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The main goal of the paper is to approximate two types of inverse problems for conformable heat equation (or called parabolic
equation with conformable operator); as follows, we considered two cases: the right hand side of equation such that F(x, t) and
F(x,t) = ¢(t)f (x). Up to now, there are very few surveys working on the results of regularization in #* spaces. Our paper is
the first work to investigate the inverse problem for conformable parabolic equations in such spaces. For the inverse source
problem and the backward problem, use the Fourier truncation method to approximate the problem. The error between the
regularized solution and the exact solution is obtained in #* under some suitable assumptions on the Cauchy data.

1. Introduction

Partial differential equations (PDEs) have applications in
many branches of science and engineering; see for example
[1-8]. In this paper, for s> 1, we consider the initial value
problem for the conformable heat equation (or called para-
bolic equation with conformable operator)

%’aﬁ
58 V1) —kdy(x 1)) +

y(x,t) =0,
¥ T) =yr(x),

(-A)y(x,t) =F(x,t), x€D,te(0,T)

x€02,t€(0,T)
X€ED

(1)

Here, Zc RN (N>1) is a bounded domain with the
smooth boundary 09, and T > 0 is a given positive number.
Here, ©0°/0tF is called the conformable time derivative with
order B¢ (0,1) (Khalil et al. [9]) for a given function f : [0,
00) — R; the ©9P/0tF of order € (0, 1] is defined by

g

f(t+et™Fy—f(1)
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= lim ,
e—0 €
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for all ¢ > 0. For some (0, t,), t, >0 and the lim+(%a’8/atﬁ)

t—ty

f(t) exist, then (¢0P/atF)f(t,) = lim (Y0F/0tF)f(t). Some
t—tg

properties of 0#/0tF can be found in more detail in [10,
11]. 3P /0tF is a natural extension of usual derivative, it pre-
serves basic properties of the classical derivative [10, 11], and
it is a local and limit-based operator. In [10, 12, 13], we saw
some applications. For the convenience of the reader, we will
consider two models related to Problem (1) that most math-
ematicians often study.

(i) The first part of the paper deals with the final value
problem for Problem (1) with a linear source func-
tion. The new feature of this part is the appearance
of observed data, namely, (y;4, F5) € Z7(2) x L®(
0, T; #7(D)). This result is well described in Theo-
rem 3. We investigated the problem of restoring the
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temperature function y(x, t), in the fact that the cou-
ple (y;, F) are noised by the measurement data (
V14> Fs) such that:

)

HyT,6 —Jr 2(D) <

1 Fs = Fll oo (0, 7,90 () < O

(ii) The second part of the paper deals with the final
value problem for Problem (1) with F is a linear
source function as follows: F(x, t) = ®(t)f(x), where
both functions (®,f, g) are perturbed by (P, f,
gs) in LP(0, T) x ZP (D) x L¥(D), respectively

[Py = Bl gz, <5
HyT,S—yTHyP(o,ng(S' (4)
1f6 = fllgr iz <0

The main contributions and novelties of this paper are
stated as follows. As we know, two inverse problems are
ill-posed in the sense of Hadamard. The well-posed problem
satisfies three conditions above: the solution is existence, the
solution is uniqueness, and the solution continues on data
The problem that violates one of the above three conditions
is an ill-posed problem. We need to regularize this problem,
to give a good approximation. The number of works on the
regularized problem with input data in #* is quite abun-
dant. The results of this study can be found in the following
documents, attached to the regularization methods: the
Tikhonov method, see [14, 15], the Fractional Tikhonov
method, see [16], the fractional Landweber method, see
[17, 18], the Quasi Boundary method, see [19], the trunca-
tion method, see [20], and their references.

However, for p # 2, results for regularized problem in &
are quite rare. We confirm that our paper is the first result
for the inverse problem for the conformable parabolic equa-
tion when the observed data is in the Z* space with p # 2. If
the data is not in #?, the use of Parseval equality is not fea-
sible. In this case, we used the embedding between #? and
Hilbert scales spaces X*(9). These results are well described
in Theorem 3 and Theorem 5. The main analytical tech-
nique in our paper is to use some embeddings and some
analysis estimators related to Holder inequality. To do this,
we learn many interesting techniques from N.H. Tuan [21].

%aﬁ
otP
<y("0)’ em) = <yO’ em>
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This paper is organized as follows. In Section 2, we state
some function spaces and embeddings. In Section 3, we deal
with the regularized solution for the inverse source problem
for (1). Section 4 gives the mild solution of backward prob-
lem in case F = 0. After that, we solve two problems in the
case of observed data in &* space.

2. Preliminary Results

Let us recall that the spectral problem

_Asmxz)tfnm 4 2
{( )em(x) =Ae,(x), xe€ )

e,(x)=0, x€oD
admits the eigenvalues 0<A, <A, <---<A, <--- with A,
— 00 as m — 00. The corresponding eigenfunctions are

e, € Hy(92).

Definition 1 (Hilbert scale space). We recall the Hilbert scale
space, which is given as follows:

LM(D) = { fe (@), 2 A2 (LZf(x)em (x)dx) 2<oo},
(6)

for any n>0. It is well-known that X"(9) is a Hilbert
space corresponding to the norm

I£1

@)= ( f A (J@f(X)em (x)dx) ) " rez@)
7)

Lemma 2 (See [22]). The following statement is true:

2
(D)2 (D), if - g <u<0,pz N—N4y o
2
T (D)=L (D),if 0spu< g,ps N—N4y

3. Regularization of Backward Problem

In order to find a precise formulation for solutions, we con-
sider the mild solution in Fourier series y(x,t) =Y o ¥,,(t)
e,(x), with y, (t)=[_y(x, t)e,(x)dx. Taking the inner
product of the equations of Problem (1) with e,, gives

%aﬁ .
(), € Ky = () )R 0(o): ) = (F(at)s ) 1€ OT) o)
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The first equation of (9) is a differential equation with a
conformable derivative as follows:

‘gaﬁ s -1
£) = A (1 +KA,) (1) =

Yl (1+KA,) " E (1), (10)

Because of the result in [23], the solution of Problem (1)
is

N

B
Dot en) =exp (=) 00 )

1 x, 0Pt
S-1 m
* 13 . J 0" exp (1 LB )(F(.,Q),em)dG

(11)

Letting ¢t = T, we follow from (11) that

(J.QyT(x)em(x)dx) = exp (-%%{) (J@yo(x)em(x)dx)
1+1’<A J O exp <1 +/\;?/\m9ﬂ;[;ﬂ;>

: (J@F(.,H)em(x)dx> do.

(12)

From (12), we have

(13)
Substituting (13) into (12), we obtain
X, TP—tP
(ot ) = exp <1 S T) | et
1 s gP _ 4B
S-1 m
T1tkA, J 0 exp <1+kAm B )
. (J F(x, G)em(x)dx> de
2
(14)

This leads to

+00 s B _ /3 o
0= 3 e (—1 e )(J@w(x)em(x)dx) eul)
. A PP
_Zl+k/\ (J o (1+k/1m B >

exp
. (J@F(x, 0)e,, (x)dx> dG) e (%)-
(15)

4. The Mild Solution of Backward Problem in
Case F=0

In this section, we investigate the existence and regularity of
mild solutions of Problem (1). Firstly, we consider the fol-
lowing initial value problem

&P

% (y(x,t) —kAy(x, ) + (-A)'y(x, 1) =0, x€D,te(0,T)
y(x, 1) =0, x€02,te(0,T)"
y(% T)=yr(x), x€D,te(0,7)

(16)

According to (15), in this case, we have

yeh= Y e (1 e Tﬁﬂtﬁ) ([ rstorenterds ey o

7 (17)

4.1. The Ill-Posedness of Problem (1). In order to prove that
the solution to the backward problem 1is unstable
atF(x,t)=0, let us take the perturbed final
datayy;(x) € (D), by choosingy,.;(x) = ej(x)}Ljfl/z. For s
> 3/2, let us choose input final data y,.(x) = 0; we know that

an error in L?(2) norm between two input final data as fol-
lows:

i) g = 4" e
:A.”Zth leads to i H —
isleads 0j£>n(>O Yrj =Vt @)
= lim A2 =0.
Jj—00 J

(18)
Therefore, we obtain

(50 L )
yi(xt)=exp [ —L— 0 |y (x).
i Tvky, g )T

First of all, we have A}/(1 +kA)) = (Aj_l)/((ll/\j) +k)>(
A;_l)/((I/Aj) +k), and ((TP - tF)/p) = 0; this implies that



A TR_ B AL TR 2
_— | > —_— .
eXp 1+ k)\r] ﬁ = exp )&Il + k ﬁ ( )

Next, using the inequality exp (x)>x, for x>0, this

leads to:
ol = VL AN
(- > |lex S [—
Vi 7(2) p AIl+k B A}/z o o
21
A;—B/Z Tﬁ—l"B
> .
Al+k B

For s> 3/2, and from (21), we get

s=312
> lim /\j Ll

7@ i—oA +k B

lim Hyj(.,t)’ — +00. (22)

j—00

Thus, Problem (1), in general, ill-posed in the Hadamard
sense in #*(D)-norm.

4.2. Regularization of inverse Problem (1) in P (D) space.
From (15), we know that the explicit formula of the mild
solution

& A, TP—tf
y(x 1) = mz,l exp (WT) <J9yT(x)em(x)dx) en(x)
JC | T A QP —F
_ -1 m
mZ:11+k/\m (Jte =P <1+kAm B >

: (J@F(x, 0)e,, (x)dx> dG) e (%)

By applying the Fourier truncation method, we have its
approximation

(23)

s B _ B
yast)= Y exp (ﬁ%) ([ rmstrenteids Jento

m<M g

T s B _ 4B
B z 1 Jeﬁ’lexp A, 0P —t
mgﬂél+k/\m : 1+kA, B

. (LZ Fy(x.0)e,, (x)dx) dG) e (%)-
(24)

Here, /s is parameter regularization which is defined
later.

Theorem 3. For s > 1, taking (y;, F) € Z¥(0, T) x (0, T

s LP(D)) for any 0<t<T for any 1/ < p < 2, assume that
(v F) is observed by the couple (y; s, Fy) such that

HyT,é_yTHgP(g) +||F = Fo| oo 1,90 ) < 6,6 > 0. (25)
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Let us assume that u€ (0, T;2") for 0> 0 and 0
<n < N/4. With Mg such that

Th
B

(slim My = +oo,61im | M| NN exp < /%fs_lk_1>5 =0.
—0 —0

(26)
Then, the error estimate

175 = VIl av-in ) is Of order max

n+ - s—17— Tﬁ -0
: {|=/”a| NIZp=NI exp ((ﬂa) 'k 1,[3)8’ | 5| }

(27)
Remark 4. One choice for /s such that

1s-1 1\ Vs
My = (T_'Bﬁ(l—oc)k) {log (S)] JforO<a<1.

(28)

then 175 = yll goxis-an ) is of order max {8°
[log (1/6)](n+N/2p—N/4)/(S—1)’ [log (1/8)]—0/(5—1)}'

Proof. Let

It is clear that

[ys( 1) =y(- 1)l

@) S Vs 1) =755 )l o)

(30)
755 ) =y )| gz -

We continue to consider the two components of the
right hand side.
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Step 1: A . A 6P
21 >|m(@>=AZﬂ o (j 6/ exp ( P S
alet et P ([ (70 ot 0 o1 ) o) y
:A; ep<1+kA B > (35)
<J (rs(x) = y7(x)) e (x)dx) e, (x) By the same arguments as above, we find that
o X, oo g i
_ B-1 m - Ko ()| 2 < /\fn" 0P 1 ex Aj;lk'l
. Zﬂé 1+ kA, (J e (1 YKL, B 7l = 2, (Jt ’ < P )
< (Fy(x,0) - F(x, 0))em(x)dx> d@))em(x) | (L;F (%.6) = Folx 9>)em(x)d"> de)

For s>1, it is easy to see that A} (1+kA,,)”
_ -1
A +k) <

H%l(-’t)uzm@) = ) Mlexp

A<M s

( 2 TR [ﬁ>
1+kA, B
' (J@(}’T,s(x) *yr(x))em(x)dxy

_ 2n+N/p-N/2 y Np-2N/2p
= Z A A, exp
A Sl s

- (uiﬂ‘kl %) (] orotor -re)enorin)

s=11-17f
< |‘%6|2n+N/pr/2 exp <2|'/%6| kT ) Z AZP_ZN/ZP

A< s

B
: (JJ (ral®) —yT(x))em(x)dx)z

< [ Mls PPN ey <2|-/”5|51le/3

B ) e =yrl a2
(32)

Since the Sobolev space embedding #7(9)—
ZWNP2N)AP () e have

yrs ‘J’T”;zwp—zwmp(m <C(N.p)||yrs ‘)’Tng (33)

This follows from (32) that

N2 M) kTR
[ ("t)Hfl”"(@) < (Ml s)" PPN exp <(6)ﬁ> Ci(N,p)d

(34)

The second term %, (x, t) is estimated as follows

1<A571
Akt The first term %) (x, t) on L™(D) is
bounded by

<exp (2(%5)3'%1%3) Z A

A SAlg

: (LTeﬁ*1 (LZ(F(x, 0) - F5(x, 0))e,, (x)dx> d@) :

(36)

- 2m4N/p-N/2
We can see that AZNPNZ | gy NN gnd J;

T
0P1do < (TP — tP)/B < TP/B. From (36), using Holder’s
inequality, we get

2n
2
A Sy

(Jfaﬁ-l (Jg(F(x, 0) - Fa(x,0))e,, (x)dx) d@) 2

< Z AZWrN/[J*N/Z/\prZN/Zp (JTeﬁlde)
AnSdl s t

m=

. (L oi1 O@(F(x’ 8) - Fy(x.0))e,, (x)dx> 2d6)

SﬁflTﬁ“%(len#—N/p—N/Z (JTeﬁl Z /\i}l/lJrN/pr/Z
t

A Sl s

. (LZ(F(x, 6) — Fy(x, 6))€m(x)dx) 2d9>

T
< BVTF|ll 5NN (J 0P || F( 1) = F( 1) ||§[NP,ZN,4,,d9) :
t

(37)

This latter inequality together with Sobolev embedding
PP (D) —> XNP2NMHp () gives us

3o (JTeﬁ—l ( J (F(x,0) - Fy(x, 6))em(x)dx) d6>2
A<l t %)
Sﬁ—l|C2(N’p)‘ZTﬁ(ﬂs)ZnJrN/p—N/Z
-(JT(”“ 1E(x, 0) = F5(x,0) | g d9>
Sﬁ_2|tC2( )‘ T2f5|/% |2n+N/p N/2

||F F(SHS“) (0,T:2°(2))
Sﬁ_2|C2( , )‘ T2ﬁ|ﬂ6|2n+N/p N/Z(SZ.

(38)



Combining (36) and (38), we get

s-17.- TF
175 (- t)Hzm@) < exp <2(/%6) 'k 1?)

. |C2(N’p)|2T2ﬁ|ﬂ6|2n+N/p7N/2ﬁ—282.
(39)

Taking the square root on the both sides, we have

175( 1)

s—17— T'B
(@) S €XP ((ﬂé) 'k 1?>

S |Cy (N, p) | TF| 5| NP NS,

(40)

From (34) and (40), we deduce that

175(5 1) =7 5(> D)l gn )
<1210 D)l gngy + 17205 1)

"(2)
(%5)571](—1 Tﬁ

< |%6|n+N/2p7N/4 exp ( /3

> C,(N,p)é +exp

B
‘<(/%s)s‘1k_1 %) |Co (N, p)| TP| PPN 1S

B
< |%6|n+N/2p—N/4 exp ((%5)5_1](_1 %)8
(CuV.p) + G (N p) TFB).

(41)

Step 2: Estimate of [[u(- 1) = 75(~ 1) gn(q)-
From the definition (23) and (29), we have

o0 T 5 gy = Y A (j;(-, e (x)dx)z

Ap>AM s

= Y A (Lzu(-, t)e, (x)dx> ’

Ap> M s
20,112
S| Ul o 0,70 ()
(42)
Therefore, we get

150 8) = 75 Ol ey < WS 7 ] o g gy (43)

Combining two steps and noting that 2"(D)—
NN (0 < 5 < N/4), we deduce that
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175(> 1) =y )l )
S G(N,n)[lys (1) = 75 1) | g (2)
+C (N, ) |75 1) =y (5 )| ()
< Cy (N, )| 5|V N4 exp

B
: (%)“k“ %) 5(Ci(N.p) + (N p)| TPB™)

+ G5 (N, ) |5 |™° (|| oo 0,77 )
(44)
The proof of Theorem 3 is completed. In the following
theorem, we give a regularization result in the case that F

has a split form F(x, t) = ®(t)f(x). O

Theorem 5. For s> 1, let us assume that the input data Oy
» g f 5 such that

[Ps = Pll &2 o7y + (529 _)’Tng(@) +fo = fllgr(g) <O
(45)

Assume that u € (0, T ; X" (D)) for any o > 0, then
we construct a regularized solution defined by

s B _ B
Volwt)= Y exp (%TTt) ([_rratoenteris)ents

-3 ([ e (5550
. (J fx)e, (x)dx) cD(;(G)dG) €y (X)-

2

(46)

Then, the error W s(.t)=y (1)l gaviv-am g is of order
max {8]Bs| 7, |By|" VPN exp (57K TF)IB)S).

Remark 6. ;= (T#Bk)"""(1-a)"*"" log (1/6) "™,
then the error

775 (-5) =y (-5t) || gosmv-an ) i Of order max

n+N/2p-N/4/s—1 47
. {8 log <%> log (%) 8“}. “7)

Proof. Since F(x,t) = ®(t)f (x), we know that
s B _ B
Zyxe)= Y e (HAMT/;) ([ rr@enons) et

_y 1 JTG‘“ exp A 6P
o kA, 1+kL, B

(] rentois)o(@1ao e o

D

—o/s—1
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The triangle inequality allows us to obtain that

175C: 1) = (> Ol an@y < 175> 1) = Z5(5 )l gm0
+{|Z5( 1) = y(- 1)

@)
(49)

Next, we will evaluate the right side of (49), by the same
way as demonstrated in (42),

y( 1) = Zs (s t)”?&r“(sz) s |%6‘_20||”||n2?°°(0,T;%"+°(9))~ (50)

It is easy to see that
Ws(x,t)— Zs(x,t)= F (%) + Fo(x% 1)+ F5(xt). (51)

whereby

(52)

We will divide this review into several steps as follows:
Step 1: Estimate of [| 7, (-, t)[| g (q), we obtain that

A
Fi( D)oo < Co(N, p)| BN N exp | BT — |6.
1 a(@) S CalVsP)|Hs p R B
(53)
Step 2: Due to Parseval’s equality, the term

[.72( 1) || g(c) can be bounded as follows:

r X o ’
. _ 2n S-1 m
172Dy = 2 A U@ exp <1+k)tm/3 )cbaww]

A, <Bs

m

) (J@(fa(x) _f(x))em(x)dx)2.
(54)

Thank to Holder’s inequality, we derive that for p>1
and p* =1+ (1/(p—1)), one has

T A 0P —tf
-1 m
J[ o e (1 vkA, B

T Up (o A eP B 1
i "(B-1) *_m
< (L |Ds | d6) (L o exp (p Tr kL B )d@)

Th T e’
<exp ()\fnlkl ?> ||(D6||5zP*(o,T) (LQP (ﬁ—l)dg)

p_l p-1ip 5 —lq— Tﬁ
< (Pﬁ) TPPVP exp [ A5k 1? 1Ps | v 0,7

The latter inequality leads to

)@5(e)de‘

(55)

Hfz(wt)H?r"(@)

2n ' B-1 /\in Qﬁ,tﬁ ’
-y Je e e LAOL

An<Bs !

([ tato —f(X))em(X)dX>2

2

p-1 N\ 2pB-21p 2
< pB—1 T 95 (O) %0 0,1

% Z Afy:wN/p—N/ZAZp—ZN/ZP exp

A, <Bs

(%) (], st -snenconts)

PN s 2 24NIp-NI2
T 95 (0) 120,71 Bs exp

< ﬁ
B s—17-1 :
(w ) %[ (o) e

ﬁ A, <Bs

p-1\"7P 2pB-2Ip 2 2n+N/p-N/2
=\pp-1 T 195 (0) 520 (0,7 R

ZTﬁ B sflkfl
X exp <|g| Hf(; —f”f[.\y;—z.wqp(_o).

(56)

where s>1/B. In view of Sobolev embedding Z*(2)’
ZWP-2N)P () e derive that the following estimate

172tz < Co(ps Bo T N) || Ds | o, | B """ exp

T,B|!%6|s—lk—l s
ﬁ >

(57)
where

p_l P_l/P
Clp BTN = (F0) e ). G

B-1



Step 3: Let us now to consider the term || 75(..t)|

%‘Yl(@)-
By applying Holder’s inequality, we get that for p>1 and
p=1/(p-1)-

JTe/“ exp (1 :‘ZAM wﬁ) (®(6) - @8(9))d9‘

t

T lp
< (] 1o -oy@rav)
0
T x, of-\ 7
. (B-1) * m
<J¢ o exp (p Tkl B )dv)
/\s—lk—l Tﬁ T ia 1p*
<exp | 2—a— | |Ds = || oo,y (J v 1>dv)
B '
PN g L ST
= B 1) r €xp B 1P = DPsl| oo,

_ p-lip Bys-17.-1
< 1;711 ) TPA-P exp (”Ek> 5.

(59)

This inequality together with Parseval’s equality allows
us to derive that

Hf3(~>t)”§r”(9)
gf — B

= Z A2 Tef"l exp A
"\, 1+kA, B

A, <Bs

2
(] reoentorae)
%)
p-1)\*2" 2 2n+N/p-N/2 y Np-2N/2,
< —/3_1> TP N A NIPNE A NPNED exp
Au<RBs

: (27‘%1 ;71 Tﬁ) (J@ f(x)em(x)dx) 2

p- 1 2p-2Ip
< (p > TZpﬁ—Z/p62|%6|2n+N/p—N/2 exp

) (@(6) - %(6))019)

ZTﬁL% s—1 k,l
. (T(S' Ilf”gf\'p—zwmp @)
(60)

By the fact that Z7(2) NP2V (), we deduce that

175w < ol B TN f gy [ B 0N exp

' Tﬂ%als_lk_l 5
ﬁ .

Combining Step 1 to Step 3, we get

(61)
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[71(1)]

(@)t F 20 @) I F 3 (1) | an()

Bo| kTP
< C4(N,p)|e%5|n+N/2piN/4 exp (l 5| ﬁ >6

Tﬁ% s—lk—l
+Cq(p, B, T, N)| B | N exp <—| ‘;3 8
'(||(D8H3F(0,T) + ||f”31’(D))'
(62)

Finally, combining the reviews from above, we conclude
that

17 5(> 1) =y (5 )| ()

s 8|936|_UH”H3°°(0,T;W“’(9))

n+N/2p- s—17.— ¢
+ C4(N, p)|Bs|" N exp (995% 1f)‘3 (63)

+Co(p, B T, N)| BN ™N" exp

TR B |51k !
.(%)8(@5”%(”) + ||f||$P(D)>.
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