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The absolute value equations (AVEs) are significant nonlinear and non-differentiable problems that arise in the optimization
community. In this article, we provide two new iteration methods for determining AVEs. These two approaches are based on
the fixed point principle and splitting of the coefficient matrix with three extra parameters. The convergence of these
procedures is also presented using some theorems. The validity of our methodologies is demonstrated via numerical examples.

1. Introduction

In the last few decades, the AVE has been identified as a type
of NP-hard and non-differentiable problem, which can be
equivalent to numerous mathematical problems, such as
bimatrix games, linear and quadratic programming, contact
problems, network prices, and network equilibrium prob-
lems; see [1–6] for more details.

We consider the AVE problem of finding an x ∈ Rn such
that

Ax − xj j = b: ð1Þ

Here b ∈ Rn, A ∈ Rn×n and jxj signifies the absolute values
of the components of x ∈ Rn. Note that Eq. (1) is a special
case of the following generalized AVE:

Ax + B xj j = b, ð2Þ

where B ∈ Rn×n was familiarized by Rohn [1] and more stud-
ied in [7–11].

Furthermore, AVEs are equivalently reformulated into
linear complementarity problems (LCPs). These formula-
tions are discussed in [12–14] and the references therein.

Taking the well-known LCP as an example: Let us assume
that the LCP ð f ,MÞ consists of determining y ∈ Rn such that

y ≥ 0, Γ = �My + f
� �

≥ 0, yTΓ = 0, ð3Þ

where f ∈ Rn and �M ∈ Rn×n. The system (3) can be expressed
as AVE

Ax − B xj j = f , ð4Þ

with

x = 1
2 By + fð Þ, ð5Þ

where B = ð �M − IÞ and A = ð �M + IÞ. Meszzadri [15] estab-
lished the equivalence among horizontal LCPs and AVEs.
Furthermore, the unique solvability of system (1) and its
relation to mixed-integer programming and LCP have been
discussed by Prokopyev [16].

Recently, the problem of determining the AVEs has
enticed much consideration and has been studied in the liter-
ature. For instance, Ali et al. [17] introduced the generalized
successive overrelaxation (GSOR) methods to determine
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AVE (1) and provided the necessary conditions for the con-
vergence of the methods. Zhang and Wei [18] introduced a
generalized Newton approach for obtaining (1) and desig-
nated the global and finite convergence with the condition that
½A + I, A − I� is regular. Cruz et al. [19] established an inexact
semi-smooth Newton approach for the AVE (1) and showed
that the approach is globally convergent with the condition if
kA−1k < 1/3. Ke [20] presented the new iteration algorithm
for determining (1) and proved the new convergence condi-
tions under suitable assumptions. Moosaei et al. [21] pre-
sented two approaches for determining the NP-hard AVEs
when the singular values of A exceed 1. Cacceta et al. [22]
investigated the smoothing Newton method for obtaining
(1) and discussed that this method is globally convergent with
condition that kA−1k < 1. Chen et al. [23] discussed the opti-
mal parameter SOR-like iteration technique for Eq. (1). Wu
as well as Li [24] used the shift splitting (SS) technique to
develop an iterative shift splitting technique to find the AVE
(1), and others; see [25–27] and the references therein.

Recent studies have revealed that Li and Dai [28] as well
as Najafi and Edalatpanah [29] provide methods for deter-
mining LCPs utilizing the fixed point principle. The objec-
tive of this study is to apply this approach to AVEs based
on the fixed point principle, and to suggest efficient
approaches for calculating AVE (1). We have made the fol-
lowing contributions in our study:

(i) We divide the A matrix into various parts and then
connect this splitting with the fixed point formula,
which can accelerate the convergence of the pro-
posed iterative procedures.

(ii) We consider the convergent conditions of newly
designed approaches under various new situations.

The analysis is structured as follows. The offered strate-
gies for defining AVE (1) are examined in Section 2. In addi-
tion, the numerical tests are discussed in Section 3, while the
conclusion is presented in Section 4.

2. Suggested Methods

In this part, we propose strategies to determine AVE (1). We
begin by discussing some symbols and auxiliary outcomes.

We illustrate the spectral radius, infinity norm, and tri-
diagonal matrix of A, respectively, as ρðAÞ, kAk∞ and T
diag ðAÞ.

Lemma 1 (see [30]). Suppose u, v be the two vectors ∈Rn.
Then ju − vj ≥ kuj−jvk.

In order to propose and examine the new iteration
methods, the matrix A is divided as follows:

A = NA −MAð Þ, ð6Þ

with

NA =
1
α

αDA − αUA + βU⋆
Að Þ andMA =

1
α

αLA + βU⋆
Að Þ, ð7Þ

where 0 < α, β ≤ 1. Furthermore, DA, UA, U
⋆
A and LA, are the

diagonal, the strictly upper, the transpose of strictly upper and
the strictly lower triangular parts of A, respectively. The AVE
(1) is equivalent to the fixed point problem of solving

x =H xð Þ, ð8Þ

such that

H xð Þ = x − λE Ax − xj j − b½ �, ð9Þ

where 0 < λ ≤ 1 and E ∈ Rn×n is a positive diagonal matrix
(then by choice of E =D−1

A , see [31, 32] for more details). By
utilizing splitting (6), we offer the following two new schemes
to obtain AVEs (see Appendix A):

2.1. Method I.

xm+1 = xm − λE −MAx
m+1 +NAx

m − xmj j + bð Þ� �
:m = 0, 1, 2,⋯,

ð10Þ

2.2. Method II.

xm+1 = xm +D−1
A MAx

m+1 − λE Axm − xmj j − b½ �
−D−1

A MAx
m:m = 0, 1, 2,⋯,

ð11Þ

Now, we study the convergence investigation of the pre-
sented iteration methods.

Theorem 2. Assume that the system (1) is solvable and A =
NA −MA be a splitting of A, then

xm+1 − x⋆ ≤R−1Q
�� ��xm − x⋆

�� ��, ð12Þ

where

R = I − λE MAj j and Q = λE + I − λENAj j: ð13Þ

Moreover, if ρðR−1QÞ < 1, the sequence fxmg designed by
method I will lead to the unique solution x⋆ of the system (1).

Proof. Suppose x⋆ be a solution of system (1). Therefore,

x⋆ = x⋆ − λE −MAx
⋆ +NAx

⋆ − x⋆j j + bð Þ½ �: ð14Þ

After subtracting (14) from (10), we obtain

xm+1 −white x⋆j j = xm − x⋆ − λE −MA xm+1 − x⋆
� ��

+NA xm − x⋆ð Þ − xmj j + x⋆j j�,
xm+1 − x⋆ = xm − x⋆ + λEMA xm+1 − x⋆

� �
− λENA xm − x⋆ð Þ

+ λE xmj j − x⋆j jð Þ,
xm+1 − x⋆ = I − λENAð Þ xm − x⋆ð Þ + λEMA xm+1 − x⋆

� �
+ λE xmj j − x⋆j jð Þ:

ð15Þ
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Considering the absolute values on each side, we have

xm+1 − x⋆
�� �� = I − λENAð Þ xm − x⋆ð Þ + λEMA xm+1 − x⋆

� ���
+ λE xmj j − x⋆j jð Þj,

xm+1 − x⋆
�� �� ≤ I − λENAð Þ xm − x⋆ð Þj j + λE MAj j

� xm+1 − x⋆
�� �� + λE xmj j − x⋆j jj j:

ð16Þ

Using Lemma 1, we get

xm+1 − x⋆
�� �� ≤ I − λENAj j xm − x⋆j j + λE MAj j xm+1 − x⋆

�� ��
+ λE xm − x⋆j j,

xm+1 − x⋆
�� �� − λE MAj j xm+1 − x⋆

�� ��
≤ I − λENAj j xm − x⋆j j + λE xm − x⋆j j,

I − λE MAj jð Þ xm+1 − x⋆
�� �� ≤ λE + I − λENAj jð Þ xm − x⋆j j:

ð17Þ

Since ðI − λEjMAjÞ is invertible. Therefore,
ðI − λEjMAjÞ−1 exists as well as non-negative, we have

xm+1 − x⋆
�� �� ≤ R−1Q xm − x⋆j j, ð18Þ

where

R = I − λE MAj j andQ = λE + I − λENAj j: ð19Þ

Note that the matrix R−1Q is non-negative. Based on [31,
32], if ρðR−1QÞ < 1, then the sequence fxmg designed by
Method I converges to the x⋆ solution of system (1).

Uniqueness: suppose that ��x represents another AVE
solution. Based on the equations

Ax⋆ − x⋆j j = b,
A��x − ��xj j = b,

ð20Þ

presented as

x⋆ = x⋆ − λE −MAx
⋆ +NAx

⋆ − x⋆j j + bð Þ½ �,
��x = ��x − λE −MA

��x +NA
��x − ��xj j + bð Þ½ �,

ð21Þ

we obtain

x⋆ − ��xj j ≤ R−1Q x⋆ − ��xj j: ð22Þ

And since ρðR−1QÞ < 1, we get

x⋆ = ��x: ð23Þ

The proof has been completed.

Theorem 3. Let fxm+1g and fxmg are the sequences gener-
ated by Method II, then

xm+1 − xm
�� �� ≤G−1 J xm − xm−1�� ��, ð24Þ

where

G = I −D−1
A MAj jand J = I + λE − λEA +D−1

A MA

�� ��: ð25Þ

Moreover, if ρðG−1 JÞ < 1, the sequence fxmg designed by
method II will lead to the unique solution x⋆ of the system (1).

Proof. Suppose x⋆ be a solution of system (1). Then

x⋆ = x⋆ +D−1
A MAx

⋆ − λE Ax⋆ − x⋆j j − b½ � −D−1
A MAx

⋆: ð26Þ

After subtracting (26) from (11), we obtain

xm+1 − x⋆ = xm − x⋆ +D−1
A MA xm+1 − x⋆

� �
− λEA xm − x⋆ð Þ

+ λE xmj j − x⋆j jð Þ −D−1
A MA xm − x⋆ð Þ,

ð27Þ

Taking absolute values on both sides and using Lemma
1, we have

xm+1 − x⋆
�� �� ≤ xm − x⋆j j +D−1

A MAj j xm+1 − x⋆
�� ��

− λEA +D−1
A MA

�� �� xm − x⋆j j
+ λE xmj j − x⋆j jj j, ≤ xm − x⋆j j
+D−1

A MAj j xm+1 − x⋆
�� �� − λEA +D−1

A MA

�� ��
� xm − x⋆j j + λE xm − x⋆j j,

xm+1 − x⋆
�� �� ≤ I + λE − λEA +D−1

A MA

�� ��� �
xm − x⋆j j

+D−1
A MAj j xm+1 − x⋆

�� ��,
I −D−1

A MAj j� �
xm+1 − x⋆
�� ��

≤ I + λE − λEA +D−1
A MA

�� ��� �
xm − x⋆j j:

ð28Þ

Table 1: Convergence conditions of Theorem 2 and Theorem 3.

Examples n
Method I Method II
ρ R−1Q
� �

ρ G−1 J
� �

3.1
100 0.8250 0.8929

400 0.8250 0.8939

3.2
100 0.8167 0.8442

400 0.8167 0.8448

3.3
1000 0.5024 0.5076

3000 0.5074 0.5124

3.4
256 0.4027 0.4038

4096 0.4033 0.3538

3.5
1000 0.3127 0.3173

3000 0.3152 0.3195
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So,

xm+1 − x⋆
�� �� ≤G−1 J xm − x⋆j j: ð29Þ

Based on theorem 4.1 of [31] and theorem 3.1 of [28,
29], if ρðG−1 JÞ < 1, the iteration sequence fxmg∞m=0 created
by Method II is convergent.

The proof of the uniqueness is similar as the proof in
Theorem 2 and is omitted here.

3. Numerical Examples

In this unit, five examples are provided to analyze the perfor-
mance of the proposed methods from three stances:

(i) ‘Iter’ indicates the iteration steps.

(ii) ‘Time’ implies the CPU time (s).

(iii) ‘RES’ signifies the 2-norm of residual vectors.

Here, ‘RES’ is determined by

RES≔ b + xmj j − Axmk k2 ≤ 10−6: ð30Þ

All calculations were done on a computer with an Intel(R)
Core(TM) i5-3337U CPU@ 1.80GHz processor andMemory
4GB using MATLAB R2016a. In Examples 4 and 5, the start-
ing guess is supposed to be xð0Þ = ð0, 0, 0,⋯,0ÞT ∈ Rn.

Table 2: The outcomes of Example 4 with α = 0:5, β = 0:9 and φ = 4.

n λ 0.2 0.4 0.6 0.8 1

100

Method I

Iter 102 47 29 24 16

Time 0.577 0.392 0.338 0.323 0.315

RES 9.861e–07 9.234e–07 9.166e–07 5.999e–07 7.548e–07

Method II

Iter 214 102 65 47 35

Time 0.906 0.517 0.4247 0.398 0.354

RES 9.264e–07 9.927e–07 9.523e–07 7.276e–07 9.448e–07

400

Method I

Iter 105 48 30 24 15

Time 2.929 1.677 1.153 1.050 0.851

RES 9.617e–07 9.974e–07 6.6810e–07 5.568e–07 9.702e–07

Method II

Iter 230 111 71 51 38

Time 13.115 6.426 4.291 3.153 2.476

RES 9.700e–07 8.567e–07 7.950e–07 7.096e–07 9.720e–07
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Figure 1: Graphs showing the convergence rates of the suggested approaches for various values of λ.
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First, we use numerical experiments to satisfy the con-
vergence conditions ρðR−1QÞ < 1 and ρðG−1 JÞ < 1. Table 1
delivers the outcomes.

In Table 1, we performed the convergence conditions of
both theorems using numerical experiments. Obviously,
these two methods meet these conditions. To examine the
implementation of our novel methods, we consider the fol-
lowing tests.

Example 4. Assume that A =M + φI ∈ Rn×n and b = Ax⋆ − j
x⋆j ∈ Rn, such that.

M = T diag −I, S,−Ið Þ ∈ Rn×n, and x⋆ = 1, 2, 1, 2,⋯,ð ÞT ∈ Rn:

ð31Þ

Here, S = T diag ð−1, 4,−1Þ ∈ RΔ×Δ, I ∈ RΔ×Δ and n = Δ2.
The outcomes are shown in Table 2, and the graphs are dis-
played in Figures 1 and 2, respectively.

In Table 2, the given methods calculate the AVE solution
for different α, β and λ values. We notice that if we increase
λ, the convergence of the given strategies becomes quicker.
The curves in Figures 1 and 2 display the effectiveness of
the given procedures. Graphically sketch demonstrates that
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Figure 2: Graphs showing the convergence rates of the suggested approaches for various values of λ.

Table 3: The outcomes for Example 5 using α = 0:5, β = 0:9 and φ = 4.

n λ 0.2 0.4 0.6 0.8 1

100

Method I

Iter 90 40 23 14 10

Time 0.645 0.370 0.3428 0.335 0.330

RES 9.921e–07 9.6888e–07 9.284e–07 9.691e–07 1.650e–07

Method II

Iter 117 54 33 22 16

Time 0.717 0.447 0.391 0.364 0.351

RES 9.392e–07 9.318e–07 8.321e–07 9.038e–07 4.232e–07

400

Method I

Iter 94 42 24 15 10

Time 2.455 1.4193 1.0188 0.854 0.747

RES 8.401e–07 7.318e–07 7.691e–07 4.637e–07 4.201e–07

Method II

Iter 124 58 35 24 17

Time 6.785 3.303 2.240 1.697 1.334

RES 9.592e–07 7.878e–07 9.050e–07 6.450e–07 5.055e–07
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the convergence of the presented approaches is faster when
the value of λ is bigger.

Example 5. Assume that A =M + φI ∈ Rn×n and b = Ax⋆ −
jx⋆j ∈ Rn, such that

M = Tdiag −1:5I, S,−0:5Ið Þ ∈ Rn×n

∈ Rn×n, x⋆ = −1ð Þl, l = 1, 2,⋯, n
� �T

∈ Rn,
ð32Þ

where S = Tdiagð−1:5,8,−0:5Þ ∈ RΔ×Δ, I ∈ RΔ×Δ as well as
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(b) Method II for n = 100

Figure 3: Graphs showing the convergence rates of the suggested approaches for various values of λ.
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Figure 4: Graphs showing the convergence rates of the suggested approaches for various values of λ.
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n = Δ2. The outcomes are presented in Table 3, and the
graphical representations are shown in Figures 3 and 4,
respectively.

In Table 3, we presented the convergence behavior of the
given methods using the values of α, β and λ. Obviously, if
the value of λ is larger, the convergence of the given
approaches grows faster. The graphical representation is
illustrated in Figures 3 and 4. These curves explain the effi-
ciency of the suggested approaches at various λ values.

Example 6. Assume that

A =

4, forj = i

−1, for
j = i + 1, i = 1, 2,⋯, n − 1,
j = i − 1, i = 2,⋯, n,

(

0,  otherwise:

8>>>>><
>>>>>:

ð33Þ

and b = Ax⋆ − jx⋆j ∈ Rn, such that x⋆ = ðð−1Þw,w = 1, 2,⋯,
nÞT ∈ Rn. This example uses the same stopping criteria and

starting guess as shown in [24]. Moreover, we compare the
new techniques with the procedure described in [20] (sym-
bolized by AM) as well as the shift splitting iteration method
reported in [24] (represented by SS). These outcomes are
presented in Table 4.

The results of Table 4 show that all methods are capable
of determining the problem efficiently and precisely. Our
techniques are more valuable than existing strategies, such
as the AM and SS methods, in terms of iterations (Iter)
and solving time (Time).

Example 7. Consider

A = I ⊗ T + χ ⊗ I ∈ RΘ×Θ: ð34Þ

Here, I ∈ RΘ×Θ is a unit matrix, and ⊗ indicates the Kro-
necker product. In addition, T and χ ∈ Rn×n, as shown
below.

T = Tdiag
2 + ϕ

8

	 

, 8, 2 − ϕ

8

	 
� �
,

χ = Tdiag
1 + ϕ

4

	 

, 4, 1 − ϕ

4

	 
� �
,

ϕ = 1/n ;Θ = n2:

8>>>>>><
>>>>>>:

ð35Þ

Here, b = Ax⋆ − jx⋆j ∈ RΘ, where x⋆ = onesðΘ, 1Þ ∈ RΘ.
In Examples 7 and 8, using the same starting guess as well
as the stopping criterion as given in [23]. Moreover, we com-
pare the recommended techniques with the process shown
in [23] (exposed by SRM) and the iteration scheme intro-
duced in [17] (represented by GSOR). These data are
explained in Table 5.

All techniques in Table 5 consider the solution x⋆ for
various numbers of V . Based on the data in Table 5, we
can identify that our recommended procedures provide bet-
ter results than both SRM and GSOR procedures.

Table 4: The outcomes for Example 6 using α = β = 1 and λ = 0:97:

Techniques n 1000 2000 3000 4000

AM

Iter 19 19 19 19

Time 3.1590 14.2079 36.5739 74.4664

RES 7.880e-07 7.884e-07 7.896e-07 7.896e-07

SS

Iter 14 14 14 14

Time 2.7501 9.5131 19.2935 33.4672

RES 8.913e-07 8.924e-07 8.928e-07 8.930e-07

Method I

Iter 11 11 11 11

Time 1.739 5.5728 13.3846 25.4884

RES 9.531e-07 9.537e-07 9.539e-07 9.540e-07

Method II

Iter 12 12 12 12

Time 2.1002 7.4991 16.8944 31.8679

RES 3.688e-07 3.667e-07 3.661e-07 3.657e-07

Table 5: The results for Example 7 using α = β = 1 and λ = 0:97:

Methods V 256 1296 2401 4096

SRM

Iter 17 18 18 18

Time 0.3607 4.5834 22.8075 117.7810

RES 6.804e–09 3.735e–09 5.072e–09 6.619e–09

GSOR

Iter 14 15 15 15

Time 0.4744 16.7242 88.9636 58.7786

RES 3.269e–09 1.805e–09 2.712e–09 3.808e–09

Method I

Iter 11 11 12 12

Time 0.3423 4.6869 24.6612 125.0572

RES 3.548e–09 7.540e–09 1.070e–09 1.383e–09

Method II

Iter 11 11 12 12

Time 0.5307 11.0436 11.9317 57.3148

RES 4.297e–09 9.345e–09 1.357e–09 1.760e–09

Table 6: The outcomes for Example 8 using α = β = 1 and λ = 0:97:

Methods n 1000 2000 3000 4000

SRM

Iter 20 20 20 20

Time 2.8619 12.8195 37.2905 75.2874

RES 4.125e-09 5.834e-09 7.146e-09 8.252e-09

GSOR

Iter 17 17 18 18

Time 2.6841 7.5746 11.3116 17.7786

RES 6.846e–09 9.711e–09 2.808e–09 3.244e–09

Method I

Iter 13 13 13 13

Time 1.5501 3.1790 7.9509 12.6772

RES 5.343e–09 7.518e–09 9.191e–09 1.652e–09

Method II

Iter 13 13 13 13

Time 2.4768 5.3038 11.7203 16.3148

RES 5.766e–09 8.047e–09 9.812e–09 1.760e–09
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Example 8. We consider the AVE (1) with

A = Tdiag −1, 8,−1ð Þ ∈ Rn×n, x⋆ = −1ð Þl, l = 1, 2,⋯, n
� �T

∈ Rn,

ð36Þ

and b = Ax⋆ − jx⋆j. The data are reported in Table 6.
Based on Table 6, we perceive that all procedures can

determine the problem efficiently and precisely. We can
clearly distinguish that our techniques are more beneficial
than existing processes, such as SRM and GSOR, with
respect to the iteration steps (Iter) and the solving time
(Time).

4. Conclusion

We have introduced two novel iterative techniques for
obtaining the AVE (1) and demonstrated that the offered
approaches converge to the system (1) under proper selec-
tions of the involved parameters. The effectiveness of the
recommended methods has also been evaluated numerically.
The numerical outcomes indicate that the suggested strate-
gies are effective for large and sparse AVEs. For future
research, the theoretical comparison and analysis of these
iteration methods are of great interest.

Appendix

Here, we describe how to perform the suggested methods.

A. Method I

xm+1 = xm − λE −MAx
m+1 +NAx

m − xmj j + bð Þ� �
: ðA:1Þ

B. Method II

xm+1 = xm +D−1
A MAx

m+1 − λE Axm − xmj j − b½ � −D−1
A MAx

m:

ðA:2Þ

In both methods, the right-hand side also contains xm+1

which is the unknown. From Ax − jxj = b, we have

x = A−1 xj j + bð Þ: ðA:3Þ

Therefore, xm+1 can be approximated as follows:

xm+1 ≈ A−1 xmj j + bð Þ: ðA:4Þ

This technique is named the Picard technique [27]. Here,
we present the algorithms for the proposed methods.

B.1. Algorithms for Method I and Method II. Step 1: Select
the parameters 0 < α, β, λ ≤ 1, an starting vector x0 ∈ Rn

and fix m = 0.
Step 2: Compute ym = xm+1 ≈ A−1ðjxmj + bÞ,

Step 3: Calculate (Method I)

xm+1 = xm − λE −MAy
m +NAx

m − xmj j + bð Þ½ �: ðA:5Þ

Step 4: Calculate (Method II)

xm+1 = xm +D−1
A MAy

m − λE Axm − xmj j − b½ � −D−1
A MAx

m:

ðA:6Þ

Step 5: Stop if xm+1 = xm. Otherwise, set m =m + 1 and
return to step 2.

Note that the idea behind considering certain types of
structures in Method I and Method II comes from [28, 29].
Several authors have discussed the use of these types of
methods for the solution of LCPs; see [33, 34] and the refer-
ence therein. In our study, we applied this concept to AVEs.
In addition, the concept of E =D−1

A , whose diagonal contains
positive entries, is inspired by the work of [31, 32].
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