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This paper introduces a new dimension of an additive functional equation and obtains its general solution. The main goal of this
study is to examine the Ulam stability of this equation in IFN-spaces (intuitionistic fuzzy normed spaces) with the help of direct
and fixed point approaches and 2-Banach spaces. Also, we use an appropriate counterexample to demonstrate that the stability of

this equation fails in a particular case.

1. Introduction

The study of stability problems for functional equations is
one of the essential research areas in mathematics, which
originated in issues related to applied mathematics. The first
question concerning the stability of homomorphisms was
given by Ulam [1] as follows.

Given a group (G, * ), a metric group (G',-) with the
metric d, and a mapping f from G and G', does & > 0 exist
such that

d(f(x=y), f(x)- f(y)<9, (1)

for all x, y € G. If such a mapping exists, then does a ho-
momorphism h: G — G’ exist such that

d(f(x),h(x))<e, (2)

for all x € G? Ulam defined such a problem in 1940 and
solved it the following year for the Cauchy functional
equation

y(u+v) =y +y), (3)

by the way of Hyers [2]. The consequence of Hyers becomes
stretched out by Aoki [3] with the aid of assuming the
unbounded Cauchy contrasts. Hyers theorem for additive
mapping was investigated by Rassias [4], and then Rassias
results were generalized by Gavruta [5].

As of late, Nakmahachalasint [6] gave the overall answer
and HUR (briefly, Hyers—Ulam-Rassias) stability of finite
variable functional equation; furthermore, Khodaei and
Rassias [7] examined the stability of generalized additive
functions in several variables. The stability result of additive
functional equations was examined by means of Najati and
Moghimi [8], Shin et al. [9], and Gordji [10]. Stability
problems of various functional equations have been inves-
tigated by many researchers, and there are various inter-
esting results about this problem (see [11-14]).

Zadeh [15] established the concept of fuzzy sets, which is
a tool for demonstrating weakness and ambiguity in several
scientific and technological problems. The possibility of IFN-
spaces, from the start, has been presented in [16]. Saadati
[17] have examined the modified intuitionistic fuzzy metric
spaces and proven some fixed point theorems in these
spaces.
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The IFN-spaces and IF2N-spaces (briefly, intuitionistic
fuzzy 2-normed spaces) have been studied by a number of
researchers [18-20]. Furthermore, several researchers have
discussed the generalized Ulam-Hyers stability of various
functional equations in IFN-spaces (see [21-24]).

In this current work, we present a new kind of additive
functional equation:

D ¢<—va—vb—vc+ i vd>

1<a<b<c<s d=1,d+a+b#c

3 2
_(s 9s -;205 12) (4)

S[ptspen)

where s > 4 is a fixed integer, and obtain its general solution.
The main goal of this study is to examine the Ulam-Hyers
stability of this equation in IFN-spaces with the help of direct
and fixed point approaches and 2-Banach spaces by using
the direct approach. Also, we use an appropriate counter-
example to demonstrate that the stability of equation (4) fails
in a particular case.

2. General Solution

Theorem 1. If a mapping ¢ between two real vector spaces W
and F satisfies functional equation (4), then the function ¢ is
additive.

D¢(V1,V2,...,Vs)= Z

for all vi,v,,...,v, € W.

3. Stability Results in IFN-Spaces

We can recall some basic notions and preliminaries from
[25] and using the alternative fixed point theorem which are
important results in fixed point theory [26].

Definition 1 (see [25]). Consider a membership degree p
and non-membership degree v of an intuitionistic fuzzy set
from W x (0, +00) to [0, 1] such that g, (t) + v, (t) <1 for all
veW and t>0. The triple (W,I,,,Y) is called as an
Intuitionistic Fuzzy Normed-space (briefly, IFN-space) if a
vector space W, a continuous t-representable Y and
IW: W x (0,+00) — L* satisfying v,,v, € W and t,s >0,

(IFN1) 1., (v,,0) = 0.

(IFN2) I, (vy,t) = 1;. if and only if v; = 0.

(IEN3) I, (avy,t) = I, (vy, (t/]al)), for all a#0.
(IFN4) I, (vy +vy,t+5)> L*Y(IW (v, 1), I, (v5,9)).

> s* = 95" +20s — 12 d(v,)—d(-v,)
Ol v — v+ v —( ) [ . . ] )
1<a<b<c<s < ! d=1,d§;¢b#c d> 6 ugl 2
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Proof. Setting v, =---=v,=0 in (4), we have ¢(0) =
Replacing (v, vy,...,v5) by (v,0,0,...,0) in (4), we get

(s—1)-times

¢(—v) = —¢(v) for all v € W. Hence, ¢ is an odd function.

Replacing (v, v,,v5,...,v5) by (1,,0,0,...,0) in (4), we
have (s-2)-times
¢ (2v) =2¢(v), (5)
for all v € W. Replacing v by 2v in (5), we have
$(2%v) = 2’9 (v), (6)
for all v € W. Again, replacing v with 2v in (6), we get
$(2°v) =2°¢ (v), (7)

for all v € W. In general, for any non-negative integer a > 0,
we have

$(2%) = 2" (v), (8)

for all veW. Replacing (v;,v,v3...,v,) by
(s,1,0,0,...,0) in (4), we obtain (3) for all s,t e W. O

(s—2)—times

Remark 1. 1f a mapping ¢ between two real vector spaces W
and F satisfies functional equation (3), then the function ¢
satisfies additive functional equation (4), for all
Vi Vys V3se oo Vg €W,

For our notational handiness, we define a mapping
¢: W — F by

In this case, I, is called an intuitionistic fuzzy norm,
where I, (v, 1) = (, (£),, (2)).

Definition 2 (see [25]). A sequence {v,,} in W is called as a
Cauchy sequence if for every € >0 and t > 0, there exists #1,
such that

I”)v(vm+p—vm,t)>1—£, m=my, (10)

for all p>0.

Remark 2. In an intuitionistic fuzzy normed space, every
convergent sequence is a Cauchy sequence.

If every Cauchy sequence is convergent, then the
intuitionistic fuzzy normed space is called as complete.

Definition 3 (see [25]). A mapping ¢ between two IFN-
spaces W and F is continuous at v, if for every {v,} con-
verging to v, in W, the sequence ¢{v,,} converges to ¢{v,}. If



Journal of Function Spaces

¢ is continuous at each point v, € W, then the mapping ¢ is
called as a continuous mapping on W.

Example 1. Let (W, | - |) be a normed space. Let T (a,b) =
(a,b, min(a, + b,,1)) for all a = (a,,a,); b= (b,,b,) € L*
and p,v be membership and non-membership degree of an
intuitionistic fuzzy set defined by

t v
t+vll £+ vl

L, (1) = (u, (1), () =( ) teR". (11)

Then, (W,1,,,T) is an IFN-space.

wr’

Theorem 2 (see [26]). Let (W,d) be a generalized complete
metric space and a strictly contractive mapping
M: W — W with Lipschitz constant L<1. Then, for all
v, € W, either

d(M"‘vl,MmHh) =00, mzm,, (12)

or there exists a positive integer m, such that
(i) d(M™v,, M"™*y,) < co, m>m,,.
(ii) The sequence {M™v,},,. converges to a fixed point
vi of M.
(iii) vi is the wunique fixed point
W* = {v, e W|d(M™v,,v,) < co}.

of M in

L, (¢(v) - A, (v),€) 2L*I;m,(<p(v, v,0,...

forall veW and all €>0.

(iv) d(v,5,v]) < (1/1 = L)d (Mv,,v,), for all v, e W*.

3.1. Stability Results: Direct Technique. In this section, we
assume that W, (Z, I,:,w Y), and (F, Iy Y) are linear space,
IFN-space, and complete IFN-space, respectively.

Theorem 3. If a mapping ¢: W* — Z with 0< (¢/2) <1,
L, (9(2v,21,0,...,0),&) 2 1.1, (¢ (v,1,0,...,0),¢), (13)

Jim 1 (p(2" v, 2%, 25 ) 2%) =1, (19

for all v,v;,v,,...,v; €W and all €>0. If a mapping
¢: W — F satisfies

Ly (D (v, vy s vg)s€) 2 Ly (@ (Vi vy, -5 %) €), (15)
for all vi,v,,...,vy € W and all € >0, then the limit
¢(2kv)
I, Ar(v) - 5 ,€ | — 1. ask — o0, (16)

exists and there exists a unique additive mapping
A,;: W — F satisfying functional equation (4) and

3_ 2 _
,0)’(5 9s +6205 12)6(2_@)’ (17)

Proof. Fix v € W and all € > 0. Replacing (v, v,,. ..
(v,1,0,...,0) in (15), we have

,Vs) by

3 2 3_ 92 _
IW<<S % +620S_12></>(2v)—<2(S - ;205 12)>¢(v),e>
(18)

2L, (9(v,%,0,...,0),¢).

Replacing v by 2%y in (18) and using (IFN3), we obtain

¢(2k+lv) f 6e
. <T —#(2) 2(s* - 95" +20s - 12) (19)

,0),(—:).

By the inequality (13) and (IFN3) in (19), we have

> I;’v(<p(2kv, 2"v,0,...

$(2"v) 6e
I"’”( 2 #(2) 2(s® - 95> +20s - 12)

€
> L*Il:),,(go(v, v,0,..., 0),c—k>.

(20)

Clearly, we can show from inequality (20) that



| (#E) a2 o
B\ gkt 28 T\ 2M(s7 - 95 + 205 - 12)

> L*Il:)v<go(v, v0,..., 0),;).
(21)

Replacing € by ¢*e in (21), we get

L [9) e(2') 66‘e
B\ gkt 28 T\ 2M(s7 - 95T + 205 - 12)

k

> 1.1, (9 (v, 1,0,...,0),¢).
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Clearly,
k k-1 a+l a
P2 =S 0@y
2 5 2 2

It follows from (22) and (23) that

(22)
o(25v k1 6¢%e
IW ( k ) -¢), Z atl/ 3 2
2 527 (s7 - 95 +20s - 12)
sy [ (#ETY) g2) 6c'e
I R NPT 2% 72"(s7 - 95% +20s - 12) (24)

k-1

> L*YE:O{I;,,V(q)(V, 1,0,...,0), e)}

2.1, (9(%%,0,...,0),€),

for all v € W and € > 0. Replacing v by 2'v in (24) and with
the help of (13), we have

I, <¢(2k”v) iU

6¢%e
okt 28 52" - 95 + 205 - 12)

€
zL*IIj’y(go(v, v,0,..., O),?),
(25)

2k+t 9t
I[A,'V <% - @, €> ZL*I‘;)V<§0(V, 1,0,... 0)

for all t,k>0. Since 0<¢<2 and ZZ:O (¢/2)* < 00, the
Cauchy criterion for convergence in IFNS shows that
{¢(2kv)/2k} is Cauchy sequence in (F,1,,,Y). Since
(F,1,,,Y)isa complete, this sequence converges to some
point A, (v) € F. Then, we can define the mapping
A: W — Fby

for every t,k>0. Replacing € by ¢'e in (25), we have

k+t t k+t— a
IW((;S(Z v) - (/5(2 v) Zl 6¢%e )

2kt 2875 2" (5T - 95T +20s - 12)

> 1.1, (9 (1,1,0,...,0),€).

(26)
Using (IFN3) in (26), we obtain
€
> > 5 (27)
YA (66" /2%2(s% - 957 +20s - 12)))

2k

k
IH)1,<A1(V)—¢(2 v)> —> 1;. ask — 0. (28)

Setting ¢ = 0 in inequality (29), we obtain
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k
Iy,v<¢<jk1}) - ¢(V)>€> ZL*I;;,V<(P(V> 1,0,...,0

Taking the limit as k — oo in (29), we obtain

L, (¢(v) = A (v),€) 2L*I;,’V(go(v, v,0,...

Next, we want to prove that the function A, satisfies

functional equation (4); replacing (v;,v,,...,v,) by
2Ky, 2kv,, .., 2kv) in (15), we have
1. % Dg(2* 2*
wr| ¢>( Viseoos vs),e
(31)

- I;’v(go(Zkvl, e

5
€
) Ny : (29)
Yhoo(66%722(s* - 957 +20s - 12))
3 o2
s =95 +20s-12
,0),( ‘ >€(2 - c)). (30)
for all v;,v,,...,v, € W and all > 0. Since
klﬂ)noo I;ﬂ,(go(zkvl, v, ..., 2kvs), 2k£) =1, (32)

the function A, satisfies functional equation (4). Thus, the
function A, is additive. Finally, we want to prove that the
function A, is unique; consider another additive mapping
A,: W — F satistying functional equations (4) and (17).
Hence,

2v) AZ(Zkv)’€>

(A
Ly (410D = Ay () €) = Iy | —

k k k k
17 A1(2 v) _(/)(2 v) e I </>(2 v) _A2(2 v) e
wy 2k 2k ’2 >t uy 2k 2k ’2
(33)
3 2 k
, . (s = 95” +20s - 12)2€(2 - ¢)
ZLJW<¢(2 v,2"7,0,...,0), 5
3 2 k
s = 95" +20s - 12)2%(2 - ¢)
>..I (v,v,O,...,O),( ,
L y,v<§0 12Ck
for all v € W and all €>0. As we obtain
3 2 k
S —9s"+20s—-12)2"€(2 - ¢)
lim ( - ) = 00, (34)
§—00 12C
im ' (otvo.... 0 (s —9s* +20s - 12)2%(2 - ¢) 1 )
1m vV, 0,0, > = 5.
k—00 wy (P ]-ch L

Thus, IW,(A1 (v) —A,(v),€) = 1;..
Therefore, A, (v) = A, (v). Thus, the additive function
A, (v) is unique. This ends the proof. O

Theorem 4. If a mapping ¢: W° — Z with 0< (2/¢) <1,

I;)v(go(zflv, 27 W0,.. .,O),e) ZL*I;!’V(%go(v, v,0,.. .,0),6),

lim I[:’v(q)(Z_ kvl, Z_kvz, o

k—00



for all v,v,v,,...,v; €W and all €>0. If a mapping
¢:E—F satisfies (15), then the limit
L,(A () - 2k¢ (v/2%),€) — 1,. as k — oo exists and

Ly (90 = A, (),¢) ZL*I,LV<§0(V, "o...

for all ve W and all €>0.
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there exists a unique additive mapping A;: W — F satis-
fying functional equation (4) and

3_ 2 _
’0)’<s 9s -;205 12)6“_2))’ (38)

Proof. Fix v € W and all € > 0. Replacing (v, v,,...
(v, v,0,...,0) in (15), we have

,v,) by

3 2 3 _9¢? _
IW<<S % 2205_12)95(21/)—(2(5 - ;205 12)>¢(v),e>
(39)

21 L, (9(%,%,0,...,0),€).

From (39), we obtain that

6e
o <¢(2V) e 2(s” - 95> + 205 - 12)> (40)

ZL*I;!),,((p(v, v,0,...,0),€).

Replacing v by v/2 in (40), we get
v 6e
I,, v)—2 (—),
* <¢( )20 2(53—952+205—12)>

’ vV
> L*IW’(QD(E’ 5’ O, ceey 0), e).

Replacing v by v/2K in (41) and using (IFN3), we have

v v 6e
1 — =20l — ),
"”("5(2") ¢(2"“) 2(s* - 95> +20s - 12)>
, v
ZL*I[J,V @ F,F,O,...,O .

With the help of inequality (36) and (IFN3) in (42), we
obtain that

ol o) 255 s oy
wr| ¢ 2k ¢ P ’2(53—9sz+205—12) (43)

> L*I}:,V(q) (v, v,0,...,0),ec""! )

(41)

The remaining part of the proof can be proven in the
same way as Theorem 3. O

Corollary 1. Let 6 € R". If a mapping : W — F such that
L, (Do (v, vy, svg),€) 210, (B,€), (44)

for all vi,v,,...,v, € W and all €>0, then there exists a
unique additive mapping A;: W — F satisfying
Ly (8(1) ~ A, (), €)
! 3 2 (45)
> . 1,,(66,12 - 1e(s’ - 9s* + 205 - 12)),

for all veW and all e>0.

Proof. 'The proof holds from Theorems 3 and 4 by letting
o,y ..., v) =0 and ¢ =2 O

Corollary 2. Let 6,& e R* with &€ (0,1)U (1,+00). If a
mapping ¢: W — F such that

R O O T

for all vi,v,,...,vi € W and all €>0, then there exists a
unique additive mapping A,: W — F satisfying
I,(¢(v) = A;(v),e)

(47)
>, I}:ﬂ,<129||v||f, |2 - 2f|(s3 —9s% +20s — 12)e>,
forallveW and all e>0.

Proof. 'The proof holds from Theorems 3 and 4 by setting
PV Va5 v) = 05 Iv,ll* and ¢ = 2¢, a

Corollary 3. Let 0,8y, 7 e R* with
s& st € (0,1)U (1, +00). If a mapping ¢: W — F such that

L, (D$(vi, vy, .., 7). €)
S S
zvf,:,(ez -y ||Vu||:e>,
a=1 a=1

for all vi,v,,...,vy € W and all €>0, then there exists a
unique additive mapping A;: W — F satisfying

(48)
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Iy,v (¢(V) - A (v), €)

(49)
>, %( 126]v]1%,

2 2%

(s = 95" +20s - 12)e>,
for all veW and all €>0.

Proof. 'The proof holds from Theorems 3 and 4 by setting
@V vy v) = O X0 Il + y T Ivall” and
¢=2% O

Corollary 4. Let y,7 € R" with 0<st+1. If a mapping
¢: W — F such that

I, (D (v, vy . .5 5),€) > L*I}:ﬂ,<y 11 ||va||r, e), (50)

and V is the set such that ¥ = {n,|n;: W — F,n, (0) = 0}.

Theorem 5. Consider a mapping ¢: W — F for which
there is a mapping ¢: W* — Z with

ll;néo I;)V(¢(21v1, 2, Zlvs), 21(—:) =1, (52)
satisfying functional inequality (15). If there is L = L(a) such
that v— 5 (v) = 6/(s> = 95 + 20s — 12)¢ ((v/2),
(v/2),0,...,0) has the property

IQ,V(Lin(ﬁQV), ) 1 (e, (53)

then there exists a unique additive mapping A;: W — F
satisfying functional equation (4) and

forall v, v,,...,v, € W and all € >0, then the mapping ¢ is -
additive. ) I, (p(v) - A, (V)’e)”ZL*I;,v(mW(V)ﬁ)’ (54)
Proof. The proof is valid from Theorems 3 and 4 by setting for all ve W and all €>0.
@i,y ) = [aey Ivall™ &
Proof. Let ¢ be a general metric on V:
3.2. Stability Results: Fixed Point Technique. Before we begin,
let us consider a constant 3, such that
2, ifa=0,
b1, (51)
— ifa=1,
2
(ny,ny) = inf{t € (0,00)1,,, (n, (v) =ny (v),€) 2 . 1, , (1 (v),€),v € W, e> 0}. (55)
Clearly, (¥,¢) is complete. Define a mapping
Y: ¥ — ¥ by Yn, (v) = (1/8,)n, (B,v), for all v € W. For
ny,n, € ¥, we have
¢(npmy) <t,
=1, (n, (v) =y (v),€) > L*I‘Wl,(tﬂ (v), €)
:I[“/(nl (ﬁav) _ n, (ﬁav)) 8) > L*I, V<t;7 (ﬁav), 8)
"\ B P\B
a a (56)

=1, (Yn, (v) = Yn, (v),€) > . I, (tLy(v),e)

=¢(Yn, (v), Yn, (v)) <tL

=¢(Yn,, Yn,) < L¢(ny,n,).

Thus, the function Y is strictly contractive on ¥ with L
(Lipschitz ~ constant). Replacing (v}, v,,...,v,) by
(v, v,0,...,0) in (15), we have



s =95 +20s— 1
Iw G

2.1, (9(1,1,0,...,0),€).

Using (IFN3) in (57), we have
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3 _ 2 _
2>¢(2V) ) (2(5 9s ;—205 12)>¢(V)) e)
(57)

¢ (2v) 6
I, ( - ¢ (), ) w<<2(53_952+205_12))‘/’(""”0’“-’0))6)- (58)

Using equation (53) for the case a = 0, we have

I, (M—gb(v) e) IM(Lq(v) €)
(59)

=¢(Y¢,p)<L=L"=L1L""

Replacing v by (v/2) in (57), we have

,”<</>(v) 2¢< ) )‘LIf”(((s_952f205_12)>¢<g’§’0""’0>’ > (60)

for all v € W and all € > 0; using (53) for the case a = 1, we
have

v
Ilo(v)—2¢( ). € 1 (11(V),€)
(023}
=¢(¢,Yp)<1=L"=L""
We can conclude from equations (59) and (61) that
¢(¢,Yp) <L * < 0. (62)

By the fixed point alternative in both cases, there is a
fixed point A; of Y in ¥ such that

. ¢(Byv
hm00 IW< (ﬁk )—

k—>

Al(v),e> — 1;., veW,e>0.

a

(63)
Replacing (v, vy, ...,v5) by (Bvi>BaVas--->PaVs) In
(15), we obtain
,uv</5 D¢(ﬁavl’ﬂav2> te >ﬁavs)’€)
@ (64)

2 I;:,v ((P (/”)avl’/juvb T >ﬁavs)’ ﬁae)’

for all v;,v,,...,v, € W and all €>0. By same manner of
Theorem 3, we can show that the function A, satisfies
functional equation (4). By Theorem 2, as A, is a unique
fixed point of Y in A = {¢ € ¥|¢(¢, A;) < oo}, the function
A, is unique such that

L, (A, (v)—p(v), )= L*I;m,(tq (v),¢), t>0. (65)

Using fixed point alternative, we reach

(9 4) S (6 Y9)

1-a

L
=>C(¢>A1)Sm

1-a
1L_—L;1(V)> 6)3
(66)

:Iy,v (¢(V) - A ), €) ZL*I;W<

for all v € W and all € > 0. Hence, the proof of the theorem is
now completed. a

Corollary 5. Let 6,{ e R,
¢: W — F such that

with 0>0. If a mapping

L, (Do (visvys. oy v)€) 2 1 1

ACHITSY

s&
Vj >’€>)

(67)

forallvi,v,,...,v, € W and € >0, then there exists a unique
additive mapping A;: W — F satisfying
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I[J)‘V (¢(V) -4 ), €) >

for allveW and all €>0.

Proof.  Set
e 6,

S (€
o5 -
< j=1
S E S
o(TT1I 3
L j=1 j=1

.....

I !

w(o(B,

Thus, (52) holds. But we have that
6 (v % 0
(s 95* +20s - 12) AV

n(v) =

has the property

L, (n(v),

.....

1,,(1616, (5 - 9s* + 205 - 12)e),

I;)V(IZGIIVIIS, (s 95" +20s - 12)|2 - 25|e), E<loré>1, (68)
I,:)v<129||v||s, (s = 95> +20s - 12)|2 2% e), £ <§ orf> %
Then,
(69)
sf)
Vj .
1,6, (B.)'e),
li > & _i\!
oyt BT 60e)
(70)

SE> 1- sE >

o (o(TTI S

([ — lL*asl—>oo,

1 — 1. asl — o0,

| — 1;.as] — 0.

1
I,L(L—n(ﬁw);e)zyl,:,m(v),e), veW,e>0. (72)
a

"0>’ (71) Hence,

e =1, 6 (VVO O)e
" (53—952+205—12)¢ 227

1,,,(66, (5 - 9s* +20s - 12)e),

(73)

126

I, Ivl%, (s* - 9s™ + 20s - 12)e

)
)

I, —9s% +20s — 12)

{%
(ﬁIIVII
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Now,

From inequality (53), we can verify the following cases

Journal of Function Spaces

i 66
IP’,J(—, (s - 95> +20s - 12)e),

a

2B,

126 (74)

1, =B (55— 95 + 205 - 12)e>,

1,i,v<1526||/3av||5, (s —95% +20s - 12)e>,

wr\ D&
{ 2%B,

Ly 60) = 4, 00) 21— e

for conditions of f3,. O
=1,,,(1200v]%, (s* - 95> + 205 - 12)
Case 1. L=2"1ifa=0.
3
21 . (2 - 2)6).
L, (p(v) = Ay (v),€) EL*IL,V(ﬁﬂ(V)’e) (78)
3 02
= I;,V(GG, (5 —9s" +20s - 12)€>' Case 5. L =2%"for < (1/s) if a = 0.
(75)

Case 2. L=21ifa=1.

Lo (80) = A, ,e) 2 1 n)se)

=1,,(-66, (s> - 95” + 20s - 12)e).

Case 3. L=2"1foré<1ifa=0.

2!
I,(¢(v) = A (v),€)= L*I/;),,<mn(v), e>

= 1,,(12601v]°, (s* - 95 + 20s - 12)

(2-2%).

Case 4. L=2"%foré>1ifa=1.

sé-1
Ly (6(0) = A, (), €) 2. Iﬂ(liT 1), >

= 1,,,(126171%, (s* - 95* + 205 - 12)
(=290
(79)
(76)
Case 6. L =2 for £< (1/s) ifa=1.

L ($0) - A (1, )2 . I;W(ﬁnw), )

=1,,,(1200v]%, (s* - 95 + 205 - 12)

(2% - 2)e).

(80)

77) 4, Stability Results in 2-Banach Spaces

In 1960, Gahler [27, 28] developed the concept of linear 2-
normed spaces.
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Definition 4. Consider a linear space W over R with di-
mension W >1 and consider a mapping [-,-[l: W? — R
with the following conditions:

(a) |Ir, sll = 0ifand only if r and s are linearly dependent.

(®) llr, sl = lIs,7ll,

(©) 1Az, sll = [Alllr, slI,

(@A) llr,s +wl <|lr, sl + |l wlfor all r,s,weW and
AeR.

Then, the function ||, -|| is called as a 2-norm on W and
the pair (W, |-,-|) is called as a linear 2-normed space. A
typical example of 2-normed space is R?* with 2-norm de-
fined as |r, s| = the area of the triangle with the vertices 0, r,
and s is a typical example of a 2-normed space.

As a result of (d), it follows that

Ir + s, wl <llr,wl +ls, wl and | [Ir, w|| = ls, wll | < [Ir = s, wl.
(81)

Thus, r — |Ir, s|| are continuous mappings of W into R
for any fixed s € W.

Definition 5. A sequence {rj} in a linear 2-normed space W
is known as a Cauchy sequence if there exist two points
s,w € W such that s and w are linearly independent.

lim;; “fi ~Tp S” =0 (82)
lim,-,jﬁoo”fi T w” =0

Definition 6. A sequence {rj} in a linear 2-normed space W
is called as a convergent sequence if there exists an element
r € W such that
lim |7, —r,s
Jim [y =r.s =0 (83)
foralls e W.If {r]} converges to r, then we denote r; — r
as j — 0o and say that r is the limit point of { } We also
write in this instance
lim r;, =r. (84)

j—o0

Definition 7. A 2-Banach space is a linear 2-normed space in
which every Cauchy sequence is convergent.

Lemma 1 (see [29]). Let (W, ]-,-|l) be a linear 2-normed
space. If r € W and ||r,s|| = 0 for every s € W, then r = 0.

Lemma 2 (see [29]). For a convergent sequence {rj} ina
linear 2-normed space W,

lim r.,s

]*)OO ]’

tim ), w] =

]*)00

(85)

for every s e W.

11

Park studied approximate additive mappings, approxi-
mate Jensen mappings, and approximate quadratic map-
pings in 2-Banach spaces in his paper [29]. In [30], Park
examined the superstability of the Cauchy functional in-
equality and the Cauchy-Jensen functional inequality in 2-
Banach spaces under certain conditions.

In this section, we let W be a normed linear space and F
be a 2-Banach space.

Theorem 6. Let o: W — [0, +00) be a function such that

lim —(p(z v 25 . 20, w) =0, (86)

i—00

for all vi,v,,...,v,w e W. If a mapping ¢: W — F such
that ¢ (0) =0 and
D¢ (visvs - s ve)sw| <@ (v vss - - s v w), (87)
_ X1 . .
(v, w)::;)§<p(2]v, 2v,0,...,0, w)<oo, (88)

for all v,v,,...,v,w e W. Then, there exists a unique

additive mapping A;: W — F satisfying
6

2(s’ - 95> +20s - 12

l¢ () - A (1), w] < )¢(v,w), (89)

for all vyw e W.

Proof. Replacing (v, v,,...,v) by (v,v,0,...,0) in (87),

we get

(s - 95" + 20 - 12) 2(s* - 95” + 205 - 12)

” 6 ¢(2v) - 6 o), w
<p(v,0,...,0,w),

(90)

for all v, w € W. Replacing v by 2"v in (90) and dividing both
sides by 2!, we have

SCCAIEETICRRY

6
—9s% +20s - 12

2(
(91)

< P (53 ) q)(ziv, 2iv, 0,...,0, w),

for all v,w € W and all non-negative integers i. Hence,

znl+1 (Z"HV) - zim ¢ (2"v), w“

i

<25

=m

S (271) - o).

i i<p(2]v, 27v,0,

.., 0,w),
jom2 )

.

: (s —9¢? +2os—12)
(92)
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for all v,w € W and all non-negative integers m and i with
i >m. Therefore, it follows from (15) and (19) that the se-
quence {(1/2")¢ (2'v)} is Cauchy in F for every v € W. Since
F is complete, the sequence {(1/2')¢ (2'v)} converges in F for
all v € W. Thus, we may define a mapping A;: W — F by

A (): lim %qs(z"v), (93)

Journal of Function Spaces

for all v € W. Therefore,

lim ii(p(Ziv) -A V), w” =0, (94)

i—0of[2

for all v,w e W. Letting m =0 and taking the limit as
i — 00 in (94), we have (89). Next, we want to prove that
the function A, is additive. From inequalities (86), (87), and
(94) and Lemma 2,

ID¢ (v1,v5 - - - vg)sw| = lim D(p(2iv1, 2, ., 2ivs), w
1—>00

(95)

R :
< ilir}?)o E(p(21v1,2'v2, . ,ZIVS,LU) =0,

for all v, v,,...,v,w € W. By Lemma 1,

DA, (v, vy, ..., v) =0, (96)

forallv;,v,,...,v, € W.Hence, according to Theorem 1, the
mapping A;: W — F is additive.

To prove that the function A, is unique, we consider
another additive mapping Aj: W — F satisfying (89).
Then,

A, (v) = A (v), w| = Jim %||A1(2iv) - ¢(2iv) + gb(ziv) - Al'(ziy),w"

6

: (53 — 95> +20s — 12) Jm, 2

for all v,w € W. By Lemma 1, A, (v) - A{(v) =0 for all
v € W. Therefore, A, = A]. O

Remark 3. A theorem analogous to (93) can be formulated,
in which the sequence

A ()= lim zl@b(%) (98)
is defined with appropriate assumptions for ¢.

Corollary 6. Let A: [0,00) — [0,00) be a mapping such
that 1(0) = 0 and

(1) A(pq) <A(p)A(s).
(ii)) A(p) < p for all p> 1.

If a mapping ¢: W — F with ¢(0) = 0 and

D¢ (visvss - - ve)sw < ZA(NV,“) +A(llwl), (99)

for all v, v,,...,v,w € W, then there exists a unique ad-
ditive mapping A,: W — F satisfying

6 2A (Il
(s’ - 95" +20s - 12) [2-A(2)

6 (v) - A, (v), w] < +A<||w||>],

(100)

. (97)
m —i(TJ(Ziv, u)) =0,
for all vyw e W.
Proof. Let
91 Vo vew) = D A([w]) + Adwl), (101)
i=1
for all vi,v,,..., v, w € W. It follows from (i) that
A(2') = (A (2)
o(2'v),2'v,,. ., 2V, w) < (A(2)) <Z/1(||vi||)> + A ([lw]).
i=1
(102)
By using Theorem 6, we obtain (96). O

Corollary 7. Let q be a positive real number such that q<1
and let H: [0,00) X [0,00) — [0,00) be a homogeneous
mapping with degree q. If a mapping : W — F with ¢ (0) =
0 and

D¢ (v1, v - - -5 vg)sw| < H(Hv1 s [lva]s - - - “vs") +wll,

(103)

for all vi,v,,...,v,w €W, then there exists a unique ad-
ditive mapping A,: W — F satisfying
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6 () - A, (v), w] < 6
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H (vl Iv1, 0, . ..., 0) +[lwl|

forall vyw e W.

Proof. Let

VW) = H("v1 ||, ||v2| e ||v5||) +lwll, (105)
for all v|,v,,...,v,w € W. By using Theorem 6, we have

(104). O

PV, vy

Corollary 8. Let g € R* such that <1 and let H: [0, 00) x
[0, 00) — [0, 00) be a homogeneous mapping with degree q.
If a mapping ¢: W — F with ¢(0) = 0 and

ID$ (visva s vi)sw <H (v [vals - - [l (106)
for all vi,v,,...,v,w €W, then there exists a unique ad-
ditive mapping A,: W — F satisfying

6
(s = 95> +20s - 12)

¢ () = A, (v), w| <

(107)
CH(vIL VI, 0, .., 0)[lwl]
2-21 ’
for all vyw e W.
Proof. Let
PV, v VW) = H(”v1 |- [|va s - - - ||vs||)||w||, (108)

for all v;,v,,...,v,w € W. By using Theorem 6, we have
(110). O

Corollary 9. Let p € R* such that p<1. If a mapping
¢: W — F with ¢(0) =0 and

D¢ (vy, v v )y w] < D wi]lf + 1wl (109)
i=1

for all vi,v,,...,v,w €W, then there exists a unique ad-
ditive mapping A;: W — F satisfying

6 2[vl” +lwl
(-9 +20s-12) 2-p

>

||¢(v) -A (v), w" <

(110)
for all vyw € W.

We use an appropriate example to demonstrate that the
stability of the functional equation (4) fails in the singular
case. We provide the following counterexample, which
shows the instability in a particular condition p=2 in

(53 —95% +20s — 12)

14 : (104)

Corollary 9 of functional equation (4), inspired by Gajda’s
excellent example in [31].

Remark 4. If a mapping ¢: R — W satisfies (4), then the
following assertions hold:

(1) ¢(mv) =mp(v),ve R,m e Q, and c € Z.
(2) ¢(v) = v (1),v € R if the function ¢ is continuous.

Example 2. Let a mapping ¢: R — R be defined by

[ee] 2‘D
¢(V)=ZW(1,V), (111)
p0 2
where
) {Av, -l<v<l, (112)
V) =
v A, else.
Then, the mapping ¢: R — R satisfies
4 3 2
n —8n +5n" + 34n - 32
|D¢(v1,v2,...,vs)|s( 1 )
(113)

for all v;, v,,..., v, € R, but there does not exist an additive
mapping A;: R — R satisfying

[p(v) — A, (V)| <8IV, veR, (114)

where A and ¢ are constants.

5. Conclusion

In this work, a new dimensional additive functional
(equation (4)) has been introduced. We primarily found its
solution and examined Hyers—Ulam stability in IFN-spaces
using the direct approach in Section 3.1 and the fixed point
approach in Section 3.2. In Section 4, we investigated the
Hyers-Ulam stability in 2-Banach space by using the direct
method. Also, we provided the counterexample, which
shows the instability in a particular condition p=2 in
Corollary 9 of equation (4), by the way of Gajda.
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