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*is paper introduces a new dimension of an additive functional equation and obtains its general solution. *e main goal of this
study is to examine the Ulam stability of this equation in IFN-spaces (intuitionistic fuzzy normed spaces) with the help of direct
and fixed point approaches and 2-Banach spaces. Also, we use an appropriate counterexample to demonstrate that the stability of
this equation fails in a particular case.

1. Introduction

*e study of stability problems for functional equations is
one of the essential research areas in mathematics, which
originated in issues related to applied mathematics. *e first
question concerning the stability of homomorphisms was
given by Ulam [1] as follows.

Given a group (G, ∗ ), a metric group (G′, ·) with the
metric d, and a mapping f from G and G′, does δ > 0 exist
such that

d(f(x∗y), f(x) · f(y))≤ δ, (1)

for all x, y ∈ G. If such a mapping exists, then does a ho-
momorphism h: G⟶ G′ exist such that

d(f(x), h(x)) ≤ ε, (2)

for all x ∈ G? Ulam defined such a problem in 1940 and
solved it the following year for the Cauchy functional
equation

ψ(u + v) � ψ(u) + ψ(v), (3)

by the way of Hyers [2]. *e consequence of Hyers becomes
stretched out by Aoki [3] with the aid of assuming the
unbounded Cauchy contrasts. Hyers theorem for additive
mapping was investigated by Rassias [4], and then Rassias
results were generalized by Gavruta [5].

As of late, Nakmahachalasint [6] gave the overall answer
and HUR (briefly, Hyers–Ulam–Rassias) stability of finite
variable functional equation; furthermore, Khodaei and
Rassias [7] examined the stability of generalized additive
functions in several variables. *e stability result of additive
functional equations was examined by means of Najati and
Moghimi [8], Shin et al. [9], and Gordji [10]. Stability
problems of various functional equations have been inves-
tigated by many researchers, and there are various inter-
esting results about this problem (see [11–14]).

Zadeh [15] established the concept of fuzzy sets, which is
a tool for demonstrating weakness and ambiguity in several
scientific and technological problems.*e possibility of IFN-
spaces, from the start, has been presented in [16]. Saadati
[17] have examined the modified intuitionistic fuzzy metric
spaces and proven some fixed point theorems in these
spaces.
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*e IFN-spaces and IF2N-spaces (briefly, intuitionistic
fuzzy 2-normed spaces) have been studied by a number of
researchers [18–20]. Furthermore, several researchers have
discussed the generalized Ulam–Hyers stability of various
functional equations in IFN-spaces (see [21–24]).

In this current work, we present a new kind of additive
functional equation:
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(4)

where s> 4 is a fixed integer, and obtain its general solution.
*e main goal of this study is to examine the Ulam–Hyers
stability of this equation in IFN-spaces with the help of direct
and fixed point approaches and 2-Banach spaces by using
the direct approach. Also, we use an appropriate counter-
example to demonstrate that the stability of equation (4) fails
in a particular case.

2. General Solution

Theorem 1. If a mapping ϕ between two real vector spaces W

and F satisfies functional equation (4), then the function ϕ is
additive.

Proof. Setting v1 � · · · � vs � 0 in (4), we have ϕ(0) � 0.
Replacing (v1, v2, . . . , vs) by (v, 0, 0, . . . , 0√√√√√√√√

(s− 1)− times

) in (4), we get

ϕ(− v) � − ϕ(v) for all v ∈W. Hence, ϕ is an odd function.
Replacing (v1, v2, v3, . . . , vs) by (v, v, 0, 0, . . . , 0√√√√√√√√

(s− 2)− times

) in (4), we
have

ϕ(2v) � 2ϕ(v), (5)

for all v ∈W. Replacing v by 2v in (5), we have

ϕ 22v  � 22ϕ(v), (6)

for all v ∈W. Again, replacing v with 2v in (6), we get

ϕ 23v  � 23ϕ(v), (7)

for all v ∈W. In general, for any non-negative integer a> 0,
we have

ϕ 2a
v(  � 2aϕ(v), (8)

for all v ∈W. Replacing (v1, v2, v3, . . . , vs) by
(s, t, 0, 0, . . . , 0√√√√√√√√

(s− 2)− times

) in (4), we obtain (3) for all s, t ∈W. □

Remark 1. If a mapping ϕ between two real vector spaces W

and F satisfies functional equation (3), then the function ϕ
satisfies additive functional equation (4), for all
v1, v2, v3, . . . , vs ∈W.

For our notational handiness, we define a mapping
ϕ: W⟶ F by

Dϕ v1, v2, . . . , vs(  � 
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2
 , (9)

for all v1, v2, . . . , vs ∈W.

3. Stability Results in IFN-Spaces

We can recall some basic notions and preliminaries from
[25] and using the alternative fixed point theorem which are
important results in fixed point theory [26].

Definition 1 (see [25]). Consider a membership degree μ
and non-membership degree ] of an intuitionistic fuzzy set
from W × (0, +∞) to [0, 1] such that μv(t) + ]v(t)≤ 1 for all
v ∈W and t> 0. *e triple (W, Iμ,],Υ) is called as an
Intuitionistic Fuzzy Normed-space (briefly, IFN-space) if a
vector space W, a continuous t-representable Υ and
Iμ,]: W × (0, +∞)⟶ L∗ satisfying v1, v2 ∈W and t, s> 0,

(IFN1) Iμ,](v1, 0) � 0L∗ .
(IFN2) Iμ,](v1, t) � 1L∗ if and only if v1 � 0.
(IFN3) Iμ,](αv1, t) � Iμ,](v1, (t/|α|)), for all α≠ 0.
(IFN4) Iμ,](v1 + v2, t + s)≥ L∗Y(Iμ,](v1, t), Iμ,](v2, s)).

In this case, Iμ,] is called an intuitionistic fuzzy norm,
where Iμ,](v1, t) � (μv1

(t), ]v1
(t)).

Definition 2 (see [25]). A sequence vm  in W is called as a
Cauchy sequence if for every ϵ> 0 and t> 0, there exists m0
such that

Iμ,] vm+p − vm, t > 1 − ε, m≥m0, (10)

for all p> 0.

Remark 2. In an intuitionistic fuzzy normed space, every
convergent sequence is a Cauchy sequence.

If every Cauchy sequence is convergent, then the
intuitionistic fuzzy normed space is called as complete.

Definition 3 (see [25]). A mapping ϕ between two IFN-
spaces W and F is continuous at v0 if for every vm  con-
verging to v0 in W, the sequence ϕ vm  converges to ϕ v0 . If
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ϕ is continuous at each point v0 ∈W, then the mapping ϕ is
called as a continuous mapping on W.

Example 1. Let (W, ‖ · ‖) be a normed space. Let T(a, b) �

(a, b, min(a2 + b2, 1)) for all a � (a1, a2); b � (b1, b2) ∈ L∗

and μ, ] be membership and non-membership degree of an
intuitionistic fuzzy set defined by

Iμ,](v, t) � μv(t), ]v(t)(  �
t

t +‖v‖
,

‖v‖

t +‖v‖
 , t ∈ R

+
. (11)

*en, (W, Iμ,], T) is an IFN-space.

Theorem 2 (see [26]). Let (W, d) be a generalized complete
metric space and a strictly contractive mapping
M: W⟶W with Lipschitz constant L< 1. =en, for all
v1 ∈W, either

d M
m

v1, M
m+1

v1  �∞, m≥m0, (12)

or there exists a positive integer m0 such that

(i) d(Mmv1, Mm+1v1)<∞, m≥m0.
(ii) =e sequence Mmv1 m∈N converges to a fixed point

v∗1 of M.
(iii) v∗1 is the unique fixed point of M in

W∗ � v2 ∈W|d(Mm0v1, v2)<∞ .

(iv) d(v2, v∗1 )≤ (1/1 − L)d(Mv2, v2), for all v2 ∈W∗.

3.1. Stability Results: Direct Technique. In this section, we
assume that W, (Z, Iμ,]′ , Y), and (F, Iμ,], Y) are linear space,
IFN-space, and complete IFN-space, respectively.

Theorem 3. If a mapping φ: Ws⟶ Z with 0< (ς/2)< 1,

Iμ,]′ (φ(2v, 2v, 0, . . . , 0), ε)≥ L∗Iμ,]′ (ςφ(v, v, 0, . . . , 0), ε), (13)

lim
k⟶∞

Iμ,]′ φ 2k
v1, 2

k
v2, . . . , 2k

vs , 2kε  � 1L∗ , (14)

for all v, v1, v2, . . . , vs ∈W and all ϵ> 0. If a mapping
ϕ: W⟶ F satisfies

Iμ,] Dϕ v1, v2, . . . , vs( , ε( ≥ L∗Iμ,]′ φ v1, v2, . . . , vs( , ε( , (15)

for all v1, v2, . . . , vs ∈W and all ϵ> 0, then the limit

Iμ,] A1(v) −
ϕ 2k

v 

2k
, ϵ⎛⎝ ⎞⎠⟶ 1L∗ as k⟶∞, (16)

exists and there exists a unique additive mapping
A1: W⟶ F satisfying functional equation (4) and

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
s
3

− 9s
2

+ 20s − 12
6

 ϵ(2 − ς) , (17)

for all v ∈W and all ϵ> 0. Proof. Fix v ∈W and all ϵ> 0. Replacing (v1, v2, . . . , vs) by
(v, v, 0, . . . , 0) in (15), we have

Iμ,]
s
3

− 9s
2

+ 20s − 12
6

 ϕ(2v) −
2 s

3
− 9s

2
+ 20s − 12 

6
⎛⎝ ⎞⎠ϕ(v), ε⎛⎝ ⎞⎠

≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ε).

(18)

Replacing v by 2kv in (18) and using (IFN3), we obtain

Iμ,]
ϕ 2k+1

v 

2
− ϕ 2k

v ,
6ϵ

2 s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ 2k
v, 2k

v, 0, . . . , 0 , ϵ .

(19)

By the inequality (13) and (IFN3) in (19), we have

Iμ,]
ϕ 2k+1

v 

2
− ϕ 2k

v ,
6ϵ

2 s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
ϵ
ςk

 .

(20)

Clearly, we can show from inequality (20) that
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v 
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+ 20s − 12 
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≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
ϵ
ςk

 .

(21)

Replacing ϵ by ςkϵ in (21), we get

Iμ,]
ϕ 2k+1

v 

2k+1 −
ϕ 2k

v 

2k
,

6ςkϵ
2k+1

s
3

− 9s
2

+ 20s − 12 
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≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ).

(22)

Clearly,

ϕ 2k
v 

2k
− ϕ(v) � 

k− 1

a�0

ϕ 2a+1
v 

2a+1 −
ϕ 2a

v( 

2a . (23)

It follows from (22) and (23) that

Iμ,]
ϕ 2k

v 

2k
− ϕ(v), 

k− 1

a�0

6ςaϵ
2a+1

s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠

≥ L∗Y
k− 1
a�0 Iμ,]′

ϕ 2a+1
v 

2a+1 −
ϕ 2a

v( 

2a ,
6ςaϵ

2a+1
s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭

≥ L∗Y
k− 1
a�0 Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ) 

≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ),

(24)

for all v ∈W and ϵ> 0. Replacing v by 2tv in (24) and with
the help of (13), we have

Iμ,]
ϕ 2k+t

v 

2k+t
−
ϕ 2t

v 

2t , 
k− 1

a�0

6ςaϵ
2a+t2 s

3
− 9s

2
+ 20s − 12 

⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
ϵ
ςt ,

(25)

for every t, k≥ 0. Replacing ϵ by ςtϵ in (25), we have

Iμ,]
ϕ 2k+t

v 

2k+t
−
ϕ 2t

v 

2t , 
k+t− 1

a�t

6ςaϵ
2a+1

s
3

− 9s
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+ 20s − 12 
⎛⎝ ⎞⎠

≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ).

(26)

Using (IFN3) in (26), we obtain

Iμ,]
ϕ 2k+t

v 

2k+t
−
ϕ 2t

v 

2t , ϵ⎛⎝ ⎞⎠≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
ϵ


k+t− 1
a�t 6ςa/2a2 s

3
− 9s

2
+ 20s − 12  

⎛⎝ ⎞⎠, (27)

for all t, k≥ 0. Since 0< ς< 2 and 
k
a�0 (ς/2)a <∞, the

Cauchy criterion for convergence in IFNS shows that
ϕ(2kv)/2k  is Cauchy sequence in (F, Iμ,],Υ). Since

(F, Iμ,],Υ) is a complete, this sequence converges to some
point A1(v) ∈ F. *en, we can define the mapping
A1: W⟶ F by

Iμ,] A1(v) −
ϕ 2k

v 

2k
⎛⎝ ⎞⎠⟶ 1L∗ as k⟶∞. (28)

Setting t � 0 in inequality (29), we obtain
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Iμ,]
ϕ 2k

v 

2k
− ϕ(v), ϵ⎛⎝ ⎞⎠≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),

ϵ


k− 1
a�0 6ςa/2a2 s

3
− 9s

2
+ 20s − 12  

⎛⎝ ⎞⎠. (29)

Taking the limit as k⟶∞ in (29), we obtain

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
s
3

− 9s
2

+ 20s − 12
6

 ϵ(2 − ς) . (30)

Next, we want to prove that the function A1 satisfies
functional equation (4); replacing (v1, v2, . . . , vs) by
(2kv1, 2kv2, . . . , 2kvs) in (15), we have

Iμ,]
1
2k

Dϕ 2k
v1, . . . , 2k

vs , ϵ 

≥ L∗Iμ,]′ φ 2k
v1, . . . , 2k

vs , 2kϵ ,

(31)

for all v1, v2, . . . , vs ∈W and all ϵ> 0. Since

lim
k⟶∞

Iμ,]′ φ 2k
v1, 2

k
v2, . . . , 2k

vs , 2kε  � 1L∗ , (32)

the function A1 satisfies functional equation (4). *us, the
function A1 is additive. Finally, we want to prove that the
function A1 is unique; consider another additive mapping
A2: W⟶ F satisfying functional equations (4) and (17).
Hence,

Iμ,] A1(v) − A2(v), ϵ(  � Iμ,]
A1 2k

v 

2k
−

A2 2k
v 

2k
, ϵ⎛⎝ ⎞⎠≥ L∗

Υ Iμ,]
A1 2k

v 

2k
−
ϕ 2k

v 

2k
,
ϵ
2

⎛⎝ ⎞⎠, Iμ,]
ϕ 2k

v 

2k
−

A2 2k
v 

2k
,
ϵ
2

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

≥ L∗Iμ,]′ φ 2k
v, 2k

v, 0, . . . , 0 ,
s
3

− 9s
2

+ 20s − 12 2kϵ(2 − ς)
12

⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
s
3

− 9s
2

+ 20s − 12 2kϵ(2 − ς)

12ςk
⎛⎝ ⎞⎠,

(33)

for all v ∈W and all ϵ> 0. As

lim
s⟶∞

s
3

− 9s
2

+ 20s − 12 2kϵ(2 − ς)

12ςk
�∞, (34)

we obtain

lim
k⟶∞

Iμ,]′ φ(v, v, 0, . . . , 0),
s
3

− 9s
2

+ 20s − 12 2kϵ(2 − ς)

12ςk
⎛⎝ ⎞⎠ � 1L∗ . (35)

*us, Iμ,](A1(v) − A2(v), ϵ) � 1L∗ .

*erefore, A1(v) � A2(v). *us, the additive function
A1(v) is unique. *is ends the proof. □

Theorem 4. If a mapping φ: Ws⟶ Z with 0< (2/ς)< 1,

Iμ,]′ φ 2− 1
v, 2− 1

v, 0, . . . , 0 , ϵ ≥ L∗Iμ,]′
1
ς
φ(v, v, 0, . . . , 0), ϵ ,

(36)

lim
k⟶∞

Iμ,]′ φ 2− k
v1, 2

− k
v2, . . . , 2− k

vs , 2− kϵ  � 1L∗ , (37)

Journal of Function Spaces 5



for all v, v1, v2, . . . , vs ∈W and all ϵ> 0. If a mapping
ϕ: E⟶ F satisfies (15), then the limit
Iμ,](A1(v) − 2kϕ(v/2k), ϵ)⟶ 1L∗ as k⟶∞ exists and

there exists a unique additive mapping A1: W⟶ F satis-
fying functional equation (4) and

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0),
s
3

− 9s
2

+ 20s − 12
6

 ϵ(ς − 2) , (38)

for all v ∈W and all ϵ> 0. Proof. Fix v ∈W and all ϵ> 0. Replacing (v1, v2, . . . , vs) by
(v, v, 0, . . . , 0) in (15), we have

Iμ,]
s
3

− 9s
2

+ 20s − 12
6

 ϕ(2v) −
2 s

3
− 9s

2
+ 20s − 12 

6
⎛⎝ ⎞⎠ϕ(v), ϵ⎛⎝ ⎞⎠

≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ).

(39)

From (39), we obtain that

Iμ,] ϕ(2v) − 2ϕ(v),
6ϵ

2 s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠

≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ).

(40)

Replacing v by v/2 in (40), we get

Iμ,] ϕ(v) − 2ϕ
v

2
 ,

6ϵ
2 s

3
− 9s

2
+ 20s − 12 

⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ
v

2
,
v

2
, 0, . . . , 0 , ϵ .

(41)

Replacing v by v/2k in (41) and using (IFN3), we have

Iμ,] ϕ
v

2k
  − 2ϕ

v

2k+1 ,
6ϵ

2 s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ
v

2k+1,
v

2k+1, 0, . . . , 0  .

(42)

With the help of inequality (36) and (IFN3) in (42), we
obtain that

Iμ,] ϕ
v

2k
  − 2ϕ

v

2k+1 ,
6ϵ

2 s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠

≥ L∗Iμ,]′ φ(v, v, 0, . . . , 0), ϵςk+1
 .

(43)

*e remaining part of the proof can be proven in the
same way as *eorem 3. □

Corollary 1. Let θ ∈ R+. If a mapping ϕ: W⟶ F such that

Iμ,] Dϕ v1, v2, . . . , vs( , ϵ( ≥ L∗Iμ,]′ (θ, ϵ), (44)

for all v1, v2, . . . , vs ∈W and all ϵ> 0, then there exists a
unique additive mapping A1: W⟶ F satisfying

Iμ,] ϕ(v) − A1(v), ϵ( 

≥ L∗Iμ,]′ 6θ, |2 − 1|ϵ s
3

− 9s
2

+ 20s − 12  ,
(45)

for all v ∈W and all ϵ> 0.

Proof. *e proof holds from *eorems 3 and 4 by letting
φ(v1, v2, . . . , vs) � θ and ς � 20. □

Corollary 2. Let θ, ξ ∈ R+ with ξ ∈ (0, 1)∪ (1, +∞). If a
mapping ϕ: W⟶ F such that

Iμ,] Dϕ v1, v2, . . . , vs( , ϵ( ≥ L∗Iμ,]′ θ 
s

a�1
va

����
����
ξ
, ϵ⎛⎝ ⎞⎠, (46)

for all v1, v2, . . . , vs ∈W and all ϵ> 0, then there exists a
unique additive mapping A1: W⟶ F satisfying

Iμ,] ϕ(v) − A1(v), ϵ( 

≥ L∗Iμ,]′ 12θ‖v‖
ξ
, 2 − 2ξ


 s
3

− 9s
2

+ 20s − 12 ϵ ,
(47)

for all v ∈W and all ϵ> 0.

Proof. *e proof holds from *eorems 3 and 4 by setting
φ(v1, v2, . . . , vs) � θ

s
a�1 ‖va‖ξ and ς � 2ξ . □

Corollary 3. Let θ, ξ, c, τ ∈ R+ with
sξ, sτ ∈ (0, 1)∪ (1, +∞). If a mapping ϕ: W⟶ F such that

Iμ,] Dϕ v1, v2, . . . , vs( , ϵ( 

≥ L∗Iμ,]′ θ 
s

a�1
va

����
����

sξ
+ c 

s

a�1
va

����
����
τ
, ϵ⎛⎝ ⎞⎠,

(48)

for all v1, v2, . . . , vs ∈W and all ϵ> 0, then there exists a
unique additive mapping A1: W⟶ F satisfying
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Iμ,] ϕ(v) − A1(v), ϵ( 

≥ L∗Iμ,]′ 12θ‖v‖
sξ

, 2 − 2sξ


 s
3

− 9s
2

+ 20s − 12 ϵ ,
(49)

for all v ∈W and all ϵ> 0.

Proof. *e proof holds from *eorems 3 and 4 by setting
φ(v1, v2, . . . , vs) � θ

s
a�1 ‖va‖sξ + c 

s
a�1 ‖va‖τ and

ς � 2sξ . □

Corollary 4. Let c, τ ∈ R+ with 0< sτ ≠ 1. If a mapping
ϕ: W⟶ F such that

Iμ,] Dϕ v1, v2, . . . , vs( , ϵ( ≥ L∗Iμ,]′ c 
s

a�1
va

����
����
τ
, ϵ⎛⎝ ⎞⎠, (50)

for all v1, v2, . . . , vs ∈W and all ϵ> 0, then the mapping ϕ is
additive.

Proof. *e proof is valid from *eorems 3 and 4 by setting
φ(v1, v2, . . . , vs) � c 

s
a�1 ‖va‖τ . □

3.2. StabilityResults: FixedPointTechnique. Before we begin,
let us consider a constant βa such that

βa �

2, if a � 0,

1
2
, if a � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(51)

and Ψ is the set such that Ψ � n1|n1: W⟶ F, n1(0) � 0 .

Theorem 5. Consider a mapping ϕ: W⟶ F for which
there is a mapping φ: Ws⟶ Z with

lim
l⟶∞

Iμ,]′ φ 2l
v1, 2

l
v2, . . . , 2l

vs , 2lϵ  � 1L∗ , (52)

satisfying functional inequality (15). If there is L � L(a) such
that v⟶ η(v) � 6/(s3 − 9s2 + 20s − 12)φ((v/2),

(v/2), 0, . . . , 0) has the property

Iμ,]′ L
1
βa

η βav( , ϵ  � Iμ,]′ (η(v), ϵ), (53)

then there exists a unique additive mapping A1: W⟶ F

satisfying functional equation (4) and

Iμ,] ϕ(v) − A1(v), ϵ( n≥ L∗Iμ,]′
L
1− a

1 − L
η(v), ϵ , (54)

for all v ∈W and all ϵ> 0.

Proof. Let ς be a general metric on Ψ:

ς n1, n2(  � inf t ∈ (0,∞)|Iμ,] n1(v) − n2(v), ϵ( ≥ L∗Iμ,]′ (tη(v), ϵ), v ∈W, ϵ > 0 . (55)

Clearly, (Ψ, ς) is complete. Define a mapping
Υ: Ψ⟶Ψ by Υn1(v) � (1/βa)n1(βav), for all v ∈W. For
n1, n2 ∈ Ψ, we have

ς n1, n2( ≤ t,

⇒Iμ,] n1(v) − n2(v), ε( ≥ L∗Iμ,]′(tη(v), ε)

⇒Iμ,]
n1 βav( 

βa

−
n2 βav( 

βa

, ε ≥ L∗Iμ,]′
tη βav( 

βa

, ε 

⇒Iμ,] Υn1(v) − Υn2(v), ε( ≥ L∗Iμ,](tLη(v), ε)

⇒ς Υn1(v),Υn2(v)( ≤ tL

⇒ς Υn1,Υn2( ≤Lς n1, n2( .

(56)

*us, the function Υ is strictly contractive on Ψ with L

(Lipschitz constant). Replacing (v1, v2, . . . , vs) by
(v, v, 0, . . . , 0) in (15), we have
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Iμ,]
s
3

− 9s
2

+ 20s − 12
6

 ϕ(2v) −
2 s

3
− 9s

2
+ 20s − 12 

6
⎛⎝ ⎞⎠ϕ(v), ϵ⎛⎝ ⎞⎠

≥ L∗Iμ,]′ (φ(v, v, 0, . . . , 0), ϵ).

(57)

Using (IFN3) in (57), we have

Iμ,]
ϕ(2v)

2
− ϕ(v), ϵ ≥ L∗Iμ,]′

6
2 s

3
− 9s

2
+ 20s − 12 

⎛⎝ ⎞⎠φ(v, v, 0, . . . , 0), ϵ⎛⎝ ⎞⎠. (58)

Using equation (53) for the case a � 0, we have

Iμ,]
ϕ(2v)

2
− ϕ(v), ϵ ≥ L∗Iμ,]′ (Lη(v), ϵ)

⇒ς(Υϕ, ϕ)≤ L � L
1

� L
1− a

.

(59)

Replacing v by (v/2) in (57), we have

Iμ,] ϕ(v) − 2ϕ
v

2
 , ϵ ≥ L∗Iμ,]′

6
s
3

− 9s
2

+ 20s − 12 
⎛⎝ ⎞⎠φ

v

2
,
v

2
, 0, . . . , 0 , ϵ⎛⎝ ⎞⎠, (60)

for all v ∈W and all ϵ> 0; using (53) for the case a � 1, we
have

Iμ,] ϕ(v) − 2ϕ
v

2
 , ϵ ≥ L∗Iμ,]′ (η(v), ϵ)

⇒ς(ϕ,Υϕ)≤ 1 � L
0

� L
1− a

.

(61)

We can conclude from equations (59) and (61) that

ς(ϕ,Υϕ)≤ L
1− a <∞. (62)

By the fixed point alternative in both cases, there is a
fixed point A1 of Υ in Ψ such that

lim
k⟶∞

Iμ,]
ϕ βk

av 

βk
a

− A1(v), ϵ⎛⎝ ⎞⎠⟶ 1L∗ , v ∈W, ϵ > 0.

(63)

Replacing (v1, v2, . . . , vs) by (βav1, βav2, . . . , βavs) in
(15), we obtain

Iμ,]
1
βa

Dϕ βav1, βav2, . . . , βavs( , ϵ 

≥ L∗Iμ,]′ φ βav1, βav2, . . . , βavs( , βaϵ( ,

(64)

for all v1, v2, . . . , vs ∈W and all ϵ> 0. By same manner of
*eorem 3, we can show that the function A1 satisfies
functional equation (4). By *eorem 2, as A1 is a unique
fixed point of Υ in Δ � ϕ ∈ Ψ|ς(ϕ, A1)<∞ , the function
A1 is unique such that

Iμ,] A1(v) − ϕ(v), ε( ≥ L∗Iμ,]′ (tη(v), ε), t> 0. (65)

Using fixed point alternative, we reach

ς ϕ, A1( ≤
1

1 − L
ς(ϕ,Υϕ)

⇒ς ϕ, A1( ≤
L
1− a

1 − L

⇒Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
L
1− a

1 − L
η(v), ϵ ,

(66)

for all v ∈W and all ϵ> 0. Hence, the proof of the theorem is
now completed. □

Corollary 5. Let θ, ξ ∈ R+ with θ> 0. If a mapping
ϕ: W⟶ F such that

Iμ,] Dϕ v1, v2, . . . , vs( , ϵ( ≥ L∗

Iμ,]′ (θ, ϵ),

Iμ,]′ θ

s

j�1
vj

�����

�����
ξ
, ϵ⎛⎝ ⎞⎠,

Iμ,]′ θ 

s

j�1
vj

�����

�����
ξ

+ 

s

j�1
vj

�����

�����
sξ

⎛⎝ ⎞⎠, ϵ⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

for all v1, v2, . . . , vs ∈W and ϵ> 0, then there exists a unique
additive mapping A1: W⟶ F satisfying
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Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗

Iμ,]′ |6|θ, s
3

− 9s
2

+ 20s − 12 ϵ ,

Iμ,]′ 12θ‖v‖
s
, s

3
− 9s

2
+ 20s − 12  2 − 2ξ



ϵ , ξ < 1 or ξ > 1,

Iμ,]′ 12θ‖v‖
s
, s

3
− 9s

2
+ 20s − 12  2 − 2sξ



ϵ , ξ <
1
s
or ξ >

1
s
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

for all v ∈W and all ϵ> 0.

Proof. Set

φ v1, v2, . . . , vs(  �

θ,

θ 
s

j�1
vj

�����

�����
ξ
,

θ 
s

j�1
vj

�����

�����
ξ

+ 
s

j�1
vj

�����

�����
sξ

⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

*en,

Iμ,]′ φ βl
av1, β

l
av2, . . . , βl

avs , βl
aϵ  �

Iμ,]′ θ, βa( 
lϵ ,

Iμ,]′ θ 
s

j�1
vj

�����

�����
ξ
, β1− ξ

a 
l
ϵ⎛⎝ ⎞⎠,

Iμ,]′ θ 
s

j�1
vj

�����

�����
ξ

+ 
s

j�1
vj

�����

�����
sξ

⎛⎝ ⎞⎠, β1− sξ
a 

l
ϵ⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

⟶ 1L∗ as l⟶∞,

⟶ 1L∗ as l⟶∞,

⟶ 1L∗ as l⟶∞.

⎧⎪⎪⎨

⎪⎪⎩

(70)

*us, (52) holds. But we have that

η(v) �
6

s
3

− 9s
2

+ 20s − 12 
φ

v

2
,
v

2
, 0, . . . , 0 , (71)

has the property

Iμ,]′ L
1
βa

η βav( , ϵ ≥ L∗Iμ,]′ (η(v), ϵ), v ∈W, ϵ > 0. (72)

Hence,

Iμ,]′ (η(v), ϵ) � Iμ,]′
6

s
3

− 9s
2

+ 20s − 12 
φ

v

2
,
v

2
, 0, . . . , 0 , ϵ⎛⎝ ⎞⎠

�

Iμ,]′ 6θ, s
3

− 9s
2

+ 20s − 12 ϵ ,

Iμ,]′
12θ
2ξ

‖v‖
ξ
, s

3
− 9s

2
+ 20s − 12 ϵ ,

Iμ,]′
12θ
2sξ ‖v‖

sξ
, s

3
− 9s

2
+ 20s − 12 ϵ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(73)
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Now,

Iμ,]′
1
βa

η βav( , ϵ  �

Iμ,]′
6θ
βa

, s
3

− 9s
2

+ 20s − 12 ϵ ,

Iμ,]′
12θ
2ξβa

βav
����

����
ξ
, s

3
− 9s

2
+ 20s − 12 ϵ⎛⎝ ⎞⎠,

Iμ,]′
12θ
2sξβa

βav
����

����
sξ

, s
3

− 9s
2

+ 20s − 12 ϵ⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

Iμ,]′ β− 1
a η(v), ϵ ,

Iμ,]′ βξ− 1
a η(v), ϵ ,

Iμ,]′ βsξ− 1
a η(v), ϵ .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(74)

From inequality (53), we can verify the following cases
for conditions of βa. □

Case 1. L � 2− 1 if a � 0.

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
2− 1

1 − 2− 1 η(v), ϵ 

� Iμ,]′ 6θ, s
3

− 9s
2

+ 20s − 12 ϵ .

(75)

Case 2. L � 2 if a � 1.

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
1

1 − 2
η(v), ϵ 

� Iμ,]′ − 6θ, s
3

− 9s
2

+ 20s − 12 ϵ .

(76)

Case 3. L � 2ξ− 1 for ξ < 1 if a � 0.

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
2ξ− 1

1 − 2ξ− 1 η(v), ϵ⎛⎝ ⎞⎠

� Iμ,]′ 12θ‖v‖
ξ
, s

3
− 9s

2
+ 20s − 12 

· 2 − 2ξ ϵ.

(77)

Case 4. L � 21− ξ for ξ > 1 if a � 1.

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
1

1 − 21− ξ η(v), ϵ 

� Iμ,]′ 12θ‖v‖
ξ
, s

3
− 9s

2
+ 20s − 12 

· 2ξ − 2 ϵ.

(78)

Case 5. L � 2sξ− 1 for ξ < (1/s) if a � 0.

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
2sξ− 1

1 − 2sξ− 1 η(v), ϵ⎛⎝ ⎞⎠

� Iμ,]′ 12θ‖v‖
sξ

, s
3

− 9s
2

+ 20s − 12 

· 2 − 2sξ
 ϵ.

(79)

Case 6. L � 21− sξ for ξ < (1/s) if a � 1.

Iμ,] ϕ(v) − A1(v), ϵ( ≥ L∗Iμ,]′
1

1 − 21− sξ η(v), ϵ 

� Iμ,]′ 12θ‖v‖
sξ

, s
3

− 9s
2

+ 20s − 12 

· 2sξ
− 2 ϵ.

(80)

4. Stability Results in 2-Banach Spaces

In 1960, Gahler [27, 28] developed the concept of linear 2-
normed spaces.
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Definition 4. Consider a linear space W over R with di-
mension W> 1 and consider a mapping ‖·, ·‖: W2⟶ R

with the following conditions:

(a) ‖r, s‖ � 0 if and only if r and s are linearly dependent.
(b) ‖r, s‖ � ‖s, r‖,
(c) ‖λr, s‖ � |λ|‖r, s‖,
(d) ‖r, s + w‖≤ ‖r, s‖ + ‖r, w‖,for all r, s, w ∈W and

λ ∈ R.

*en, the function ‖·, ·‖ is called as a 2-norm on W and
the pair (W, ‖·, ·‖) is called as a linear 2-normed space. A
typical example of 2-normed space is R2 with 2-norm de-
fined as |r, s| � the area of the triangle with the vertices 0, r,
and s is a typical example of a 2-normed space.

As a result of (d), it follows that

‖r + s, w‖≤ ‖r, w‖ +‖s, w‖ and | ‖r, w‖ − ‖s, w‖ |≤ ‖r − s, w‖.

(81)

*us, r⟶ ‖r, s‖ are continuous mappings of W into R

for any fixed s ∈W.

Definition 5. A sequence rj  in a linear 2-normed space W

is known as a Cauchy sequence if there exist two points
s, w ∈W such that s and w are linearly independent.

limi,j⟶∞ ri − rj, s
�����

����� � 0,

limi,j⟶∞ ri − rj, w
�����

����� � 0.
(82)

Definition 6. A sequence rj  in a linear 2-normed space W

is called as a convergent sequence if there exists an element
r ∈W such that

lim
i,j⟶∞

rj − r, s
�����

����� � 0, (83)

for all s ∈W. If rj  converges to r, then we denote rj⟶ r

as j⟶∞ and say that r is the limit point of rj . We also
write in this instance

lim
j⟶∞

rj � r. (84)

Definition 7. A 2-Banach space is a linear 2-normed space in
which every Cauchy sequence is convergent.

Lemma 1 (see [29]). Let (W, ‖·, ·‖) be a linear 2-normed
space. If r ∈W and ‖r, s‖ � 0 for every s ∈W, then r � 0.

Lemma 2 (see [29]). For a convergent sequence rj  in a
linear 2-normed space W,

lim
j⟶∞

rj, w
�����

����� � lim
j⟶∞

rj, s

�������

�������
, (85)

for every s ∈W.

Park studied approximate additive mappings, approxi-
mate Jensen mappings, and approximate quadratic map-
pings in 2-Banach spaces in his paper [29]. In [30], Park
examined the superstability of the Cauchy functional in-
equality and the Cauchy–Jensen functional inequality in 2-
Banach spaces under certain conditions.

In this section, we let W be a normed linear space and F

be a 2-Banach space.

Theorem 6. Let φ: W⟶ [0, +∞) be a function such that

lim
i⟶∞

1
2i
φ 2i

v1, 2
i
v2, . . . , 2i

vs, w  � 0, (86)

for all v1, v2, . . . , vs, w ∈W. If a mapping ϕ: W⟶ F such
that ϕ(0) � 0 and

Dϕ v1, v2, . . . , vs( , w
����

����≤φ v1, v2, . . . , vs, w( , (87)

φ(v, w)≕
∞

j�0

1
2j
φ 2j

v, 2j
v, 0, . . . , 0, w <∞, (88)

for all v1, v2, . . . , vs, w ∈W. =en, there exists a unique
additive mapping A1: W⟶ F satisfying

ϕ(v) − A1(v), w
����

����≤
6

2 s
3

− 9s
2

+ 20s − 12 
φ(v, w), (89)

for all v, w ∈W.

Proof. Replacing (v1, v2, . . . , vs) by (v, v, 0, . . . , 0) in (87),
we get

s
3

− 9s
2

+ 20s − 12 

6
ϕ(2v) −

2 s
3

− 9s
2

+ 20s − 12 

6
ϕ(v), w

���������

���������

≤φ(v, v, 0, . . . , 0, w),

(90)

for all v, w ∈W. Replacing v by 2nv in (90) and dividing both
sides by 2n− 1, we have

1
2(n+1)

ϕ 2n+1
v  −

1
2n ϕ 2n

v( , w

�������

�������

≤
6

2n+1
s
3

− 9s
2

+ 20s − 12 
φ 2i

v, 2i
v, 0, . . . , 0, w ,

(91)

for all v, w ∈W and all non-negative integers i. Hence,

1
2n+1 ϕ 2n+1

v  −
1
2m ϕ 2m

v( , w

�������

�������

≤ 

i

j�m

1
2j+1 ϕ 2j− 1

v  −
1
2j
ϕ 2j

v , w

�������

�������

≤
6

2 s
3

− 9s
2

+ 20s − 12 


i

j�m

1
2j
φ 2j

v, 2j
v, 0, . . . , 0, w ,

(92)
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for all v, w ∈W and all non-negative integers m and i with
i≥m. *erefore, it follows from (15) and (19) that the se-
quence (1/2i)ϕ(2iv)  is Cauchy in F for every v ∈W. Since
F is complete, the sequence (1/2i)ϕ(2iv)  converges in F for
all v ∈W. *us, we may define a mapping A1: W⟶ F by

A1(v): lim
i⟶∞

1
2i
ϕ 2i

v , (93)

for all v ∈W. *erefore,

lim
i⟶∞

1
2i
ϕ 2i

v  − A1(v), w

�������

�������
� 0, (94)

for all v, w ∈W. Letting m � 0 and taking the limit as
i⟶∞ in (94), we have (89). Next, we want to prove that
the function A1 is additive. From inequalities (86), (87), and
(94) and Lemma 2,

Dϕ v1, v2, . . . , vs( , w
����

���� � lim
i⟶∞

Dϕ 2i
v1, 2

i
v2, . . . , 2i

vs , w
�����

�����

≤ lim
i⟶∞

1
2i
φ 2i

v1, 2
i
v2, . . . , 2i

vs, w  � 0,

(95)

for all v1, v2, . . . , vs, w ∈W. By Lemma 1,

DA1 v1, v2, . . . , vs(  � 0, (96)

for all v1, v2, . . . , vs ∈W. Hence, according to*eorem 1, the
mapping A1: W⟶ F is additive.

To prove that the function A1 is unique, we consider
another additive mapping A1′: W⟶ F satisfying (89).
*en,

A1(v) − A1′(v), w
����

���� � lim
i⟶∞

1
2i

A1 2i
v  − ϕ 2i

v  + ϕ 2i
v  − A1′ 2

i
v , w

�����

�����

≤
6

s
3

− 9s
2

+ 20s − 12 
lim

i⟶∞

1
2i

φ 2i
v, w  � 0,

(97)

for all v, w ∈W. By Lemma 1, A1(v) − A1′(v) � 0 for all
v ∈W. *erefore, A1 � A1′. □

Remark 3. A theorem analogous to (93) can be formulated,
in which the sequence

A1(v) ≔ lim
i⟶∞

2iϕ
v

2i
  (98)

is defined with appropriate assumptions for φ.

Corollary 6. Let λ: [0,∞)⟶ [0,∞) be a mapping such
that λ(0) � 0 and

(i) λ(pq)≤ λ(p)λ(s).
(ii) λ(p)<p for all p> 1.

If a mapping ϕ: W⟶ F with ϕ(0) � 0 and

Dϕ v1, v2, . . . , vs( , w
����

����≤ 
s

i�1
λ vi

����
����  + λ(‖w‖), (99)

for all v1, v2, . . . , vs, w ∈W, then there exists a unique ad-
ditive mapping A1: W⟶ F satisfying

ϕ(v) − A1(v), w
����

����≤
6

s
3

− 9s
2

+ 20s − 12 

2λ(‖v‖)

2 − λ(2)
+ λ(‖w‖) ,

(100)

for all v, w ∈W.

Proof. Let

φ v1, v2, . . . , vs, w(  � 
s

i�1
λ vi

����
����  + λ(‖w‖), (101)

for all v1, v2, . . . , vs, w ∈W. It follows from (i) that

λ 2i
 ≤ (λ(2))

i
,

φ 2i
v1, 2

i
v2, . . . , 2i

vs, w ≤ (λ(2))
i



s

i�1
λ vi

����
���� ⎛⎝ ⎞⎠ + λ(‖w‖).

(102)

By using *eorem 6, we obtain (96). □

Corollary 7. Let q be a positive real number such that q< 1
and let H: [0,∞) × [0,∞)⟶ [0,∞) be a homogeneous
mapping with degree q. If a mapping ϕ: W⟶ Fwith ϕ(0) �

0 and

Dϕ v1, v2, . . . , vs( , w
����

����≤H v1
����

����, v2
����

����, . . . , vs

����
����  +‖w‖,

(103)

for all v1, v2, . . . , vs, w ∈W, then there exists a unique ad-
ditive mapping A1: W⟶ F satisfying
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ϕ(v) − A1(v), w
����

����≤
6

s
3

− 9s
2

+ 20s − 12 

H(‖v‖, ‖v‖, 0, . . . , 0) +‖w‖

2 − q
, (104)

for all v, w ∈W.

Proof. Let

φ v1, v2, . . . , vs, w(  � H v1
����

����, v2
����

����, . . . , vs

����
����  +‖w‖, (105)

for all v1, v2, . . . , vs, w ∈W. By using *eorem 6, we have
(104). □

Corollary 8. Let q ∈ R+ such that q< 1 and let H: [0,∞) ×

[0,∞)⟶ [0,∞) be a homogeneous mapping with degree q.
If a mapping ϕ: W⟶ F with ϕ(0) � 0 and

Dϕ v1, v2, . . . , vs( , w
����

����≤H v1
����

����, v2
����

����, . . . , vs

����
���� ‖w‖, (106)

for all v1, v2, . . . , vs, w ∈W, then there exists a unique ad-
ditive mapping A1: W⟶ F satisfying

ϕ(v) − A1(v), w
����

����≤
6

2 s
3

− 9s
2

+ 20s − 12 

·
H(‖v‖, ‖v‖, 0, . . . , 0)‖w‖

2 − 2q ,

(107)

for all v, w ∈W.

Proof. Let

φ v1, v2, . . . , vs, w(  � H v1
����

����, v2
����

����, . . . , vs

����
���� ‖w‖, (108)

for all v1, v2, . . . , vs, w ∈W. By using *eorem 6, we have
(110). □

Corollary 9. Let p ∈ R+ such that p< 1. If a mapping
ϕ: W⟶ F with ϕ(0) � 0 and

Dϕ v1, v2, . . . , vs( , w
����

����≤ 
s

i�1
vi

����
����

p
+‖w‖, (109)

for all v1, v2, . . . , vs, w ∈W, then there exists a unique ad-
ditive mapping A1: W⟶ F satisfying

ϕ(v) − A1(v), w
����

����≤
6

s
3

− 9s
2

+ 20s − 12 

2‖v‖
p

+‖w‖

2 − p
,

(110)

for all v, w ∈W.

We use an appropriate example to demonstrate that the
stability of the functional equation (4) fails in the singular
case. We provide the following counterexample, which
shows the instability in a particular condition p � 2 in

Corollary 9 of functional equation (4), inspired by Gajda’s
excellent example in [31].

Remark 4. If a mapping ϕ: R⟶W satisfies (4), then the
following assertions hold:

(1) ϕ(mcv) � mcϕ(v), v ∈ R, m ∈ Q, and c ∈ Z.
(2) ϕ(v) � vϕ(1), v ∈ R if the function ϕ is continuous.

Example 2. Let a mapping ϕ: R⟶ R be defined by

ϕ(v) � 

∞

p�0

ψ 2p
v( 

2p , (111)

where

ψ(v) �
λv, − 1< v< 1,

λ, else.
 (112)

*en, the mapping ϕ: R⟶ R satisfies

Dϕ v1, v2, . . . , vs( 


≤
n
4

− 8n
3

+ 5n
2

+ 34n − 32
4

 

·
4
3

 λ 

s

j�1
vj



⎛⎝ ⎞⎠,

(113)

for all v1, v2, . . . , vs ∈ R, but there does not exist an additive
mapping A1: R⟶ R satisfying

ϕ(v) − A1(v)


≤ δ|v|, v ∈ R, (114)

where λ and δ are constants.

5. Conclusion

In this work, a new dimensional additive functional
(equation (4)) has been introduced. We primarily found its
solution and examined Hyers–Ulam stability in IFN-spaces
using the direct approach in Section 3.1 and the fixed point
approach in Section 3.2. In Section 4, we investigated the
Hyers–Ulam stability in 2-Banach space by using the direct
method. Also, we provided the counterexample, which
shows the instability in a particular condition p � 2 in
Corollary 9 of equation (4), by the way of Gajda.
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