordinate ξ with the consider of I
and the unpredictability parameters rε½0, 1�. The graph
shows that, as the passage of time, the mappings ~Φðζ,IÞ will
become much intricate.
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5. Conclusion

In this paper, an analytical result of fuzzy fractional third-
order KdV equations has been successfully developed. The
series form solution of the consider equation in sense of frac-
tional the Atangana-Baleanu fractional derivatives has been
introduced by Shehu transformation along with iterative
method. By multiplying the number of fuzzy, we achieved

the lower and upper portions of the required result. Figures
of the analytical solutions at various noninteger order of the
given models are also provided. Furthermore, the method
used to solve the fuzzy fractional KdV equation in this article
is novel and can be used to all areas of physical and natural
sciences where uncertainty exists in various phenomena
such as quantum mechanics and various theories of orbits
or orbital around the nucleus. As a result, our study will
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Figure 6: The first graph shows the approximate solution of fuzzy upper and lower portions, and the second figure is the various fractional
order of ℘.
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open new doors in the fields of fuzzy fractional calculus
and fuzzy calculus. Moreover, the suggested approach
can be devoted for modeling acoustic waves in different
plasma models by solving many fractional PDEs like frac-
tional Schamel-KdV equation, fractional Schamel KdV-
Burgers equation, fractional modified KdV and extended
KdV equations, Schamel nonlinear Schrödinger equation,
two-and three-dimensional nonlinear Schrödinger equa-
tions, and so on [41, 42].
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