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The main goal of the paper is to approximate two types of inverse problems for conformable heat equation (or called parabolic
equation with conformable operator); as follows, we considered two cases: the right hand side of equation such that Fðx, tÞ and
Fðx, tÞ = φðtÞf ðxÞ. Up to now, there are very few surveys working on the results of regularization in Lp spaces. Our paper is
the first work to investigate the inverse problem for conformable parabolic equations in such spaces. For the inverse source
problem and the backward problem, use the Fourier truncation method to approximate the problem. The error between the
regularized solution and the exact solution is obtained in Lp under some suitable assumptions on the Cauchy data.

1. Introduction

Partial differential equations (PDEs) have applications in
many branches of science and engineering; see for example
[1–8]. In this paper, for s > 1, we consider the initial value
problem for the conformable heat equation (or called para-
bolic equation with conformable operator)

C∂β

∂tβ
y x, tð Þ − kΔy x, tð Þð Þ + −Δð Þsy x, tð Þ = F x, tð Þ, x ∈D, t ∈ 0, Tð Þ

y x, tð Þ = 0, x ∈ ∂D, t ∈ 0, Tð Þ
y x, Tð Þ = yT xð Þ, x ∈D

8>>>><
>>>>:

:

ð1Þ

Here, D ⊂ℝN (N ≥ 1) is a bounded domain with the
smooth boundary ∂D, and T > 0 is a given positive number.
Here, C∂β/∂tβ is called the conformable time derivative with
order β ∈ ð0, 1Þ (Khalil et al. [9]) for a given function f : ½0,
∞Þ⟶ℝ; the C∂β/∂tβ of order β ∈ ð0, 1� is defined by

C∂β

∂tβ
f tð Þ = lim

ϵ⟶0

f t + ϵt1−β
� �

− f tð Þ
ϵ

, ð2Þ

for all t > 0. For some ð0, t0Þ, t0 > 0 and the lim
t⟶t+0

ðC∂β/∂tβÞ
f ðtÞ exist, then ðC∂β/∂tβÞf ðt0Þ = lim

t⟶t+0
ðC∂β/∂tβÞf ðtÞ. Some

properties of C∂β/∂tβ can be found in more detail in [10,
11]. C∂β/∂tβ is a natural extension of usual derivative, it pre-
serves basic properties of the classical derivative [10, 11], and
it is a local and limit-based operator. In [10, 12, 13], we saw
some applications. For the convenience of the reader, we will
consider two models related to Problem (1) that most math-
ematicians often study.

(i) The first part of the paper deals with the final value
problem for Problem (1) with a linear source func-
tion. The new feature of this part is the appearance
of observed data, namely, ðyT ,δ, FδÞ ∈LpðDÞ × L∞ð
0, T ;LpðDÞÞ. This result is well described in Theo-
rem 3. We investigated the problem of restoring the
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temperature function yðx, tÞ, in the fact that the cou-
ple ðyT , FÞ are noised by the measurement data ð
yT ,δ, FδÞ such that:

yT ,δ − yT
�� ��

Lp Dð Þ ≤ δ

Fδ − Fk kL∞ 0,T ;Lp Dð Þð Þ ≤ δ

8<
: : ð3Þ

(ii) The second part of the paper deals with the final
value problem for Problem (1) with F is a linear
source function as follows: Fðx, tÞ =ΦðtÞf ðxÞ, where
both functions ðΦ, f , gÞ are perturbed by ðΦδ, f δ,
gδÞ in Lpð0, TÞ ×LpðDÞ ×LpðDÞ, respectively

Φδ −Φk kLp 0,Tð Þ ≤ δ

yT ,δ − yT
�� ��

Lp 0,Dð ≤ δ

f δ − fk kLp Dð Þ ≤ δ

:

8>>><
>>>:

ð4Þ

The main contributions and novelties of this paper are
stated as follows. As we know, two inverse problems are
ill-posed in the sense of Hadamard. The well-posed problem
satisfies three conditions above: the solution is existence, the
solution is uniqueness, and the solution continues on data
The problem that violates one of the above three conditions
is an ill-posed problem. We need to regularize this problem,
to give a good approximation. The number of works on the
regularized problem with input data in L2 is quite abun-
dant. The results of this study can be found in the following
documents, attached to the regularization methods: the
Tikhonov method, see [14, 15], the Fractional Tikhonov
method, see [16], the fractional Landweber method, see
[17, 18], the Quasi Boundary method, see [19], the trunca-
tion method, see [20], and their references.

However, for p ≠ 2, results for regularized problem inLp

are quite rare. We confirm that our paper is the first result
for the inverse problem for the conformable parabolic equa-
tion when the observed data is in the Lp space with p ≠ 2. If
the data is not in L2, the use of Parseval equality is not fea-
sible. In this case, we used the embedding between Lp and
Hilbert scales spaces XsðDÞ. These results are well described
in Theorem 3 and Theorem 5. The main analytical tech-
nique in our paper is to use some embeddings and some
analysis estimators related to Hölder inequality. To do this,
we learn many interesting techniques from N.H. Tuan [21].

This paper is organized as follows. In Section 2, we state
some function spaces and embeddings. In Section 3, we deal
with the regularized solution for the inverse source problem
for (1). Section 4 gives the mild solution of backward prob-
lem in case F = 0. After that, we solve two problems in the
case of observed data in Lp space.

2. Preliminary Results

Let us recall that the spectral problem

−Δð Þsem xð Þ = λsmem xð Þ, x ∈D

em xð Þ = 0, x ∈ ∂D

(
ð5Þ

admits the eigenvalues 0 < λ1 ≤ λ2 ≤⋯≤λm≤⋯ with λm
⟶∞ as m⟶∞. The corresponding eigenfunctions are
em ∈H1

0ðDÞ.

Definition 1 (Hilbert scale space). We recall the Hilbert scale
space, which is given as follows:

Xn Dð Þ = f ∈L2 Dð Þ, 〠
∞

m=1
λ2nm

ð
D

f xð Þem xð Þdx
� �2

<∞
( )

,

ð6Þ

for any n ≥ 0. It is well-known that XnðDÞ is a Hilbert
space corresponding to the norm

fk kXn Dð Þ = 〠
∞

m=1
λ2nm

ð
D

f xð Þem xð Þdx
� �2

 !1/2

, f ∈Xn Dð Þ:

ð7Þ

Lemma 2 (See [22]). The following statement is true:

Lp Dð Þ↪Xμ Dð Þ, if − N
4
< μ ≤ 0, p ≥ 2N

N − 4μ

Xμ Dð Þ↪Lp Dð Þ, if 0 ≤ μ < N
4
, p ≤ 2N

N − 4μ

9>>>=
>>>;
: ð8Þ

3. Regularization of Backward Problem

In order to find a precise formulation for solutions, we con-
sider the mild solution in Fourier series yðx, tÞ =∑∞

m=1ymðtÞ
emðxÞ, with ymðtÞ =

Ð
D
yðx, tÞemðxÞdx. Taking the inner

product of the equations of Problem (1) with em gives

C∂β

∂tβ
y :,tð Þ, emh i+kλm

C∂β

∂tβ
y :,tð Þ, emh i−λsm y :,tð Þ, emh i = F :,tð Þ, emh i, t ∈ 0,Tð Þ

y :,0ð Þ, emh i = y0, emh i

8><
>: : ð9Þ
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The first equation of (9) is a differential equation with a
conformable derivative as follows:

C∂β

∂tβ
ym tð Þ − λsm 1 + kλmð Þ−1ym tð Þ = 1 + kλmð Þ−1Fn tð Þ: ð10Þ

Because of the result in [23], the solution of Problem (1)
is

y :,tð Þ, emh i = exp −
λsm

1 + kλm

tβ

β

� �
y 0ð Þ, emh i

+ 1
1 + kλm

ðt
0
θβ−1 exp λsm

1 + kλm

θβ−tβ

β

 !
F :,θð Þ, emh idθ:

ð11Þ

Letting t = T , we follow from (11) that

ð
D

yT xð Þem xð Þdx
� �

= exp −
λsm

1 + kλm

Tβ

β

 ! ð
D

y0 xð Þem xð Þdx
� �

+ 1
1 + kλm

ðT
0
θβ−1 exp λsm

1 + kλm

θβ−Tβ

β

 !

�
ð
D

F :,θð Þem xð Þdx
� �

dθ:

ð12Þ

From (12), we have

ð
D

y0 xð Þem xð Þdx
� �

= exp −
λsm

1 + kλm

Tβ

β

 ! !−1 ð
D

yT xð Þem xð Þdx
� ��

−
1

1 + kλm

ðT
0
θβ−1 exp λsm

1 + kλm

θβ − Tβ

β

 !

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
:

ð13Þ

Substituting (13) into (12), we obtain

y :,tð Þ, emh i = exp λsm
1 + kλm

Tβ − tβ

β

 !ð
D

yT xð Þem xð Þdx

−
1

1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !

�
ð
D

F x, θð Þem xð Þdx
� �

dθ

ð14Þ

This leads to

y x, tð Þ = 〠
+∞

m=1
exp λsm

1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
+∞

m=1

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð15Þ

4. The Mild Solution of Backward Problem in
Case F = 0

In this section, we investigate the existence and regularity of
mild solutions of Problem (1). Firstly, we consider the fol-
lowing initial value problem

C∂β

∂tβ
y x, tð Þ − kΔy x, tð Þð Þ + −Δð Þsy x, tð Þ = 0, x ∈D, t ∈ 0, Tð Þ

y x, tð Þ = 0, x ∈ ∂D, t ∈ 0, Tð Þ
y x, Tð Þ = yT xð Þ, x ∈D, t ∈ 0, Tð Þ

8>>>><
>>>>:

:

ð16Þ

According to (15), in this case, we have

y x, tð Þ = 〠
+∞

m=1
exp λsm

1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ:

ð17Þ

4.1. The Ill-Posedness of Problem (1). In order to prove that
the solution to the backward problem is unstable
atFðx, tÞ = 0, let us take the perturbed final
datayT ,jðxÞ ∈L2ðDÞ, by choosingyT ,jðxÞ = ejðxÞλ−1/2j . For s
> 3/2, let us choose input final data yTðxÞ = 0; we know that
an error in L2ðDÞ norm between two input final data as fol-
lows:

yT ,j − yT
��� ���

L2 Dð Þ
= ejλ

−1/2
j

��� ���
L2 Dð Þ

= λ−1/2j this leads to lim
j⟶∞

yT ,j − yT
��� ���

L2 Dð Þ
= lim

j⟶∞
λ−1/2j = 0:

ð18Þ

Therefore, we obtain

yj x, tð Þ = exp
λsj

1 + kλj

Tβ − tβ

β

 !
yT ,j xð Þ: ð19Þ

First of all, we have λsj/ð1 + kλ jÞ = ðλs−1j Þ/ðð1/λjÞ + kÞ ≥ ð
λs−1j Þ/ðð1/λjÞ + kÞ, and ððTβ − tβÞ/βÞ ≥ 0; this implies that
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exp λs

1 + kλj

Tβ − tβ

β

 !
≥ exp

λs−1j

λ−11 + k

Tβ − tβ

β

 !
: ð20Þ

Next, using the inequality exp ðxÞ ≥ x, for x > 0, this
leads to:

yj ·, tð Þ
��� ���

L2 Dð Þ
≥ exp

λs−1j

λ−11 + k

Tβ − tβ

β

 !
1

λ1/2j

�����
�����
L2 Dð Þ

≥
λs−3/2j

λ−11 + k

Tβ − tβ

β
·

ð21Þ

For s > 3/2, and from (21), we get

lim
j⟶∞

yj :,tð Þ
��� ���

L2 Dð Þ
≥ lim

j⟶∞

λs−3/2j

λ−11 + k

Tβ − tβ

β
⟶ +∞: ð22Þ

Thus, Problem (1), in general, ill-posed in the Hadamard
sense in L2ðDÞ-norm.

4.2. Regularization of inverse Problem (1) in LpðDÞ space.
From (15), we know that the explicit formula of the mild
solution

y x, tð Þ = 〠
+∞

m=1
exp λsm

1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
+∞

m=1

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð23Þ

By applying the Fourier truncation method, we have its
approximation

yδ x, tð Þ = 〠
m≤Mδ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT ,δ xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Mδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

Fδ x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð24Þ

Here, Mδ is parameter regularization which is defined
later.

Theorem 3. For s > 1, taking ðyT , FÞ ∈Lpð0, TÞ ×L∞ð0, T
;LpðDÞÞ for any 0 ≤ t ≤ T for any 1/β < p < 2, assume that
ðyT , FÞ is observed by the couple ðyT ,δ, FδÞ such that

yT ,δ − yT
�� ��

Lp Dð Þ + F − Fδk kL∞ 0,T ;Lp Dð Þð Þ ≤ δ, δ > 0: ð25Þ

Let us assume that u ∈L∞ð0, T ;Xn+σÞ for σ > 0 and 0
< n <N/4. With Mδ such that

lim
δ⟶0

Mδ = +∞, lim
δ⟶0

Mδj jn+N/2p−N/4 exp Tβ

β
Ms−1

δ k−1
 !

δ = 0:

ð26Þ

Then, the error estimate

yδ − yk kL2N/N−4n Dð Þ is of order max

� Mδj jn+N/2p−N/4 exp Mδð Þs−1k−1 T
β

β

 !
δ, Mδj j−σ

( )
:

ð27Þ

Remark 4. One choice for Mδ such that

Mδ = T−ββ 1 − αð Þk
	 
1/s−1

log 1
δ

� �� �1/s−1
, for 0 < α < 1:

ð28Þ

then kyδ − yk
L2N/ðN−4nÞðDÞ is of order max fδα

½log ð1/δÞ�ðn+N/2p−N/4Þ/ðs−1Þ, ½log ð1/δÞ�−σ/ðs−1Þg.

Proof. Let

V δ x, tð Þ = 〠
m≤N δ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Mδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð29Þ

It is clear that

yδ ·, tð Þ − y ·, tð Þk kXn Dð Þ ≤ yδ ·, tð Þ −V δ ·, tð Þk kXn Dð Þ
+ V δ ·, tð Þ − y ·, tð Þk kXn Dð Þ:

ð30Þ

We continue to consider the two components of the
right hand side.
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Step 1:

yδ x, tð Þ −V δ x, tð Þ

= 〠
λm≤Mδ

exp λsm
1 + kλm

Tβ − tβ

β

 !

·
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �
em xð Þ

− 〠
λm≤Mδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

  

·
ð
D

Fδ x, θð Þ − F x, θð Þð Þem xð Þdx
� �

dθ
�
Þem xð Þ

=H 1 x, tð Þ −H 2 x, tð Þ:

ð31Þ

For s > 1, it is easy to see that λsmð1 + kλmÞ−1 ≤ λs−1m

ðλ−1m + kÞ−1 ≤ λs−1m k−1. The first term H 1ðx, tÞ on XnðDÞ is
bounded by

H 1 :,tð Þk k2Xn Dð Þ = 〠
λm≤Mδ

λ2nm exp 2λsm
1 + kλm

Tβ − tβ

β

 !

�
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �2

= 〠
λm≤Mδ

λ2n+N/p−N/2
m λNp−2N/2p

m exp

� 2λs−1m k−1
Tβ

β

 ! ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �2

≤ Mδj j2n+N/p−N/2 exp 2 Mδj js−1k−1Tβ

β

 !
〠

λm≤Mδ

λNp−2N/2p
m

�
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �2

≤ Mδj j2n+N/p−N/2 exp 2 Mδj js−1k−1Tβ

β

 !
yT ,δ − yT
�� ��

XNp−2N/4p ·

ð32Þ

Since the Sobolev space embedding LpðDÞ⟶
XðNp−2NÞ/4pðDÞ, we have

yT ,δ − yT
�� ��

XNp−2N/4p Dð Þ ≤ C1 N , pð Þ yT ,δ − yT
�� ��

Lp Dð Þ: ð33Þ

This follows from (32) that

H 1 :,tð Þk kXn Dð Þ ≤ Mδð Þn+N/2p−N/4 exp Mδð Þs−1k−1Tβ

β

 !
C1 N , pð Þδ:

ð34Þ

The second term H 2ðx, tÞ is estimated as follows:

H 2 :,tð Þk k2Xn Dð Þ = 〠
λm≤Mδ

λ2nm
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

  

�
ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
�
Þ
2

ð35Þ

By the same arguments as above, we find that

H 2 ·, tð Þk k2Xn Dð Þ ≤ 〠
λm≤Mδ

λ2nm

ðT
t
θβ−1 exp λs−1m k−1

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
�2

≤ exp 2 Mδð Þs−1k−1 T
β

β

 !
〠

λm≤Mδ

λ2nm

�
ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
� �2

ð36Þ

We can see that λ2n+N/p−N/2
m ≤ jMδj2n+N/p−N/2 and

Ð T
t

θβ−1dθ ≤ ðTβ − tβÞ/β ≤ Tβ/β. From (36), using Holder’s
inequality, we get

〠
λm≤Mδ

λ2nm

ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
� �2

≤ 〠
λm≤Mδ

λ2n+N/p−N/2
m λNp−2N/2p

m

ðT
t
θβ−1dθ

� �

·
ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �2

dθ

 !

≤ β−1Tβ Mδj j2n+N/p−N/2
ðT
t
θβ−1 〠

λm≤Mδ

λ2n+N/p−N/2
m

 

·
ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �2

dθ

!

≤ β−1Tβ Mδj j2n+N/p−N/2
ðT
t
θβ−1 Fδ ·, tð Þ − F ·, tð Þk k2XNp−2N/4pdθ

� �
:

ð37Þ

This latter inequality together with Sobolev embedding
LpðDÞ⟶XðNp−2NÞ/4pðDÞ gives us

〠
λm≤Mδ

λ2nm

ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
� �2

≤ β−1 C2 N , pð Þj j2Tβ Mδð Þ2n+N/p−N/2

·
ðT
t
θβ−1 F x, θð Þ − Fδ x, θð Þk k2Lp Dð Þdθ

� �
≤ β−2 C2 N , pð Þj j2T2β Mδj j2n+N/p−N/2 F − Fδk kL∞ 0,T ;Lp Dð Þð Þ
≤ β−2 C2 N , pð Þj j2T2β Mδj j2n+N/p−N/2δ2:

ð38Þ
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Combining (36) and (38), we get

H 2 ·, tð Þk k2Xn Dð Þ ≤ exp 2 Mδð Þs−1k−1 T
β

β

 !

� C2 N , pð Þj j2T2β Mδj j2n+N/p−N/2β−2δ2:

ð39Þ

Taking the square root on the both sides, we have

H 2 ·, tð Þk kXn Dð Þ ≤ exp Mδð Þs−1k−1 T
β

β

 !

� C2 N , pð Þj jTβ Mδj jn+N/2p−N/4β−1δ:

ð40Þ

From (34) and (40), we deduce that

yδ ·, tð Þ −V δ ·, tð Þk kXn Dð Þ
≤ H 1 ·, tð Þk kXn Dð Þ + H 2 ·, tð Þk kXn Dð Þ

≤ Mδj jn+N/2p−N/4 exp Mδð Þs−1k−1Tβ

β

 !
C1 N , pð Þδ + exp

· Mδð Þs−1k−1 T
β

β

 !
C2 N , pð Þj jTβ Mδj jn+N/2p−N/4β−1δ

≤ Mδj jn+N/2p−N/4 exp Mδð Þs−1k−1 T
β

β

 !
δ

· C1 N , pð Þ + C2 N , pð Þj jTββ−1
	 


:

ð41Þ

Step 2: Estimate of kuð·, tÞ −V δð·, tÞkXnðDÞ.
From the definition (23) and (29), we have

y ·, tð Þ −V δ ·, tð Þk k2Xn Dð Þ = 〠
λm>Mδ

λ2nm

ð
D

u ·, tð Þem xð Þdx
� �2

= 〠
λm>Mδ

λ−2σm λ2n+2σm

ð
D

u ·, tð Þem xð Þdx
� �2

≤ Mδj j−2σ uk k2L∞ 0,T ;Xn+σ Dð Þð Þ:

ð42Þ

Therefore, we get

y ·, tð Þ −V δ ·, tð Þk kXn Dð Þ ≤ Mδj j−σ uk kL∞ 0,Tð ;Xn+σ Dð Þ: ð43Þ

Combining two steps and noting that XnðDÞ↪
L2N/ðN−4nÞ, ð0 < n <N/4Þ, we deduce that

yδ ·, tð Þ − y ·, tð Þk kL Dð Þ
≤ C3 N , nð Þ yδ ·, tð Þ −V δ ·, tð Þk kXn Dð Þ

+ C3 N , nð Þ V δ ·, tð Þ − y ·, tð Þk kXn Dð Þ
≤ C3 N , nð Þ Mδj jn+N/2p−N/4 exp

· Mδð Þs−1k−1 T
β

β

 !
δ C1 N , pð Þ + C2 N , pð Þj jTββ−1
	 


+ C3 N , nð Þ Mδj j−σ uk kL∞ 0,Tð ;Xn+σ Dð Þ:

ð44Þ

The proof of Theorem 3 is completed. In the following
theorem, we give a regularization result in the case that F
has a split form Fðx, tÞ =ΦðtÞf ðxÞ.

Theorem 5. For s > 1, let us assume that the input data Φδ

, gδ, f δ such that

Φδ −Φk kLp 0,Tð Þ + yT ,δ − yT
�� ��

Lp Dð Þ + f δ − fk kLp Dð Þ ≤ δ:

ð45Þ

Assume that u ∈L∞ð0, T ;Xn+σðDÞÞ for any σ > 0, then
we construct a regularized solution defined by

W δ x, tð Þ = 〠
m≤Bδ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT ,δ xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Bδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

f xð Þem xð Þdx
� �

Φδ θð Þdθ
�
em xð Þ:

ð46Þ

Then, the error kW δð:,tÞ−yð:,tÞkL2N/ðN−4nÞðDÞ is of order

max fδjBδj−σ, jBδjn+ðN/2pÞ−ðN/4Þ exp ððBs−1
δ k−1TβÞ/βÞδg:

Remark 6. Bδ = ðT−ββkÞ1/ðs−1Þð1 − αÞ1/ðs−1Þ log ð1/δÞ1/ðs−1Þ,
then the error

W δ :,tð Þ−y :,tð Þk kL2N/N−4n Dð Þ is of order max

� δ log 1
δ

� �����
����
−σ/s−1

log 1
δ

� �����
����
n+N/2p−N/4/s−1

δα
( )

:
ð47Þ

Proof. Since Fðx, tÞ =ΦðtÞf ðxÞ, we know that

Zδ x, tð Þ = 〠
m≤Bδ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Bδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

f xð Þem xð Þdx
� �

Φ θð Þdθ
�
em xð Þ:

ð48Þ
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The triangle inequality allows us to obtain that

W δ ·, tð Þ − y ·, tð Þk kXn Dð Þ ≤ W δ ·, tð Þ −Zδ ·, tð Þk kXn Dð Þ
+ Zδ ·, tð Þ − y ·, tð Þk kXn Dð Þ:

ð49Þ

Next, we will evaluate the right side of (49), by the same
way as demonstrated in (42),

y ·, tð Þ −Zδ ·, tð Þk k2Xn Dð Þ ≤ Bδj j−2σ uk k2L∞ 0,T ;Xn+σ Dð Þð Þ: ð50Þ

It is easy to see that

W δ x, tð Þ −Zδ x, tð Þ = J 1 x, tð Þ + J 2 x, tð Þ + J 3 x, tð Þ: ð51Þ

whereby

J 1 x, tð Þ = 〠
λm≤Bδ

exp λsm
1 + kλm

Tβ − tβ

β

 !

�
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �
em xð Þ,

J 2 x, tð Þ = − 〠
λm≤Bδ

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

" #

�
ð
D

f δ xð Þ − f xð Þð Þem xð Þ
� �

em xð Þ,

J 3 x, tð Þ = 〠
λm≤Bδ

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φ θð Þ −Φδ θð Þð Þdθ

" #

�
ð
D

f xð Þem xð Þdx
� �

em xð Þ:

ð52Þ

We will divide this review into several steps as follows:
Step 1: Estimate of kJ 1ð·, tÞkXnðDÞ, we obtain that

J 1 ·, tð Þk kXn Dð Þ ≤ C4 N , pð Þ Bδj jn+N/2p−N/4 exp Bs−1
δ k−1

Tβ

β

 !
δ:

ð53Þ

Step 2: Due to Parseval’s equality, the term
kJ 2ð·, tÞkXnðDÞ can be bounded as follows:

J 2 ·, tð Þk kXn Dð Þ = 〠
λm≤Bδ

λ2nm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

" #2

�
ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

:

ð54Þ

Thank to Holder’s inequality, we derive that for p > 1
and p∗ = 1 + ð1/ðp − 1ÞÞ, one has
ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

�����
�����

≤
ðT
0
Φδj jpdθ

� �1/p ðT
t
θp

∗ β−1ð Þ exp p∗
λsm

1 + kλm

θβ − tβ

β

 !
dθ

 !1/p∗

≤ exp λs−1m k−1
Tβ

β

 !
Φδk kLp∗ 0,Tð Þ

ðT
0
θp

∗ β−1ð Þdθ
� �1/p∗

≤
p − 1
pβ − 1

� �p−1/p
Tpβ−1/p exp λs−1m k−1

Tβ

β

 !
Φδk kLp 0,Tð Þ:

ð55Þ

The latter inequality leads to

J 2 :,tð Þk k2Xn Dð Þ

= 〠
λm≤Bδ

λ2nm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

" #2

·
ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/p Φδ θð Þk k2Lp 0,Tð Þ

× 〠
λm≤Bδ

λ2n+N/p−N/2
m λNp−2N/2p

m exp

· 2Tβλs−1m k−1

β

 ! ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/p Φδ θð Þk k2Lp 0,Tð Þ Bδj j2n+N/p−N/2 exp

· 2Tβ Bδj js−1k−1
β

 !
× 〠

λm≤Bδ

λ2n+N/p−N/2
m

ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/p Φδ θð Þk k2Lp 0,Tð Þ Bδj j2n+N/p−N/2

× exp 2Tβ Bδj js−1k−1
β

 !
f δ − fk kXNp−2N/4p Ωð Þ:

ð56Þ

where s > 1/β. In view of Sobolev embedding LpðDÞ°
XðNp−2NÞ/4pðDÞ, we derive that the following estimate

J 2 :,tð Þk kXn Dð Þ ≤ C6 p, β, T ,Nð Þ Φδk kLp 0,Tð Þ Bδj jn+N/2p−N/4 exp

� Tβ Bδj js−1k−1
β

 !
δ,

ð57Þ

where

C6 p, β, T ,Nð Þ = p − 1
pβ − 1

� �p−1/p
Tpβ−1/pC5 N , pð Þ: ð58Þ
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Step 3: Let us now to consider the term kJ 3ð:,tÞkXnðDÞ.
By applying Hölder’s inequality, we get that for p > 1 and
p∗ = 1/ðp − 1Þ ·

ðT
t
θβ−1 exp λsm

1 + kλm

νβ − tβ

β

� �
Φ θð Þ −Φδ θð Þð Þdθ

����
����

≤
ðT
0
Φ θð Þ −Φδ θð Þj jsdν

� �1/p

·
ðT
t
θp

∗ β−1ð Þ exp p∗
λsm

1 + kλm

θβ − tβ

β

 !
dν

 !1/p∗

≤ exp λs−1m k−1Tβ

β

 !
Φδ −Φk kLp 0,Tð Þ

ðT
t
νs

∗ β−1ð Þdν
� �1/p∗

≤
p − 1
pβ − 1

� �p−1/p
Tpβ−1/p exp Tβλs−1m k−1

β

 !
Φ −Φδk kLp 0,Tð Þ

≤
p − 1
pβ − 1

� �p−1/p
Tpβ−1/p exp Tβλs−1m k−1

β

 !
δ:

ð59Þ

This inequality together with Parseval’s equality allows
us to derive that

J 3 :,tð Þk k2Xn Dð Þ

= 〠
λm≤Bδ

λ2nm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φ θð Þ −Φδ θð Þð Þdθ

 !2

·
ð
D

f xð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/pδ2 〠

λm≤Bδ

λ2n+N/p−N/2
m λNp−2N/2p

m exp

· 2λs−1m k−1Tβ

β

 ! ð
D

f xð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/pδ2 Bδj j2n+N/p−N/2 exp

· 2Tβ Bδj js−1k−1
β

 !
fk kXNp−2N/4p Ωð Þ:

ð60Þ

By the fact that LpðDÞ°XðNp−2NÞ/4pðDÞ, we deduce that

J 3 :,tð Þk kXn Dð Þ ≤ C6 p, β, T ,Nð Þ fk kLp Dð Þ Bδj jn+N/2p−N/4 exp

� Tβ Bδj js−1k−1
β

 !
δ:

ð61Þ

Combining Step 1 to Step 3, we get

J 1 :,tð Þk kXn Dð Þ+ J 2 :,tð Þk kXn Dð Þ+ J 3 :,tð Þk kXn Dð Þ

≤ C4 N , pð Þ Bδj jn+N/2p−N/4 exp Bδj js−1k−1Tβ

β

 !
δ

+ C6 p, β, T ,Nð Þ Bδj jn+N/2p−N/4 exp Tβ Bδj js−1k−1
β

 !
δ

· Φδk kLp 0,Tð Þ + fk kLp Dð Þ
	 


:

ð62Þ

Finally, combining the reviews from above, we conclude
that

W δ ·, tð Þ − y ·, tð Þk kXn Dð Þ
≤ δ Bδj j−σ uk kL∞ 0,T ;Xn+σ Dð Þð Þ

+ C4 N , pð Þ Bδj jn+N/2p−N/4 exp Bs−1
δ k−1

Tβ

β

 !
δ

+ C6 p, β, T ,Nð Þ Bδj jn+N/2p−N/4 exp

· Tβ Bδj js−1k−1
β

 !
δ Φδk kLp 0,Tð Þ + fk kLp Dð Þ
	 


:

ð63Þ
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